Problem Set 5 Solutions

Size: px
Start display at page:

Download "Problem Set 5 Solutions"

Transcription

1 Problem Set 5 Solutions Dorian Abbot APM47 0/8/04. (a) We consider π θ π. The pendulum pointin down corresponds to θ=0 and the pendulum pointin up corresponds to θ π. Define ν θ. The system can be rewritten: θ ν () ν sin θ ω cos θ R Notice that this system is reversible. The fied points of this system are at ν=0 and θ 0 π arcos. Calculate the Jacobian: Rω J ω cos θ sin θ The trace and determinant of the Jacobian are: Evaluate at the fied points: i. Rω < 0 cos θ 0 R τ 0 (3) () R cos θ ω sin θ cos θ (4) 0 0 ω π 0 ω arcos Rω 0 ω Rω (5) (6) Rω Rω (7) The f.p. at (0,0) is a saddle. The f.p. at ( π,0) is a saddle. The f.p. at ( arcos,0) Rω are nonlinear centers. ii. = Rω The f.p. at ( π,0) is a saddle. There is another f.p. at (0,0) which is a center (from plottin). iii. > Rω The f.p. at (0,0) is a center. The f.p. at ( π,0) is a saddle. The f.p. at ( arcos,0) Rω don t eist. (b) If we include friction our equations can be written: θ ν (8) µν () ν sin θ ω cos θ R

2 The system is no loner reversible, so we don t epect to et centers. We et the same fied points as before. The Jacobian is: J ω cos θ sin θ The trace and determinant of the Jacobian are: Now let s consider our cases aain: (a) (b) (c) 0 cos θ R µ τ µ (0) R cos θ ω sin θ cos θ () < Rω The f.p. at (0,0) is a saddle. The f.p. at ( π,0) is a saddle. The f.p. at ( arcos,0) Rω are either stable nodes or stable spirals. Whether τ 4 µ ω is reater R ω 4 than or less than zero determines whether these points will be nodes or spirals. Rω = At this point a supercritical pitchfork bifurcation occurs. > Rω The f.p. at ( π,0) is a saddle. The f.p. at (0,0) is either a stable spiral or a stable node. Whether τ 4 µ R ω is reater than or less than zero determines whether these points will be nodes or spirals. The f.p. at ( arcos,0) don t eist. Rω Here is a bifurcation diaram:

3 4 Bifurcation Diaram 3 saddle stable node or spiral θ 0 saddle ω/(/r) / 3

4 . First notice that the paper cited was written by Harvard s very own Professor Howard Stone! (a) The system is invariant under the transformation t t φ φ, so it is reversible. β (b) ẋ 0 at φ 0 π and =0, while φ 0 at 8 cos φ. Now consider the intersection of the nullclines. At φ π we can never et a f.p. with positive β and. At φ 0 there will be a f.p. at =8 β for β! 8. At =0 there will be fied points at φ " arccos β for 0 β 8!. At = there will β be fied points at φ # arccos for 0 β 8. So for there are three fied points. The Jacobian of the system is:! β! 8 J %$ The trace and determinant of the Jacobian are: τ At (φ,)=(0,8 β ), we have: So for! β! 8 4 sin φ 4 cos φ 6 cos φ sin φ 8 & 7 sin φ () sin φ ' At φ ( ) arccos 8 β *, we have: 64 cos φ (3) τ 0 (4) β β 8 (5) (when this f.p. eists) <0 and it is a saddle. τ 7 sin φ (6) 3 64 sin φ (7) sin φ So τ 4 sin φ So the f.p. at positive φ is an unstable node and the f.p. at neative φ is a stable node. At =0, ẋ=0 and for our β rane φ, 0, so a closed orbit winds around the cylinder. For near one, the stable node at φ -. ) arccos 8 β is approached at lon times. So there must be a homoclinic orbit that intersects with the saddle point and winds around the cylinder to separate these two domains. By the Poincare-Bendion theorem there must be at least one closed orbit between =0 and the homoclinic orbit. We epect to have non-isolated closed orbits in reversible nonlinear systems, so we epect to have an entire band of closed orbits in this reion. Here is a phase portrait: 4

5 = (sqrt()/4) ( ) sin(phi) phi = (/) (beta cos(phi)/sqrt() cos(phi)/(8 sqrt())) beta =.05/sqrt() 3 phi

6 (c) Define β α. So β from above corresponds to α 0. The position of the saddle is ( 8α,0), so the saddle moves toward the line =0 as α 0, shrinkin the ), the homoclinic orbit becomes the circle in phase space at =0 and the band of closed orbits disappears. reion where the closed orbits eist. At α 0 (β (d) For 0! β! we must consider the fied points at φ - / 0 arccos β * 0. So these points are saddles. Here is phase portrait: τ 0 (8) 8 sin φ () = (sqrt()/4) ( ) sin(phi) phi = (/) (beta cos(phi)/sqrt() cos(phi)/(8 sqrt())) beta = phi

7 3. The only fied point occurs at the oriin. Linearization tells us to epect a non-isolated fied point, but by plottin the nullclines we can see that this is not the case. From the plot of the vector field below, we can see that the inde around the fied point at the oriin is zero. = y y = + y y

8 (a) The only fied point is at the oriin. We d like to construct a Liapunov function, V(), such that V()>0 and dv dt <0 for all,. Consider V= ay with a>0. The first condition is automatically satisfied. Let s investiate the second: V ẋ ayẏ (0) y 3 ' ay y 3 () a y 4 ay 4 () So the second condition is satisfied if we choose a=. Our Liapunov function is V= y. A system that has a Liapunov function cannot have a closed orbit. Assume such a system did have a closed orbit and consider the point 0 on it. After one circuit the system would have to return to 0 and we would have V =0 (since V depends only on T position). But we know that V must also be iven by V 43 0 V dt where T is the period of the orbit. Since the closed orbit cannot intersect with the oriin, this tells us that V is strictly less than zero - a contradiction! So there can be no limit cycle for this system. (b) If we have a radient system, then f=- V we know: f y V y Now let s do a proof in the opposite direction. Start with f and y: 5 (3) V and =- y, so as lon as V is well-behaved V y 0 (4) y and interate over y f y dy6 d67 5 f d6 dy6 d6 (5) y dy6 (6) So if we define V y 8 3 f d6 3 y dy we are uaranteed that f=- V i.e. the system is a radient system. f f y =+ and =+ so y, the system is a radient system. and =- V y, Let s assume we have a limit cycle. If we take one trip around it and return to our startin point, we must have V=0 for the trip (since V must be sinle-valued). However, if T the cycle has period T, we can also write: V 3 0 Vdt T T "3 0 V : ẋ dt 3 0 ẋ dt. For a cycle to eist, we cannot have ẋ 0 (or else motion would stop) so we have shown that V must be strictly less than zero. This is a contradiction, so radient systems cannot have limit cycles. Since this system is a radient system, it can have no limit cycle. 8

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point Solving a Linear System τ = trace(a) = a + d = λ 1 + λ 2 λ 1,2 = τ± = det(a) = ad bc = λ 1 λ 2 Classification of Fixed Points τ 2 4 1. < 0: the eigenvalues are real and have opposite signs; the fixed point

More information

Practice Problems for Final Exam

Practice Problems for Final Exam Math 1280 Spring 2016 Practice Problems for Final Exam Part 2 (Sections 6.6, 6.7, 6.8, and chapter 7) S o l u t i o n s 1. Show that the given system has a nonlinear center at the origin. ẋ = 9y 5y 5,

More information

7 Two-dimensional bifurcations

7 Two-dimensional bifurcations 7 Two-dimensional bifurcations As in one-dimensional systems: fixed points may be created, destroyed, or change stability as parameters are varied (change of topological equivalence ). In addition closed

More information

C. Non-linear Difference and Differential Equations: Linearization and Phase Diagram Technique

C. Non-linear Difference and Differential Equations: Linearization and Phase Diagram Technique C. Non-linear Difference and Differential Equations: Linearization and Phase Diaram Technique So far we have discussed methods of solvin linear difference and differential equations. Let us now discuss

More information

Lecture 5. Outline: Limit Cycles. Definition and examples How to rule out limit cycles. Poincare-Bendixson theorem Hopf bifurcations Poincare maps

Lecture 5. Outline: Limit Cycles. Definition and examples How to rule out limit cycles. Poincare-Bendixson theorem Hopf bifurcations Poincare maps Lecture 5 Outline: Limit Cycles Definition and examples How to rule out limit cycles Gradient systems Liapunov functions Dulacs criterion Poincare-Bendixson theorem Hopf bifurcations Poincare maps Limit

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

Limit Cycles II. Prof. Ned Wingreen MOL 410/510. How to prove a closed orbit exists?

Limit Cycles II. Prof. Ned Wingreen MOL 410/510. How to prove a closed orbit exists? Limit Cycles II Prof. Ned Wingreen MOL 410/510 How to prove a closed orbit eists? numerically Poincaré-Bendison Theorem: If 1. R is a closed, bounded subset of the plane. = f( ) is a continuously differentiable

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F :

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F : 1 Bifurcations Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 A bifurcation is a qualitative change

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

Stability Analysis for ODEs

Stability Analysis for ODEs Stability Analysis for ODEs Marc R Roussel September 13, 2005 1 Linear stability analysis Equilibria are not always stable Since stable and unstable equilibria play quite different roles in the dynamics

More information

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below. 54 Chapter 9 Hints, Answers, and Solutions 9. The Phase Plane 9.. 4. The particular trajectories are highlighted in the phase portraits below... 3. 4. 9..5. Shown below is one possibility with x(t) and

More information

4 Second-Order Systems

4 Second-Order Systems 4 Second-Order Systems Second-order autonomous systems occupy an important place in the study of nonlinear systems because solution trajectories can be represented in the plane. This allows for easy visualization

More information

Non-Linear Dynamics Homework Solutions Week 6

Non-Linear Dynamics Homework Solutions Week 6 Non-Linear Dynamics Homework Solutions Week 6 Chris Small March 6, 2007 Please email me at smachr09@evergreen.edu with any questions or concerns reguarding these solutions. 6.8.3 Locate annd find the index

More information

MATH 415, WEEK 11: Bifurcations in Multiple Dimensions, Hopf Bifurcation

MATH 415, WEEK 11: Bifurcations in Multiple Dimensions, Hopf Bifurcation MATH 415, WEEK 11: Bifurcations in Multiple Dimensions, Hopf Bifurcation 1 Bifurcations in Multiple Dimensions When we were considering one-dimensional systems, we saw that subtle changes in parameter

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 14, 2019, at 08 30 12 30 Johanneberg Kristian

More information

Classification of Phase Portraits at Equilibria for u (t) = f( u(t))

Classification of Phase Portraits at Equilibria for u (t) = f( u(t)) Classification of Phase Portraits at Equilibria for u t = f ut Transfer of Local Linearized Phase Portrait Transfer of Local Linearized Stability How to Classify Linear Equilibria Justification of the

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

Solution to Homework #5 Roy Malka 1. Questions 2,3,4 of Homework #5 of M. Cross class. dv (x) dx

Solution to Homework #5 Roy Malka 1. Questions 2,3,4 of Homework #5 of M. Cross class. dv (x) dx Solution to Homework #5 Roy Malka. Questions 2,,4 of Homework #5 of M. Cross class. Bifurcations: (M. Cross) Consider the bifurcations of the stationary solutions of a particle undergoing damped one dimensional

More information

There is a more global concept that is related to this circle of ideas that we discuss somewhat informally. Namely, a region R R n with a (smooth)

There is a more global concept that is related to this circle of ideas that we discuss somewhat informally. Namely, a region R R n with a (smooth) 82 Introduction Liapunov Functions Besides the Liapunov spectral theorem, there is another basic method of proving stability that is a generalization of the energy method we have seen in the introductory

More information

Complex Dynamic Systems: Qualitative vs Quantitative analysis

Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems Chiara Mocenni Department of Information Engineering and Mathematics University of Siena (mocenni@diism.unisi.it) Dynamic

More information

arxiv: v1 [physics.class-ph] 5 Jan 2012

arxiv: v1 [physics.class-ph] 5 Jan 2012 Damped bead on a rotating circular hoop - a bifurcation zoo Shovan Dutta Department of Electronics and Telecommunication Engineering, Jadavpur University, Calcutta 700 032, India. Subhankar Ray Department

More information

Modelling and Mathematical Methods in Process and Chemical Engineering

Modelling and Mathematical Methods in Process and Chemical Engineering Modelling and Mathematical Methods in Process and Chemical Engineering Solution Series 3 1. Population dynamics: Gendercide The system admits two steady states The Jacobi matrix is ẋ = (1 p)xy k 1 x ẏ

More information

MOL 410/510: Introduction to Biological Dynamics Fall 2012 Problem Set #4, Nonlinear Dynamical Systems (due 10/19/2012) 6 MUST DO Questions, 1

MOL 410/510: Introduction to Biological Dynamics Fall 2012 Problem Set #4, Nonlinear Dynamical Systems (due 10/19/2012) 6 MUST DO Questions, 1 MOL 410/510: Introduction to Biological Dynamics Fall 2012 Problem Set #4, Nonlinear Dynamical Systems (due 10/19/2012) 6 MUST DO Questions, 1 OPTIONAL question 1. Below, several phase portraits are shown.

More information

Part II. Dynamical Systems. Year

Part II. Dynamical Systems. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 34 Paper 1, Section II 30A Consider the dynamical system where β > 1 is a constant. ẋ = x + x 3 + βxy 2, ẏ = y + βx 2

More information

2.3. PBL Equations for Mean Flow and Their Applications

2.3. PBL Equations for Mean Flow and Their Applications .3. PBL Equations for Mean Flow and Their Applications Read Holton Section 5.3!.3.1. The PBL Momentum Equations We have derived the Reynolds averaed equations in the previous section, and they describe

More information

Models Involving Interactions between Predator and Prey Populations

Models Involving Interactions between Predator and Prey Populations Models Involving Interactions between Predator and Prey Populations Matthew Mitchell Georgia College and State University December 30, 2015 Abstract Predator-prey models are used to show the intricate

More information

Math 232, Final Test, 20 March 2007

Math 232, Final Test, 20 March 2007 Math 232, Final Test, 20 March 2007 Name: Instructions. Do any five of the first six questions, and any five of the last six questions. Please do your best, and show all appropriate details in your solutions.

More information

1 The pendulum equation

1 The pendulum equation Math 270 Honors ODE I Fall, 2008 Class notes # 5 A longer than usual homework assignment is at the end. The pendulum equation We now come to a particularly important example, the equation for an oscillating

More information

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics Applications of nonlinear ODE systems: Physics: spring-mass system, planet motion, pendulum Chemistry: mixing problems, chemical reactions Biology: ecology problem, neural conduction, epidemics Economy:

More information

+ i. cos(t) + 2 sin(t) + c 2.

+ i. cos(t) + 2 sin(t) + c 2. MATH HOMEWORK #7 PART A SOLUTIONS Problem 7.6.. Consider the system x = 5 x. a Express the general solution of the given system of equations in terms of realvalued functions. b Draw a direction field,

More information

EE222: Solutions to Homework 2

EE222: Solutions to Homework 2 Spring 7 EE: Solutions to Homework 1. Draw the phase portrait of a reaction-diffusion sstem ẋ 1 = ( 1 )+ 1 (1 1 ) ẋ = ( 1 )+ (1 ). List the equilibria and their tpes. Does the sstem have limit ccles? (Hint:

More information

ME 680- Spring Geometrical Analysis of 1-D Dynamical Systems

ME 680- Spring Geometrical Analysis of 1-D Dynamical Systems ME 680- Spring 2014 Geometrical Analysis of 1-D Dynamical Systems 1 Geometrical Analysis of 1-D Dynamical Systems Logistic equation: n = rn(1 n) velocity function Equilibria or fied points : initial conditions

More information

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of:

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Lecture 6 Chaos Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Chaos, Attractors and strange attractors Transient chaos Lorenz Equations

More information

Problem Set Number 5, j/2.036j MIT (Fall 2014)

Problem Set Number 5, j/2.036j MIT (Fall 2014) Problem Set Number 5, 18.385j/2.036j MIT (Fall 2014) Rodolfo R. Rosales (MIT, Math. Dept.,Cambridge, MA 02139) Due Fri., October 24, 2014. October 17, 2014 1 Large µ limit for Liénard system #03 Statement:

More information

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum Reconsider the following example from last week: dx dt = x y dy dt = x2 y. We were able to determine many qualitative features

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: April 06, 2018, at 14 00 18 00 Johanneberg Kristian

More information

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1 ANSWERS Final Exam Math 50b, Section (Professor J. M. Cushing), 5 May 008 PART. (0 points) A bacterial population x grows exponentially according to the equation x 0 = rx, where r>0is the per unit rate

More information

Calculus and Differential Equations II

Calculus and Differential Equations II MATH 250 B Second order autonomous linear systems We are mostly interested with 2 2 first order autonomous systems of the form { x = a x + b y y = c x + d y where x and y are functions of t and a, b, c,

More information

10 Back to planar nonlinear systems

10 Back to planar nonlinear systems 10 Back to planar nonlinear sstems 10.1 Near the equilibria Recall that I started talking about the Lotka Volterra model as a motivation to stud sstems of two first order autonomous equations of the form

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

LECTURE 8: DYNAMICAL SYSTEMS 7

LECTURE 8: DYNAMICAL SYSTEMS 7 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

More information

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting August 2012 Overview Last Model ẋ = αx(1 x) a(1 m)xy 1+c(1 m)x H(x) ẏ = dy + b(1 m)xy 1+c(1 m)x (1) where

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

Nonlinear Control Lecture 2:Phase Plane Analysis

Nonlinear Control Lecture 2:Phase Plane Analysis Nonlinear Control Lecture 2:Phase Plane Analysis Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2010 r. Farzaneh Abdollahi Nonlinear Control Lecture 2 1/53

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos Ian Eisenman eisenman@fas.harvard.edu Geological Museum 101, 6-6352 Nonlinear Dynamics and Chaos Review of some of the topics covered in homework problems, based on section notes. December, 2005 Contents

More information

Autonomous Mechanical systems of 1 degree of freedom

Autonomous Mechanical systems of 1 degree of freedom Autonomous Mechanical systems of degree of freedom = f (, ), = y = y = f (, y) = f (, ) : position y : velocity f : force function Solution : = ( t; c, c), y = y( t; c, c ), ci = ci(, y) Integral of motion

More information

Nonlinear Autonomous Systems of Differential

Nonlinear Autonomous Systems of Differential Chapter 4 Nonlinear Autonomous Systems of Differential Equations 4.0 The Phase Plane: Linear Systems 4.0.1 Introduction Consider a system of the form x = A(x), (4.0.1) where A is independent of t. Such

More information

Math 5490 November 5, 2014

Math 5490 November 5, 2014 Math 549 November 5, 214 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2:3 3:45 http://www.math.umn.edu/~mcgehee/teaching/math549-214-2fall/ Streaming

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Continuous Threshold Policy Harvesting in Predator-Prey Models

Continuous Threshold Policy Harvesting in Predator-Prey Models Continuous Threshold Policy Harvesting in Predator-Prey Models Jon Bohn and Kaitlin Speer Department of Mathematics, University of Wisconsin - Madison Department of Mathematics, Baylor University July

More information

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Mason A. Porter 15/05/2010 1 Question 1 i. (6 points) Define a saddle-node bifurcation and show that the first order system dx dt = r x e x

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

Mathematical Modeling I

Mathematical Modeling I Mathematical Modeling I Dr. Zachariah Sinkala Department of Mathematical Sciences Middle Tennessee State University Murfreesboro Tennessee 37132, USA November 5, 2011 1d systems To understand more complex

More information

Math 4200, Problem set 3

Math 4200, Problem set 3 Math, Problem set 3 Solutions September, 13 Problem 1. ẍ = ω x. Solution. Following the general theory of conservative systems with one degree of freedom let us define the kinetic energy T and potential

More information

FINAL EXAM MATH303 Theory of Ordinary Differential Equations. Spring dx dt = x + 3y dy dt = x y.

FINAL EXAM MATH303 Theory of Ordinary Differential Equations. Spring dx dt = x + 3y dy dt = x y. FINAL EXAM MATH0 Theory of Ordinary Differential Equations There are 5 problems on 2 pages. Spring 2009. 25 points Consider the linear plane autonomous system x + y x y. Find a fundamental matrix of the

More information

Shilnikov bifurcations in the Hopf-zero singularity

Shilnikov bifurcations in the Hopf-zero singularity Shilnikov bifurcations in the Hopf-zero singularity Geometry and Dynamics in interaction Inma Baldomá, Oriol Castejón, Santiago Ibáñez, Tere M-Seara Observatoire de Paris, 15-17 December 2017, Paris Tere

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

Chapter 7. Nonlinear Systems. 7.1 Introduction

Chapter 7. Nonlinear Systems. 7.1 Introduction Nonlinear Systems Chapter 7 The scientist does not study nature because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful. - Jules Henri Poincaré (1854-1912)

More information

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations THREE DIMENSIONAL SYSTEMS Lecture 6: The Lorenz Equations 6. The Lorenz (1963) Equations The Lorenz equations were originally derived by Saltzman (1962) as a minimalist model of thermal convection in a

More information

Mathematical Model of Forced Van Der Pol s Equation

Mathematical Model of Forced Van Der Pol s Equation Mathematical Model of Forced Van Der Pol s Equation TO Tsz Lok Wallace LEE Tsz Hong Homer December 9, Abstract This work is going to analyze the Forced Van Der Pol s Equation which is used to analyze the

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

2 Discrete growth models, logistic map (Murray, Chapter 2)

2 Discrete growth models, logistic map (Murray, Chapter 2) 2 Discrete growth models, logistic map (Murray, Chapter 2) As argued in Lecture 1 the population of non-overlapping generations can be modelled as a discrete dynamical system. This is an example of an

More information

A CURL-FREE VECTOR FIELD THAT IS NOT A GRADIENT. Robert L. Foote. Math 225

A CURL-FREE VECTOR FIELD THAT IS NOT A GRADIENT. Robert L. Foote. Math 225 A URL-FREE VETOR FIELD THAT IS NOT A GRADIENT Robert L. Foote Math 225 Recall our main theorem about vector fields. Theorem. Let R be an open region in E 2 and let F be a vector field on R. The following

More information

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks.

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks. Solutions to Dynamical Systems exam Each question is worth marks [Unseen] Consider the following st order differential equation: dy dt Xy yy 4 a Find and classify all the fixed points of Hence draw the

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 08, 2018, at 08 30 12 30 Johanneberg Kristian

More information

2.10 Saddles, Nodes, Foci and Centers

2.10 Saddles, Nodes, Foci and Centers 2.10 Saddles, Nodes, Foci and Centers In Section 1.5, a linear system (1 where x R 2 was said to have a saddle, node, focus or center at the origin if its phase portrait was linearly equivalent to one

More information

Nonlinear Oscillators: Free Response

Nonlinear Oscillators: Free Response 20 Nonlinear Oscillators: Free Response Tools Used in Lab 20 Pendulums To the Instructor: This lab is just an introduction to the nonlinear phase portraits, but the connection between phase portraits and

More information

Nonlinear Dynamics of Neural Firing

Nonlinear Dynamics of Neural Firing Nonlinear Dynamics of Neural Firing BENG/BGGN 260 Neurodynamics University of California, San Diego Week 3 BENG/BGGN 260 Neurodynamics (UCSD) Nonlinear Dynamics of Neural Firing Week 3 1 / 16 Reading Materials

More information

Dynamical Systems in Neuroscience: Elementary Bifurcations

Dynamical Systems in Neuroscience: Elementary Bifurcations Dynamical Systems in Neuroscience: Elementary Bifurcations Foris Kuang May 2017 1 Contents 1 Introduction 3 2 Definitions 3 3 Hodgkin-Huxley Model 3 4 Morris-Lecar Model 4 5 Stability 5 5.1 Linear ODE..............................................

More information

Lecture 3 : Bifurcation Analysis

Lecture 3 : Bifurcation Analysis Lecture 3 : Bifurcation Analysis D. Sumpter & S.C. Nicolis October - December 2008 D. Sumpter & S.C. Nicolis General settings 4 basic bifurcations (as long as there is only one unstable mode!) steady state

More information

ENGI Duffing s Equation Page 4.65

ENGI Duffing s Equation Page 4.65 ENGI 940 4. - Duffing s Equation Page 4.65 4. Duffing s Equation Among the simplest models of damped non-linear forced oscillations of a mechanical or electrical system with a cubic stiffness term is Duffing

More information

Sample Solutions of Assignment 10 for MAT3270B

Sample Solutions of Assignment 10 for MAT3270B Sample Solutions of Assignment 1 for MAT327B 1. For the following ODEs, (a) determine all critical points; (b) find the corresponding linear system near each critical point; (c) find the eigenvalues of

More information

MathQuest: Differential Equations

MathQuest: Differential Equations MathQuest: Differential Equations Geometry of Systems 1. The differential equation d Y dt = A Y has two straight line solutions corresponding to [ ] [ ] 1 1 eigenvectors v 1 = and v 2 2 = that are shown

More information

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable

Phase Locking. 1 of of 10. The PRC's amplitude determines which frequencies a neuron locks to. The PRC's slope determines if locking is stable Printed from the Mathematica Help Browser 1 1 of 10 Phase Locking A neuron phase-locks to a periodic input it spikes at a fixed delay [Izhikevich07]. The PRC's amplitude determines which frequencies a

More information

Chapter 9 Global Nonlinear Techniques

Chapter 9 Global Nonlinear Techniques Chapter 9 Global Nonlinear Techniques Consider nonlinear dynamical system 0 Nullcline X 0 = F (X) = B @ f 1 (X) f 2 (X). f n (X) x j nullcline = fx : f j (X) = 0g equilibrium solutions = intersection of

More information

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name:

Dynamics 4600:203 Homework 03 Due: February 08, 2008 Name: Dynamics 4600:03 Homework 03 Due: ebruary 08, 008 Name: Please denote your answers clearly, i.e., bo in, star, etc., and write neatly. There are no points for small, messy, unreadable work... please use

More information

Problem 2: Experiment 09 Physical Pendulum. Part One: Ruler Pendulum

Problem 2: Experiment 09 Physical Pendulum. Part One: Ruler Pendulum Problem : Experiment 9 Physical Pendulum Part One: Ruler Pendulum The ruler has a mass m r =.159 k, a width a =.8 m, a lenth b = 1. m, and the distance from the pivot point to the center of mass is l =.479

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01x Fall Term 2001 EXAM 1 SOLUTIONS Problem 1: We define a vertical coordinate system with positive upwards. The only forces actin

More information

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( )

Math 3301 Homework Set Points ( ) ( ) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, ( ) ( ) ( ) ( ) #7. ( pts) I ll leave it to you to verify that the eigenvalues and eigenvectors for this matrix are, λ 5 λ 7 t t ce The general solution is then : 5 7 c c c x( 0) c c 9 9 c+ c c t 5t 7 e + e A sketch of

More information

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 NBA Lecture 1 Simplest bifurcations in n-dimensional ODEs Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 Contents 1. Solutions and orbits: equilibria cycles connecting orbits other invariant sets

More information

THE SEPARATRIX FOR A SECOND ORDER ORDINARY DIFFERENTIAL EQUATION OR A 2 2 SYSTEM OF FIRST ORDER ODE WHICH ALLOWS A PHASE PLANE QUANTITATIVE ANALYSIS

THE SEPARATRIX FOR A SECOND ORDER ORDINARY DIFFERENTIAL EQUATION OR A 2 2 SYSTEM OF FIRST ORDER ODE WHICH ALLOWS A PHASE PLANE QUANTITATIVE ANALYSIS THE SEPARATRIX FOR A SECOND ORDER ORDINARY DIFFERENTIAL EQUATION OR A SYSTEM OF FIRST ORDER ODE WHICH ALLOWS A PHASE PLANE QUANTITATIVE ANALYSIS Maria P. Skhosana and Stephan V. Joubert, Tshwane University

More information

The Higgins-Selkov oscillator

The Higgins-Selkov oscillator The Higgins-Selkov oscillator May 14, 2014 Here I analyse the long-time behaviour of the Higgins-Selkov oscillator. The system is ẋ = k 0 k 1 xy 2, (1 ẏ = k 1 xy 2 k 2 y. (2 The unknowns x and y, being

More information

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS Morris W. Hirsch University of California, Berkeley Stephen Smale University of California, Berkeley Robert L. Devaney Boston University

More information

Chapter 8 Equilibria in Nonlinear Systems

Chapter 8 Equilibria in Nonlinear Systems Chapter 8 Equilibria in Nonlinear Sstems Recall linearization for Nonlinear dnamical sstems in R n : X 0 = F (X) : if X 0 is an equilibrium, i.e., F (X 0 ) = 0; then its linearization is U 0 = AU; A =

More information

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis LECTURE 3: FLOWS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharr Sstems Analsis, Modelling & Prediction Group www.eng.o.ac.uk/samp patrick@mcsharr.net Tel: +44 83 74 Numerical integration Stabilit analsis

More information

ODE, part 2. Dynamical systems, differential equations

ODE, part 2. Dynamical systems, differential equations ODE, part 2 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2011 Dynamical systems, differential equations Consider a system of n first order equations du dt = f(u, t),

More information

A Chaotic Phenomenon in the Power Swing Equation Umesh G. Vaidya R. N. Banavar y N. M. Singh March 22, 2000 Abstract Existence of chaotic dynamics in

A Chaotic Phenomenon in the Power Swing Equation Umesh G. Vaidya R. N. Banavar y N. M. Singh March 22, 2000 Abstract Existence of chaotic dynamics in A Chaotic Phenomenon in the Power Swing Equation Umesh G. Vaidya R. N. Banavar y N. M. Singh March, Abstract Existence of chaotic dynamics in the classical swing equations of a power system of three interconnected

More information

Boulder School for Condensed Matter and Materials Physics. Laurette Tuckerman PMMH-ESPCI-CNRS

Boulder School for Condensed Matter and Materials Physics. Laurette Tuckerman PMMH-ESPCI-CNRS Boulder School for Condensed Matter and Materials Physics Laurette Tuckerman PMMH-ESPCI-CNRS laurette@pmmh.espci.fr Dynamical Systems: A Basic Primer 1 1 Basic bifurcations 1.1 Fixed points and linear

More information

Daba Meshesha Gusu and O.Chandra Sekhara Reddy 1

Daba Meshesha Gusu and O.Chandra Sekhara Reddy 1 International Journal of Basic and Applied Sciences Vol. 4. No. 1 2015. Pp.22-27 Copyright by CRDEEP. All Rights Reserved. Full Length Research Paper Solutions of Non Linear Ordinary Differential Equations

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

4 Problem Set 4 Bifurcations

4 Problem Set 4 Bifurcations 4 PROBLEM SET 4 BIFURCATIONS 4 Problem Set 4 Bifurcations 1. Each of the following functions undergoes a bifurcation at the given parameter value. In each case use analytic or graphical techniques to identify

More information

PHY411 Lecture notes Part 4

PHY411 Lecture notes Part 4 PHY411 Lecture notes Part 4 Alice Quillen February 1, 2016 Contents 0.1 Introduction.................................... 2 1 Bifurcations of one-dimensional dynamical systems 2 1.1 Saddle-node bifurcation.............................

More information

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. 1 competing species Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. This section and the next deal with the subject of population biology. You will already have seen examples of this. Most calculus

More information

3 Stability and Lyapunov Functions

3 Stability and Lyapunov Functions CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

More information