Design, fabrication and analysis of helical coil receiver with varying pitch for solar parabolic dish concentrator

Size: px
Start display at page:

Download "Design, fabrication and analysis of helical coil receiver with varying pitch for solar parabolic dish concentrator"

Transcription

1 Design, fabrication and analysis of helical coil receiver with varying pitch for solar parabolic dish concentrator 1 Manav Sharma, 2 Jaykumar Vaghani, 3 Nitesh Bihani, 4 Niranjan Shinde, 5 Vijay.C. Gunge 1,2,3,4 BE, Department of Mechanical Engineering, Sinhgad College of Engineering, Pune-41 5 Asst. Prof., Department of Mechanical Engineering, Sinhgad College of Engineering, Pune manash92@yahoo.co.in, 2 jay.happypalace@gmail.com, 3 niteshbihani26@gmail.com, 4 niranjanshinde1@gmail.com, 5 vijaygunge15@gmail.com Abstract The discrete small scale solar powered systems generally low cost are used for medium temperature applications including laundry, boiler feed water, dish washer and for water heating purpose in steam generation applications. The solar parabolic dish concentrator has a fixed focus with concentration ratios in the range of which is the best among all the solar s. In present study, the parabolic dish of opening diameter 1.4 m was fabricated using galvanized steel and its interior surface covered with reflective surface of ionized aluminum with a reflectivity of 92.5%. The system is equipped with a receiver fabricated using copper metal positioned at the focal point. The working fluid is water. The research focuses on the temperature variations achieved from changes in the geometry of the helical receiver. This paper reveals the temperature variations achieved with a bare tube helical receiver with zero pitch and with black coated helical receiver with non-zero pitch and capped. The maximum attainable temperature with non-zero pitch helical receiver coated with black paint and capped was approximately 43% higher than that of bare tube helical receiver with zero pitch. Index Terms Solar parabolic dish, concentration ratio, helical coil receiver, Pitch variation. I. INTRODUCTION 2. Diffused radiation (I d ) is that solar radiation which is received directly from sun after its direction has been changed by reflection. 3. Global radiation (I g ) is the sum of beam and diffused radiations. The solar energy can be converted into thermal energy either by flat plate or a concentrator. Different types of concentrators include parabolic trough, parabolic dish and linear Fresnel reflector. Parabolic Dish Concentrator (PDCs) has the maximum concentration ratio (CR) among all the solar concentrators. [5] II. THEORETICAL BACKGROUNDS Several parameters are used to describe solar concentrating s. Some of the important parameters are given below: Collector area: It is the area of the that intercepts the solar radiations coming from the sun. [10] Receiver area: It is the total area of the receiver that absorbs solar radiation reflected from the. [10]. Concentration Ratio: It is defined as the amount of light energy concentration achieved by a given. [12] The sun is the only star of our solar system located at its center. The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39x10 9 m and is about 1.5x10 11 m away from the earth, the sun rotates on its axis once about every four weeks. The intensity of solar radiation per unit time on a unit surface outside the earth s atmosphere is known as solar constant. Its value is 1353 W/m 2. The solar radiation as received on the earth s surface is composed of the following: 1. Beam radiation (I b ) is that solar radiation which is Rim Angle (Φ): It is defined as the angle between the axis and the reflected beam from the edge of the parabola. The rim angle measures extend of truncation of the general parabola. [8] Intercept factor (γ): It is the ratio of energy intercepted by receiver to energy intercepted by the parabola. Figure 1.1 shows segments of a parabola having a common focus F and constant aperture W. The effect of rim angle on the height of the parabola and curved surface received directly from sun without change of direction. is evident from the Figure

2 From the above equation the rim angle is found to be The total surface area for the parabolic dish is given by: [9] The total area is found to be m 2. But due to manufacturing constraints a small circular part of the dish is removed from the bottom, Hence the effective surface area (Ac) is m 2. Fig.1.1 Segment of a parabola having a common focus F and the same aperture. [12] Table І Solar Energy Collectors Sr. No Collector type Flat Evacuated plate tube Parabolic trough Concentrat ion ratio (CR) Temperature range The total available heat from the sun for the tested solar parabolic dish is Q total = total intercepted heat from the system + losses due to convection where the total heat intercepted by the system is given as: where I B = beam radiation, A r = area of the, ρ = reflectivity, α = absorptivity, τ = transmissivity, I f = intercept factor. Initially for calculations the C.R is assumed to be Parabolic dish (Practically) The volume of the receiver is given by: [10] III. MATHEMATICAL MODELLING The focal distance for a parabolic dish concentrator is given by the following expression: [9] Where h is the depth of the dish and d is the diameter of the opening parabolic surface. The focal length for the dish is found to be mm. It is almost equivalent to the focal length provided by the manufacturer i.e. 292 mm. The focal length f can also be obtained from (Stine and Harrigan, 1985): For small scale application the total volume of the receiver is approximated to be 5 l m 3. The diameter obtained for the helical coil is cm. The receiver is assumed to be a cylinder of equal diameter and length. Considering that the concentrated radiation fall on the bottom half of the helical coil hence the formula for receiver area is: The receiver area is found to be m 2. The Concentration ratio is given by: [8] Where is the rim angle. From the calculations it is found to be

3 IV. DESIGNING AND MANUFACTURING A. Design of solar dish The dish was manufactured under the guidance of Solar Akson Pvt. Ltd. The frame of the dish was made from galvanized steel and consisted of simple links welded together. The links were of hollow cross-section to reduce the overall weight of the frame. [6] At the same time gas welding was preferred for strong linkage connection to hold the dish and sustain the wind flow. The internal surface was covered with ionized aluminum of reflectivity of 92.5%. The aluminum sheet was cut into several pieces with decreasing area of equal size. The parabola shape was formed by inter connecting the aluminum sheet with thin metal wires as shown in fig 1.2. The second helical coil was manufactured for a non-zero pitch of 5 mm and its surface was powder coated with black color. A cap was manufactured for the same using a thin metal sheet covered with ionized aluminum foil. The cap dimensions were kept in accordance with the helical coil. The cap was fitted with simple hook arrangement as shown in fig 1.3. Fig. 1.4Coated helical coil receiver with non -zero pitch and capped V. EXPERIMENTAL SETUP The schematic sketch of the setup is shown below. Fig.1.2 Parabolic dish concentrator B. Design of helical coil receiver Copper metal was selected for receiver designing due to its high thermal conductivity (k=401w/mk). A copper tube was procured from the market of O.D 10mm and thickness 1mm for testing purpose. The helical coil was manufactured using bending process in which sand is inserted in the tube and the tube is enclosed on both sides by a cork. In this study we have used two helical coils as receivers, the first one was manufactured with zero pitch and its surface was kept bare as shown in fig Fig.1.5 The schematic sketch of the system Fig.1.3 Bare helical coil receiver with zero pitch The figure shows the complete assembly of the system. The input is taken from the reservoir with the help of a submersible pump. The water from the reservoir goes to the input side of the helical coil through the flexible pipe via rotameter. A flow control valve is also attached for flow rate controlling. The water absorbs the heat while flowing through the receiver coil and is collected in the collection tank at the outlet. Temperature sensors (K-type thermocouple) are provided at the inlet and outlet of the helical coil for temperature measurement. 51

4 VI. RESULTS AND DISCUSSIONS The readings for bare helical coil and the one with black coating and capped is shown below. The testing was done in cold conditions which are considered hostile for such systems which are solely dependent on solar direct radiations. Table II Readings from 15 Dec, 2014 to 15 Jan, 2015 Time Temp. of bare (sec.) coil with zero pitch Temp. of non zero pitch, coated and capped coil Table III Readings for 16 Jan, 2015 with constant flow rate = m 3 /s Temp. with Temp. of non Mass flow rate, ( 10-3) (m3/sec) zero pitch of bare coil zero coated capped coil pitch, and From Table II, the output temperature with change in mass flow rate is shown and points to the fact that with increase in mass flow rate, the output temperature from the coil goes on reducing for both types of geometries. The temperatures obtained for non-zero pitch coil (coated and capped) is higher than that compared to zero pitch coil. The same can be shown in the graph plotted below. Fig.1.5 Graph for mass flow rate vs. temperature From Table III, the output temperature with change in time on a certain bright sunny day increases from morning till afternoon and is found to be maximum at 14:00 which is expected. The temperatures obtained for non-zero pitch coil (coated and capped) is higher as compared to zero pitch coil. The same can be seen in the graph plotted below. Fig.1.6 Graph for time vs. temperature As the study indicates that the helical coil receiver with non zero pitch (coated and capped) provides better results hence the temperature obtained from the same is validated with theoretical calculations which is given below in the table. Table IV Comparison between practical and theoretical temperatures outputs obtained Date Flux (W/m 2 ) T practical T theoretical The temperature and flux values in table IV indicate the average temperatures and fluxes obtained on the mentioned dates. The percentage variation between the practical and theoretical temperatures is within ±10% and hence acceptable. The variations are plotted in the graph below: 52

5 VII. CONCLUSION The variation of output temperature with respect to change in helical coil geometry has been studied. It is concluded that the output temperature of the system is increased for the non-zero pitch coil as compared to zero pitch coil. The increase in temperature for non-zero pitch coil is approximately 43% more than that of zero pitch coil. Hence the system is more efficient for helical coil with non-zero pitch which is black coated and capped. Fig. 1.7 Graph for date vs. Temperature The variations are obtained for the output temperatures for time lapses within a particular day as shown in the table below. Table V Comparison for practical and theoretical temperature outputs obtained Time T practical T theoretical The variations are plotted in the graph below: REFERENCES [1] Eric W. Brown: An introduction to solar energy ; 1988 [2] Tarujyoti Buragohain: Impact of solar energy in rural development in India ; International Journal of Environmental Science and Development, Vol. 3 No.4, 2012 [3] Geoffrey Jones, Loubna Bouamane: Power from sunshine: A business history of solar energy ; Harvard Business School Paper 2012 [4] Yinghoa Chu, Peter Meisen: Review and comparison of different solar energy technologies ; Global Network Energy Institute, 2011 [5] F. Mohammed Sukki, R. Ramirez Iniguez, Scott G McMeekin, Brian G Stewart, Barry Clive : Solar concentrators ; International Journal Of Applied Sciences (IJAS), Vol. 1 Issue1, 2012 [6] Carl W. Richter, Arthur G. Birchenough, Gerald A. Marquis, Thaddeus S. Mroz : Design and fabrication of a low specific weight parabolic dish concentrator ; NASA Technical Paper 1152, 1978 [7] Lloyd C. Ngo: Exegetic analysis and optimization of a parabolic dish for low power application ; Centre for Renewable and Sustainable Energy Studies, University of Pretoria Fig. 1.8 Graph for time vs. Temperature The variations in the practical and theoretical values are due to the following reasons: 1. The convective losses due to wind flow. 2. Defects in manufacturing of dish and coil 3. Human errors due to manual tracking. [8] Ibrahim Ladan Mohammed: Design and development of a parabolic dish thermal cooker ; International Journal Of Engineering Research And Applications (IJERA), Vol. 3, Issue 4, pp , 2013 [9] A.R. El Ouederni, A.W. Dahmani, F. Askri, M. Ben Salah, S. Ben Nasrallah : Experimental study of a parabolic dish concentrator ; Reveu Des Energies Renouvables, Vol 12, No.3, pp ,

6 [10] Ibrahim Ladan Mohammed : Design and development of a parabolic dish for solar water heater ; International Journal Of Engineering Research And Applications (IJERA), Vol. 3, Issue 4, pp , 2012 [11] Kailash Karunakaran, Hyacinth J. Kennedy : Thermal analysis of parabolic dish snow melting device ; International Journal for Research in Technological Studies, Vol. 1, Issue 3, 2014 [13] N.D. Kaushika, K.S. Reddy: Performance of a low cost solar paraboloidal dish steam generating system ; Centre for Energy Studies, Indian Institute of Technology, Delhi, 1999 [14] Atul Sagade, Nilkanth Shinde : Performance evaluation of parabolic dish type solar for Industrial Heating Application ; International Journal Energy Technology and Policy, Vol. 8, No.1, 2012 [12] Fareed M. Mohammed, Auatf S. Jassim, Yaseen H. Mahmood, Mohamad A.K.Ahmed : Design and study of portable solar dish concentrator ; International Journal of Recent Research and Review, Vol III, 2012 [15] Meenakshisundaram Arulkumaran and William Christraj: Experimental analysis of Non Tracking solar parabolic dish concentrating system for steam generation 54

CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE

CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE 49 CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE 3.1 MOTIVATION Concentrating solar power is a principle of increasing solar power density. It can be demonstrated to set a piece of paper on fire by using

More information

Experimental study on heat losses from external type receiver of a solar parabolic dish collector

Experimental study on heat losses from external type receiver of a solar parabolic dish collector IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study on heat losses from external type receiver of a solar parabolic dish collector To cite this article: V Thirunavukkarasu

More information

Performance Investigation of Cavity Absorber for Parabolic Dish Solar Concentrator

Performance Investigation of Cavity Absorber for Parabolic Dish Solar Concentrator Volume 117 No. 7 217, 345-358 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Performance Investigation of Cavity Absorber for Parabolic Dish Solar

More information

EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR

EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR Yogender Kumar 1, Avadhesh Yadav 2 1,2 Department of Mechanical Engineering, National Institute of Technology, Kurukshetra,

More information

Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber

Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber 558 Journal of Scientific & Industrial Research J SCI IND RES VOL 66 JULY 2007 Vol. 66, July 2007, pp. 558-564 Construction and performance analysis of a three dimensional compound parabolic concentrator

More information

Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus

Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus Archimedes Solar Energy Laboratory (ASEL) Experimental investigation of the performance of a Parabolic Trough Collector (PTC) installed in Cyprus Soteris A. Kalogirou Department of Mechanical Engineering

More information

Thermal Performance Analysis of Water Heating System for a Parabolic Solar Concentrator: An Experimental Model based design

Thermal Performance Analysis of Water Heating System for a Parabolic Solar Concentrator: An Experimental Model based design Research Article International Journal of Current Engineering and Technology E-ISSN, P-ISSN - INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Thermal Performance Analysis

More information

Effect of Selective Coatings on Solar Absorber for Parabolic Dish Collector

Effect of Selective Coatings on Solar Absorber for Parabolic Dish Collector Indian Journal of Science and Technology, Vol 9(7), DOI: 10.1785/ijst/016/v9i7/1007, December 016 ISSN (Print) : 097-686 ISSN (Online) : 097-565 Effect of Selective Coatings on Solar Absorber for Parabolic

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and

More information

EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR

EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR THERMAL SCIENCE, Year 217, Vol. 21, No. 5, pp. 211-219 211 EFFECT OF NON-UNIFORM TEMPERATURE DISTRIBUTION ON SURFACE ABSORPTION RECEIVER IN PARABOLIC DISH SOLAR CONCENTRATOR Introduction by Ramalingam

More information

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: ,

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: , ICAER 2011 AN EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF HEAT LOSSES FROM THE CAVITY RECEIVER USED IN LINEAR FRESNEL REFLECTOR SOLAR THERMAL SYSTEM Sudhansu S. Sahoo* a, Shinu M. Varghese b, Ashwin

More information

Design and Fabrication of Solar Parabolic Collector for Water Distillation

Design and Fabrication of Solar Parabolic Collector for Water Distillation Kalpa Publications in Engineering Volume 1, 2017, Pages 516 524 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Engineering Design

More information

EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS

EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS EFFECT OF SOME PARAMETERS ON LINEAR FRESNEL SOLAR CONCENTRATING COLLECTORS Panna Lal Singh *1, R.M Sarviya and J.L. Bhagoria 2 1. Central Institute of Agricultural Engineering, Berasia Road, Bhopal-462038

More information

Simplified Collector Performance Model

Simplified Collector Performance Model Simplified Collector Performance Model Prediction of the thermal output of various solar collectors: The quantity of thermal energy produced by any solar collector can be described by the energy balance

More information

Experimental Analysis of Cylindrical Parabolic Collector with and without Tracking System

Experimental Analysis of Cylindrical Parabolic Collector with and without Tracking System International Journal of Ignited Minds (IJIMIINDS) Experimental Analysis of Cylindrical Parabolic Collector with and without Tracking System Praveen Math a, Nageshwar Rao T b, Rhushi Prasad P c a M.Tech

More information

AssessmentofProfileErrorforEfficientSolarParabolicTrough

AssessmentofProfileErrorforEfficientSolarParabolicTrough Global Journal of Researches in Engineering : A Mechanical and MechanicsEngineering Volume 15 Issue 2 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global

More information

EXPERIMENTAL STUDY ON A CASCADED PCM STORAGE RECEIVER FOR PARABOLIC DISH COLLECTOR

EXPERIMENTAL STUDY ON A CASCADED PCM STORAGE RECEIVER FOR PARABOLIC DISH COLLECTOR International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 217, pp. 91 917, Article ID: IJMET_8_11_92 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11

More information

Design of Concentrating Parabolic Reflector System to Generate Energy

Design of Concentrating Parabolic Reflector System to Generate Energy Available online www.ejaet.com European Journal of Advances in Engineering and Technology, 2017, 4 (6): 451-456 Research Article ISSN: 2394-658X Design of Concentrating Parabolic Reflector System to Generate

More information

Diffuse Thermal Radiation Focusing Device

Diffuse Thermal Radiation Focusing Device Diffuse Thermal Radiation Focusing Device Design Team Keegan Deppe, Ernest Kabuye Kevin Liu, Jeff Masters, Guy Shechter Design Advisor Prof. Gregory Kowalski Abstract The object of this Capstone Design

More information

DESIGN, SIMULATION, AND OPTIMIZATION OF A SOLAR DISH COLLECTOR WITH SPIRAL-COIL THERMAL ABSORBER

DESIGN, SIMULATION, AND OPTIMIZATION OF A SOLAR DISH COLLECTOR WITH SPIRAL-COIL THERMAL ABSORBER ThSci 4-2016-part II 11 TR UR AD PDF REV OŠ ThSci2016.049 25974 karaktera. Datum: 8/23/2016 Pavlović, S. R., et al.: Design, Simulation, and Optimization of a Solar Dish THERMAL SCIENCE, Year 2016, Vol.

More information

Development of a Solar Fresnel Reflector and Its Tracking Stand Using Local Material

Development of a Solar Fresnel Reflector and Its Tracking Stand Using Local Material RESEARCH ARTICLE OPEN ACCESS Development of a Solar Fresnel Reflector and Its Tracking Stand Using Local Material Manukaji John Solar Energy Research Centre Federal Polytechnic, Bida Niger State Nigeria

More information

OPTICAL ANALYSIS AND PERFORMANCE EVALUATION OF A SOLAR PARABOLIC DISH CONCENTRATOR

OPTICAL ANALYSIS AND PERFORMANCE EVALUATION OF A SOLAR PARABOLIC DISH CONCENTRATOR Pavlović, S. R., et al.: Optical Analysis and Performance Evaluation of S1237 OPTICAL ANALYSIS AND PERFORMANCE EVALUATION OF A SOLAR PARABOLIC DISH CONCENTRATOR by Saša R. PAVLOVI] a, Darko M. VASILJEVI]

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 11, May 2017 Experimental Investigation and Fabrication of Serpentine Flat-Plate Collector to predict the Performance Srinivas Prasad Sanaka 1, P.K.Bharadwaj 2, BLVS Gupta 3 1 Professor, 2 Student, 3 Assistant Professor

More information

Thermal Analysis of a Compound Parabolic Collector

Thermal Analysis of a Compound Parabolic Collector Thermal Analysis of a Compound Parabolic Collector Eshan Kumar Nashine, P.S.Kishore Department of Mechanical, Engineering, College of Engineering (A.) Andhra University, Visakhapatnam, Andhra Pradesh,

More information

Ndiaga MBODJI and Ali Hajji

Ndiaga MBODJI and Ali Hajji January 22 nd to 24 th, 2018 Faro Portugal 22/01/2018 Ndiaga MBODJI and Ali Hajji Process Engineering and Environment Research Unit Institut Agronomique et Vétérinaire Hassan II 1. 2. 3. 4. 2 1. 3 Solar

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

Thermal Analysis of Solar Collectors

Thermal Analysis of Solar Collectors Thermal Analysis of Solar Collectors Soteris A. Kalogirou Cyprus University of Technology Limassol, Cyprus Contents Types of collectors Stationary Sun tracking Thermal analysis of collectors Flat plate

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com Archives of Physics Research, 2013, 4 (2):4-13 (http://scholarsresearchlibrary.com/archive.html) ISSN : 0976-0970 CODEN (USA): APRRC7 Experimental investigations

More information

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS.

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS. FLAT PLATE COLLECTORS ABSORBER PLATES OPTIMIZATION OF GEOMETRY SELECTIVE SURFACES METHODS OF TESTING TO DETERMINE THE THERMAL PERFORMANCE

More information

DESIGN, CONSTRUCTION OF A SOLAR CONICAL CONCENTRATING COLLECTOR AND ESTIMATION OE ITS PERFORMANCE. Morka J.C

DESIGN, CONSTRUCTION OF A SOLAR CONICAL CONCENTRATING COLLECTOR AND ESTIMATION OE ITS PERFORMANCE. Morka J.C DESIGN, CONSTRUCTION OF A SOLAR CONICAL CONCENTRATING COLLECTOR AND ESTIMATION OE ITS PERFORMANCE Morka J.C Abstract The aim of this study is to design, develop and construct a reliable solar conical collector

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid

Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid 1 Krishna S. Borate, 2 A.V. Gawandare, 3 P.M. Khanwalkar 1,2,3 Department of Mechanical Engineering, Sinhgad College

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 524 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

Exam questions: HEAT. 2. [2003 OL][2004 OL][2005 OL][2006 OL][2007 OL][2008 OL][2009] Name two methods by which heat can be transferred.

Exam questions: HEAT. 2. [2003 OL][2004 OL][2005 OL][2006 OL][2007 OL][2008 OL][2009] Name two methods by which heat can be transferred. Exam questions: HEAT Specific heat capacity of copper = 390 J kg 1 K 1 ; Specific heat capacity of water = 4200 J kg 1 K 1 s.h.c. of aluminium = 910 J kg -1 K -1 ; Specific latent heat of fusion of ice

More information

Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance M. M. Isa, R. Abd-Rahman, H. H. Goh

Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance M. M. Isa, R. Abd-Rahman, H. H. Goh Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance M. M. Isa, R. Abd-Rahman, H. H. Goh Abstract A compound parabolic concentrator (CPC) is a wellknown non-imaging concentrator

More information

Thermal conversion of solar radiation. c =

Thermal conversion of solar radiation. c = Thermal conversion of solar radiation The conversion of solar radiation into thermal energy happens in nature by absorption in earth surface, planetary ocean and vegetation Solar collectors are utilized

More information

Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker

Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker Subodh Kumar * Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India Received

More information

Solar Energy Cooking with the Sun

Solar Energy Cooking with the Sun Student Handout: Experiment - Where is the sun? Name: Date: Measuring the current Solar Azimuth and Solar Angle 1. Use the level to find a section of concrete that is relatively level. Your instructor

More information

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER 20 CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER 3.1 INTRODUCTION A Shell and Tube Heat Exchanger is usually used for higher pressure applications, which consists of a series of tubes, through which one of the

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

Tick the box next to those resources for which the Sun is also the source of energy.

Tick the box next to those resources for which the Sun is also the source of energy. 1 (a) The source of solar energy is the Sun. Tick the box next to those resources for which the Sun is also the source of energy. coal geothermal hydroelectric nuclear wind [2] (b) Fig. 4.1 shows a solar

More information

A NOVEL IMAGING LIGHT FUNNEL AND ITS COLLECTING HEAT EXPERIMENTS

A NOVEL IMAGING LIGHT FUNNEL AND ITS COLLECTING HEAT EXPERIMENTS A NOVEL IMAGING LIGHT FUNNEL AND ITS COLLECTING HEAT EXPERIMENTS Zehui CHANG a,b, Hongfei ZHENG a,c*, Yingjun YANG a, Tao TAO a, Xiaodi XUE a a School of Mechanical Engineering, Beijing Institute of Technology,

More information

ANALYSIS OF THERMAL STRESSES OF SOLAR PARABOLIC TROUGH COLLECTOR FOR SOLAR POWER PLANT BY FEM

ANALYSIS OF THERMAL STRESSES OF SOLAR PARABOLIC TROUGH COLLECTOR FOR SOLAR POWER PLANT BY FEM Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 2, April, 2014 2014 IJMERR. All Rights Reserved ANALYSIS OF THERMAL STRESSES OF SOLAR PARABOLIC TROUGH COLLECTOR FOR SOLAR POWER PLANT BY FEM K

More information

THERMAL AND OPTICAL CHARACTERIZATION OF PARABOLIC TROUGH RECEIVERS AT DLR S QUARZ CENTER RECENT ADVANCES

THERMAL AND OPTICAL CHARACTERIZATION OF PARABOLIC TROUGH RECEIVERS AT DLR S QUARZ CENTER RECENT ADVANCES THERMAL AND OPTICAL CHARACTERIZATION OF PARABOLIC TROUGH RECEIVERS AT DLR S QUARZ CENTER RECENT ADVANCES Johannes Pernpeintner 1, Björn Schiricke 2, Eckhard Lüpfert 2, Niels Lichtenthäler 2, Michael Anger

More information

Conceptual Design of a Microcontroller Based Solar Water Purification System Using a Sliding Parabolic Cum Circular Reflector

Conceptual Design of a Microcontroller Based Solar Water Purification System Using a Sliding Parabolic Cum Circular Reflector IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 4 Ver. VII (Jul- Aug. 2014), PP 09-13 Conceptual Design of a Microcontroller Based Solar

More information

The Comparison between the Effects of Using Two Plane Mirrors Concentrator and that without Mirror on the Flat- Plate Collector

The Comparison between the Effects of Using Two Plane Mirrors Concentrator and that without Mirror on the Flat- Plate Collector ICCHT2010 5 th International Conference on Cooling and Heating Technologies, Bandung, Indonesia 911 December 2010 The Comparison beteen the ffects of Using To Plane Mirrors Concentrator and that ithout

More information

Design and simulation of a new solar paraboloid dish collector

Design and simulation of a new solar paraboloid dish collector Design and simulation of a new solar paraboloid dish collector E. Bellos a *, C. Tzivanidis a, K. A. Antonopoulos a a National Technical University of Athens, School of Mechanical Engineering, Thermal

More information

5. Temperature and Heat

5. Temperature and Heat Leaving Cert Physics Long Questions 2017-2002 5. Temperature and Heat Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Contents Temperature:

More information

Design, realisation and experimentation of a solar cooker fitted with an ellipsoidal concentrator: Preliminary results of cooking tests

Design, realisation and experimentation of a solar cooker fitted with an ellipsoidal concentrator: Preliminary results of cooking tests IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Design, realisation and experimentation of a solar cooker fitted with an ellipsoidal concentrator: Preliminary results of cooking

More information

Overview of solar receiver design

Overview of solar receiver design Solar Facilities for the European Research Area Overview of solar receiver design Alain Ferriere SFERA II 2014-2017, Summer School, June 25, 2014, Odeillo (France) Solar receiver: a key component Storage

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 Experimental Investigation for Enhancement of Heat Transfer in Two Pass Solar Air Heater

More information

Heat Transfer Enhancement of Solar Flat Plate Collector by Using V Corrugated Fins and Various Parameters

Heat Transfer Enhancement of Solar Flat Plate Collector by Using V Corrugated Fins and Various Parameters International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Heat

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1355-1360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Time: 1 Hour HEAT AND MASS TRANSFER Note: All questions are compulsory. Q1) The inside temperature of a furnace wall ( k=1.35w/m.k), 200mm thick, is 1400 0 C. The heat transfer coefficient

More information

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR 5 th International Conference on Energy Sustainability ASME August 7-10, 2011, Grand Hyatt Washington, Washington DC, USA ESFuelCell2011-54254 HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING

More information

DESIGN AND FABRICATION OF MINI DRAFT COOLING TOWER

DESIGN AND FABRICATION OF MINI DRAFT COOLING TOWER DESIGN AND FABRICATION OF MINI DRAFT COOLING TOWER 1 Mahendran 2 Mukund, 3 Muralidharan, Address for Correspondence 1 Asst. Prof., Mechanical Engineering, 2 Student, K. Ramakrishnan college of Technology,

More information

KHAN S SOLAR OVEN M.Y.Khan* A.Ahmad**

KHAN S SOLAR OVEN M.Y.Khan* A.Ahmad** 1 KHAN S SOLAR OVEN M.Y.Khan* A.Ahmad** ABSTRACT The device was designed and fabricated by the author*, at Chichawatni, District Sahiwal Pakistan. The purpose of designing this device was; (1) to get such

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Comparison of performance analysis of Scheffler reflector and model formulation

Comparison of performance analysis of Scheffler reflector and model formulation Comparison of performance analysis of Scheffler reflector and model formulation Rupesh. J. Patil 1, Gajanan. K. Awari 2 and Mahendra Prasad Singh 1 1 Priyadarshini College of Engineering, Nagpur-440019

More information

Laboratory 12: Three Thermodynamics Experiments

Laboratory 12: Three Thermodynamics Experiments Laboratory 12: Three Thermodynamics Experiments Experiment 1: Coefficient of Linear Expansion of Metals The fact that most objects expand when heated is common knowledge. The change in the linear dimensions

More information

PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS

PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS PERFORMANCE ANALYSIS OF PARABOLIC TROUGH COLLECTOR TUBE WITH INTERNAL INTERMITTENT FINS Binoj K. George 1, Jacob Kuriakose 2 1Student, M. A. College of Engineering, Kothamangalam 2Asst. Prof, M. A. College

More information

Measuring the Solar Constant

Measuring the Solar Constant SOLAR PHYSICS AND TERRESTRIAL EFFECTS Measuring the Solar Constant Relevant Reading Purpose Chapter 2, section 1 With this activity, we will let solar radiation raise the temperature of a measured quantity

More information

Automatic Control of a 30 MWe SEGS VI Parabolic Trough Plant

Automatic Control of a 30 MWe SEGS VI Parabolic Trough Plant Automatic Control of a 3 MWe SEGS VI Parabolic Trough Plant Thorsten Nathan Blair John W. Mitchell William A. Becman Solar Energy Laboratory University of Wisconsin-Madison 15 Engineering Drive USA E-mail:

More information

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material R. Sivakumar and V. Sivaramakrishnan Abstract Flat Plate

More information

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com

More information

HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS

HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS HEAT TRANSFER ENHANCEMENT OF SOLAR FLAT PLATE COLLECTOR BY USING V CORRUGATED FINS AND VARIOUS PARAMETERS Manoj S. Chaudhari 1, Mahesh Jagadale 2 1,2 Department of Mechanical Engineering, SPP University,

More information

PERFORMANCE ANALYSIS OF SOLAR PARABOLIC TROUGH COLLECTOR SYSTEM FOR DIFFERENT CONCENTRATION OF Al2O3 WITH WATER AS BASE FLUID

PERFORMANCE ANALYSIS OF SOLAR PARABOLIC TROUGH COLLECTOR SYSTEM FOR DIFFERENT CONCENTRATION OF Al2O3 WITH WATER AS BASE FLUID PERFORMANCE ANALYSIS OF SOLAR PARABOLIC TROUGH COLLECTOR SYSTEM FOR DIFFERENT CONCENTRATION OF Al2O3 WITH WATER AS BASE FLUID 1 Miss. S. T. Kolekar 2 Mr. P. S. Patil 1Student, Department of Mechanical

More information

Study ANTALYA. Abstractt. number. reflecting. any specially an importantt solar thermal. of the aperture area to the

Study ANTALYA. Abstractt. number. reflecting. any specially an importantt solar thermal. of the aperture area to the 212 - ANTALYA Study of Heat Transfer by Low-Velocity Forced Convectionn of Parabolic Dish Solar Cylindrical Receiver Shiva Gorjian 1, Teymour Tavakkoli Hashjin 1, Barat Ghobadian 1, Ahmad Banakar 1 1 Department

More information

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger

Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Vol. 2, No. 4 Modern Applied Science Analysis of Heat Transfer Enhancement in Spiral Plate Heat Exchanger Dr. Kaliannan Saravanan Professor & Head, Department of Chemical Engineering Kongu Engineering

More information

International Journal of Engineering, Business and Enterprise Applications (IJEBEA)

International Journal of Engineering, Business and Enterprise Applications (IJEBEA) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Engineering, Business and Enterprise

More information

HEAT LOSS MEASUREMENTS ON PARABOLIC TROUGH RECEIVERS

HEAT LOSS MEASUREMENTS ON PARABOLIC TROUGH RECEIVERS HEAT LOSS MEASUREMENTS ON PARABOLIC TROUGH RECEIVERS Sebastian Dreyer, Paul Eichel, Tim Gnaedig, Zdenek Hacker, Sebastian Janker, Thomas Kuckelkorn, Kamel Silmy, Johannes Pernpeintner 2 and Eckhard Luepfert

More information

International Journal of Advanced Engineering Research and Studies E-ISSN

International Journal of Advanced Engineering Research and Studies E-ISSN Research Paper ANALYSIS OF TWISTED TAPE WITH STRAIGHT WINGLETS TO IMPROVE THE THERMO-HYDRAULIC PERFORMANCE OF TUBE IN TUBE HEAT EXCHANGER Mr.S.D.Patil 1, Prof. A.M. Patil 2, Prof. Gutam S. Kamble 3 Address

More information

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015 Heat Transfer Enhancement in a Tube using Elliptical-Cut Twisted Tape Inserts Pratik P. Ganorkar 1, R.M. Warkhedkar 2 1 Heat power Engineering, Department of Mechanical Engineering, Govt. collage of engineering

More information

Thermal conductivity measurement of two microencapsulated phase change slurries

Thermal conductivity measurement of two microencapsulated phase change slurries Thermal conductivity measurement of two microencapsulated phase change slurries Xiaoli Ma (corresponding author), Siddig Omer, Wei Zhang and S. B. Riffat Institute of Sustainable Energy Technology, School

More information

ENHANCEMENT OF THE HEAT TRANSFER RATE IN FREE CONVECTION SOLAR AIR HEATER USING PIN SHAPED ARTIFICIAL ROUGHNESS ON ABSORBER PLATE

ENHANCEMENT OF THE HEAT TRANSFER RATE IN FREE CONVECTION SOLAR AIR HEATER USING PIN SHAPED ARTIFICIAL ROUGHNESS ON ABSORBER PLATE ENHANCEMENT OF THE HEAT TRANSFER RATE IN FREE CONVECTION SOLAR AIR HEATER USING PIN SHAPED ARTIFICIAL ROUGHNESS ON ABSORBER PLATE Syed E. Gilani 1, Hussain H. Al-Kayiem 1, Buschmann Matthias 2 and Dereje.

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

DESIGN AND MANUFACTURING OF 2M 2 SOLAR SCHEFFLER REFLECTOR

DESIGN AND MANUFACTURING OF 2M 2 SOLAR SCHEFFLER REFLECTOR IJAET International Journal of Application of Engineering and Technology ISSN: 2395-3594 Vol-2 No.-1 DESIGN AND MANUFACTURING OF 2M 2 SOLAR SCHEFFLER REFLECTOR M. R. Kowshik 1, M.Varun 2, B. Ajay 3 and

More information

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT

CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 62 CHAPTER 5 CONVECTIVE HEAT TRANSFER COEFFICIENT 5.1 INTRODUCTION The primary objective of this work is to investigate the convective heat transfer characteristics of silver/water nanofluid. In order

More information

Available online at ScienceDirect. Energy Procedia 57 (2014 ) ISES Solar World Congress

Available online at   ScienceDirect. Energy Procedia 57 (2014 ) ISES Solar World Congress Available online at www.sciencedirect.com ScienceDirect Energy Procedia 57 (214 ) 1613 1622 213 ISES Solar World Congress Theoretical and Experimental Comparison of Box Solar Cookers with and without Internal

More information

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB 1 H.VETTRIVEL, 2 P.MATHIAZHAGAN 1,2 Assistant professor, Mechanical department, Manalula Vinayakar institute of

More information

Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector

Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector Abdul Waheed Badar *, Reiner Buchholz, and Felix Ziegler Institut für Energietechnik, KT, FG

More information

Design, Fabrication and Testing Of Helical Tube in Tube Coil Heat Exchanger

Design, Fabrication and Testing Of Helical Tube in Tube Coil Heat Exchanger International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-12, December 2014 Design, Fabrication and Testing Of Helical Tube in Tube Coil Heat Exchanger Sagar

More information

Effects of Solar Radiation and Waste Heat in Configured Circular Pipes

Effects of Solar Radiation and Waste Heat in Configured Circular Pipes Effects of Solar Radiation and Waste Heat in Configured Circular Pipes Prabin Haloi 1 1 Department of Mechanical Engineering, Tezpur University, Sonitpur, Assam Abstract In the present work, a combination

More information

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID Tisekar Salman W 1, Mukadam Shakeeb A 2, Vedpathak Harshad S 3, Rasal Priyanka K 4, Khandekar S. B 5 1 Student of B.E.,

More information

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases. ME 323 Sample Final Exam. 120pts total True/False. Circle the correct answer. (1pt each, 7pts total) 1. A solid angle of 2π steradians defines a hemispherical shell. T F 2. The Earth irradiates the Sun.

More information

26 June 2013 KORANET-SUPSI

26 June 2013 KORANET-SUPSI 26 June 2013 KORANET-SUPSI New dimensions in trough technology Concrete frame PVC-PES foil ETFE foil Major innovations Receiver Concrete frame Pneumatic mirror and enclosure High-temperature (> 600 C)

More information

Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan

Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan Write Down Your NAME, Last First Circle Your DIVISION Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan ME315 - Heat and Mass Transfer School of Mechanical Engineering Purdue

More information

EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB

EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB Piyush Kumar Jain and Atul Lanjewar Department of Mechanical Engineering, Maulana Azad

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System Engineering, 2010, 2, 832-840 doi:10.4236/eng.2010.210106 Published Online October 2010 (http://www.scirp.org/journal/eng) Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated

More information

COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS

COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS Johannes Pernpeintner 1, Björn Schiricke 2, Eckhard Lüpfert 2, Niels Lichtenthäler 2, Ansgar Macke 2

More information

HEAT PRODUCTION BY STATIONARY PARABOLIC, CYLINDRICAL SOLAR CONCENTRATOR

HEAT PRODUCTION BY STATIONARY PARABOLIC, CYLINDRICAL SOLAR CONCENTRATOR Proceedings of ECOS 2009 Copyright 2009 by ABCM 22 nd International Conference on Efficiency, Cost, Optimization Simulation and Environmental Impact of Energy Systems August 31 September 3, 2009, Foz do

More information

Comparative Evaluation of Parabolic Collector and Scheffler Reflector For Solar Cooking

Comparative Evaluation of Parabolic Collector and Scheffler Reflector For Solar Cooking International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 9, Number 1 (2016), pp. 1-16 International Research Publication House http://www.irphouse.com Comparative Evaluation

More information

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures Conduction Thermal system components 2003 David L. Akin - All

More information

STUDY OF FLAT PLATE COLLECTOR SOLAR WATER HEATER

STUDY OF FLAT PLATE COLLECTOR SOLAR WATER HEATER STUDY OF FLAT PLATE COLLECTOR SOLAR WATER HEATER Bhagyashree P Dahane, S.P. Adhau Email : dahane.hagyashree@gmail.com, adhau_sp@yahoo.co.in Astract: In this paper experimental results of flat plate collector

More information

ENERGETIC AND EXERGETIC ANALYSIS OF SOLAR PTC WITH DIFFERENT REFLECTOR MATERIAL

ENERGETIC AND EXERGETIC ANALYSIS OF SOLAR PTC WITH DIFFERENT REFLECTOR MATERIAL International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 1, October 217, pp. 1 8, Article ID: IJMET_8_1_1 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=1

More information

Numerical Study of a High Temperature Latent Heat Storage ( C) Using NaNO 3 -KNO 3 Binary Mixture

Numerical Study of a High Temperature Latent Heat Storage ( C) Using NaNO 3 -KNO 3 Binary Mixture 1 Presented at the COMSOL Conference 2010 Paris Numerical Study of a High Temperature Latent Heat Storage (200-300 0 C) Using NaNO 3 -KNO 3 Binary Mixture Foong Chee Woh, 17-11-2010 2 Background 3 Background

More information

Experimental Analysis of Double Pipe Heat Exchanger

Experimental Analysis of Double Pipe Heat Exchanger 206 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Experimental Analysis of Double Pipe Heat Exchanger Urvin R. Patel, 2 Manish S. Maisuria, 3 Dhaval R. Patel, 4 Krunal P. Parmar,2,3,4 Assistant Professor,2,3,4

More information