H(s) = 2(s+10)(s+100) (s+1)(s+1000)


 Agnes Roberts
 2 years ago
 Views:
Transcription
1 Problem 1 Consider the following transfer function H(s) = 2(s10)(s100) (s1)(s1000) (a) Draw the asymptotic magnitude Bode plot for H(s). Solution: The transfer function is not in standard form to sketch the asymptotic Bode plot. With a bit of algebraic manipulation we get H(s) = 2(1s/10)(1s/100) (1s/1)(1s/1000) Using the techniques from the course, the asymptotic Bode plot is sketched and is shown in Figure 1. 6dB 6dB 20dB/dec 20dB/dec 14dB rad/s rad/s rad/s rad/s Figure 1: Asymptotic Bode plot for the transfer function H(s). (b) Synthesize this transfer function using opamps and firstorder RC circuits (discussed in class and also shown in Table 3.4 of the handout). Use as few opamps, resistors and capacitors as possible. For this step, choose all capacitors to equal 1F. Solution: There are a number of ways we can proceed here; however, if we want to directly use the circuits and expressions in Table 3.4 of the handout, it will be easier to work with the original form of the transfer function given as H(s) = 2(s10)(s100) (s1)(s1000) To synthesize this transfer function, we can use the first and third circuit shown in Table 3.4. To see this, first partition the above transfer function into three parts. H(s) = 2 (s10) (s1) (s100) (s1000) = 2 (sz 1) (sp 1 ) }{{} H 1(s) (sz 2 ) = 2 H 1 (s)h 2 (s) (sp 2 ) }{{} H 2(s) Now, the desired transfer function is just a cascade of the individual transfer functions. Since we are using passive circuits for H 1 (s) and H 2 (s), we will have to use an opampbased buffer (as shown in class) between these two sections to avoid loading problems. Let s take each section and see how we can synthesize it. The first transfer function H 1 (s) has the form H 1 (s) = (s10) (s1) = (sz 1) (sp 1 ) where z 1 = 10rad/s and where p 1 = 1rad/s. Since z 1 > p 1, we will utilize the third circuit from Table 3.4 as shown in Figure 2 noting that there is an extra constant term (denoted as T hi in the handout) that equals Dr. Vahe Caliskan 1 of 7 Posted: February 19, 2013
2 R 1 = 1/p 1 1/z 1 C 2 = 1 T(s) = T hi (sz 1) (sp 1) R 2 = 1/z 1 z 1 > p 1, T hi = R 2 /(R 1 R 2 ) = p 1 /z 1 Figure 2: The lag lowpass circuit from Table 3.4 of the text. R 2 /(R 1 R 2 ). In terms of poles and zeros, this term is just p 1 /z 1. What this means for our design is that we will have to add another section to our cascade to cancel out this extra term. Solving for the component values, we get R 1 = 1/p 1 1/z 1 = 1/11/10 = 0.9Ω R 2 = 1/z 1 = 0.1Ω C 1 = 1F T hi = p 1 /z 1 = 0.1 Using these component values with the circuit above, the synthesized transfer function is 0.1(s 10)/(s 1) which is 0.1H 1 (s); therefore, we will need an additional circuit with a gain 10 to realize H 1 (s). Now let s look at the second transfer function H 2 (s) which has the form H 2 (s) = (s100) (s1000) = (sz 2) (sp 2 ) where z 2 = 100rad/s and where p 2 = 1000rad/s. Since p 2 > z 2, we will utilize the first circuit from Table 3.4 shown in Figure 3. Unlike the third circuit, there is no additional term in front. R 3 = 1/z 2 C 3 = 1 R 4 = 1/(p 2 z 2 ) T(s) = (sz2) (sp 2) p 2 > z 2 Solving for the component values, we get Figure 3: The lead highpass circuit from Table 3.4 of the text. R 3 = 1/z 2 = 1/100= 0.01Ω R 4 = 1/(p 2 z 2 ) = 1/900= Ω C 3 = 1F Using these component values with the circuit above, the synthesized transfer function is (s 100)/(s 1000) which is exactly H 2 (s). No additional gain circuits are needed for this section. If we cascade the two sections we have designed so far, we will get the overall transfer function given by 0.1 (s10) (s1) (s100) (s1000) Dr. Vahe Caliskan 2 of 7 Posted: February 19, 2013
3 Therefore, we also need to include a circuit with a constant gain of 20 to make the overall product equal to the desired transfer function. This can be done with a noninverting amplifier circuit as shown in Figure 4. The gain of the noninverting amplifier is 1R f /R i ; therefore, by choosing the ratio R f /R i = 19 will result in a gain of 20. Since this is the unscaled design, we choose R f = 19Ω and R i = 1Ω. Now the overall R 1 = 0.9Ω C 2 = 1F R 2 = 0.1Ω R 3 = 0.01Ω C 3 = 1F R 4 = Ω R f = 19Ω R i = 1Ω Figure 4: The unscaled circuit that synthesizes H(s). transfer function of the three stages is just the product given by ( 0.1 (s10) ) ( ) (s100) (1) (s1) (s1000) (20) which synthesizes the desired H(s). The solution shown in Figure 4 is just fine but we can do a little better. Instead of using the noninverting amplifier at the end we can use it between the two passive sections in place of the buffer. This will use one less opamp than the design of Figure 4 but will use the same noninverting amplifier section as before. The optimal design is shown in Figure 5. In this form, the noninverting section is both a buffer and and amplifier. The buffering is due to the fact the first section sees an infinite input impedance looking into the positive terminal of the opamp and the second section sees zero impedance looking into the output of the opamp. R 1 = 0.9Ω R 3 = 0.01Ω C 2 = 1F R 2 = 0.1Ω R f = 19Ω C 3 = 1F R 4 = Ω R i = 1Ω Figure 5: The optimal, unscaled circuit that synthesizes H(s). Now the overall transfer function of the three stages is just the product given by ( 0.1 (s10) ) ( ) (s100) (20) (s1) (s1000) which synthesizes the desired H(s). Dr. Vahe Caliskan 3 of 7 Posted: February 19, 2013
4 (c) Now use magnitude scaling (with an appropriate value for k m ) to make all capacitors equal to 1µF which is a more practical value. Solution: Now we need to scale the components so that all capacitors are 1µF. We can do this by using magnitude scaling factor k m. With magnitude scaling, the new and old values of the resistors and capacitors are related by R new = k m R old C new = 1 k m C old Since all of the old capacitors are 1F and the new capacitors need to be 1µF, the magnitude scaling factor k m is equal to C old /C new = The final magnitudescaled circuits are shown in Figures 6 and 7. R 1 = 900kΩ C 2 = 1µF R 2 = 100kΩ R 3 = 10kΩ C 3 = 1µF R 4 = 1.11kΩ R f = 19kΩ R i = 1kΩ Figure 6: The magnitude scaled circuit that synthesizes H(s). R 1 = 900kΩ R 3 = 10kΩ C 2 = 1µF R 2 = 100kΩ R f = 19kΩ C 3 = 1µF R 4 = 1.11kΩ R i = 1kΩ Figure 7: The optimal, magnitude scaled circuit that synthesizes H(s). Note that since R f and R i are just providing a gain of 20 and are not setting any pole or zero locations, they can be magnitude scaled independently. Thus, any practical resistor combination that gives R f /R i = 19 is acceptable. Dr. Vahe Caliskan 4 of 7 Posted: February 19, 2013
5 (d) Use a circuit simulator of your choice to verify that the transfer function of the circuit matches what you derived in (a). Solution: Either circuit (Figure 6 or 7) that was designed in part (c) can be simulated to verify the validity of the design procedure. Each circuit will produce the same transfer function; however, the design of Figure 7 usesonelessopamptoimplement thedesiredtransferfunctionsowewill useittoverifyourdesignprocedure. Figure 8 shows the LTspice schematic which implements the cascade design of Figure 7. The circuit schematic is setup to perform an ac sweep from 0.01 rad/s to 100 krad/s. Figure 9 shows the results of the smallsignal ac simulation which is a magnitude Bode plot for the transfer function. Figure 9 plots 20log H(jω) (db) vs. ω(rad/s) and has the features that we predicted by our asymptotic Bode plot from part (a). You will notice that the Bode plot of Figure 9 deviates from our straightline approximations by 3dB at the corner frequencies. Furthermore, the bottom part of the curve never gets to 14dB. These deviations are expected and are just the inherent shortcomings of the asymptotic Bode plot. Figure 8: LTspice schematic of the filter. Dr. Vahe Caliskan 5 of 7 Posted: February 19, 2013
6 Figure 9: Simulation results from LTspice showing 20 log H(jω) (db) vs. ω(rad/s). The asymptotic Bode plot derived in part (a) is shown in blue. (e) Use frequency scaling on the circuit of part (c) to move the frequency response up by three decades. Using a simulator verify that the frequency response is indeed three decades higher than that of part (c). Solution: If we frequency scale up by a factor of three decades, we need k f = Frequency scaling will only change the values of the capacitors leaving the resistor values unchanged. Starting from the old values in part (c), the new component values are given by R new = R old C new = 1 C old = 1 1µF = 1nF k f 1000 So to move up the response by three decades, we need to make all capacitors equal 1nF. Figure 10 shows the LTspice schematic which implements the frequency cascade design. The circuit schematic is setup to perform an ac sweep from 10 rad/s to 100 Mrad/s. Figure 11 shows the results of the smallsignal ac simulation which is a magnitude Bode plot for the transfer function. Dr. Vahe Caliskan 6 of 7 Posted: February 19, 2013
7 Figure 10: LTspice schematic of the frequency scaled filter. Figure 11: Simulation results from LTspice showing 20 log H(jω) (db) vs. ω(rad/s). The asymptotic Bode plot is shown in blue. Dr. Vahe Caliskan 7 of 7 Posted: February 19, 2013
University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions
Problem 1 A Butterworth lowpass filter is to be designed having the loss specifications given below. The limits of the the design specifications are shown in the brickwall characteristic shown in Figure
More informationELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems  C3 13/05/ DDC Storey 1
Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and
More informationDesigning Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Discussion 5A
EECS 6B Designing Information Devices and Systems II Fall 208 Elad Alon and Miki Lustig Discussion 5A Transfer Function When we write the transfer function of an arbitrary circuit, it always takes the
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2018 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationIMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010
Paper Number(s): E1.1 IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE UNIVERSITY OF LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART I: MEng, BEng and ACGI
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2017 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More information( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.
Problem ) RLC Parallel Circuit R L C E4 E0 V a. What is the resonant frequency of the circuit? The transfer function will take the form N ( ) ( s) N( s) H s R s + α s + ω s + s + o L LC giving ωo sqrt(/lc)
More informationInput and Output Impedances with Feedback
EE 3 Lecture Basic Feedback Configurations Generalized Feedback Schemes Integrators Differentiators Firstorder active filters Secondorder active filters Review from Last Time Input and Output Impedances
More informationHomework Assignment 11
Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuoustime active filters. (3 points) Continuous time filters use resistors
More informationTest II Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2016 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 LeadLag Compensation Techniques [] For the following system, Design a compensator such
More informationECE3050 Assignment 7
ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linearlog scales for the phase plots. On the magnitude
More informationECEN 326 Electronic Circuits
ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)
More informationENGR4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):
ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):
More informationOverview of Bode Plots Transfer function review Piecewise linear approximations Firstorder terms Secondorder terms (complex poles & zeros)
Overview of Bode Plots Transfer function review Piecewise linear approximations Firstorder terms Secondorder terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.
More informationSAMPLE EXAMINATION PAPER
IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
More informationFeedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. ECE 110 Fall Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ ECE 110 Fall 2016 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any assistance
More informationD is the voltage difference = (V +  V  ).
1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V , and one output terminal Y. It provides a gain A, which is usually
More informationVer 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)
Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.
More informationAs an example of the parameter sweeping capabilities of LTSPICE, consider the following elementary highpass filter circuit:
LTSpice Parameter Sweep Tutorial ECE 202 Signals and Systems I Andrew Herdrich Department of Electrical and Computer Engineering Portland State University January 7, 2007 Version 2 AC sweep analyses in
More informationLECTURE 21: Butterworh & Chebeyshev BP Filters. Part 1: Series and Parallel RLC Circuits On NOT Again
LECTURE : Butterworh & Chebeyshev BP Filters Part : Series and Parallel RLC Circuits On NOT Again. RLC Admittance/Impedance Transfer Functions EXAMPLE : Series RLC. H(s) I out (s) V in (s) Y in (s) R Ls
More informationPROBLEMS OF CHAPTER 4: INTRODUCTION TO PASSIVE FILTERS.
PROBEMS OF CHAPTER 4: INTRODUCTION TO PASSIVE FITERS. April 4, 27 Problem 4. For the circuit shown in (a) we want to design a filter with the zeropole diagram shown in (b). C X j jω e g (t) v(t)  σ (a)
More informationECE2210 Final given: Fall 13
ECE22 Final given: Fall 3. (23 pts) a) Draw the asymptotic Bode plot (the straightline approximation) of the transfer function below. Accurately draw it on the graph provided. You must show the steps
More informationAnalogue Filters Design and Simulation by Carsten Kristiansen Napier University. November 2004
Analogue Filters Design and Simulation by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Analogue Filters Design and
More informationTexas A&M University Department of Electrical and Computer Engineering
Texas A&M University Department of Electrical and Computer Engineering ECEN 622: Active Network Synthesis Homework #2, Fall 206 Carlos Pech Catzim 72300256 Page of .i) Obtain the transfer function of circuit
More informationFrequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ
27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: smallsignal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential
More informationTime Varying Circuit Analysis
MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set
More informationLecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o
Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o   w L =Q  w o πf o w h =Qw o w L ~ RC w h w L f(l) w h f(c) B. Construction from T(s) Asymptotes
More informationSingleTimeConstant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.
SingleTimeConstant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers. Objectives To analyze and understand STC circuits with
More informationECE 201 Fall 2009 Final Exam
ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,
More informationFrequency Dependent Aspects of Opamps
Frequency Dependent Aspects of Opamps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and noninverting amplifier circuits with resistive
More informationSimultaneous equations for circuit analysis
Simultaneous equations for circuit analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationToday. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week
/5/ Physics 6 Lecture Filters Today Basics: Analog versus Digital; Passive versus Active Basic concepts and types of filters Passband, Stopband, Cutoff, Slope, Knee, Decibels, and Bode plots Active Components
More informationECE2210 Final given: Spring 08
ECE Final given: Spring 0. Note: feel free to show answers & work right on the schematic 1. (1 pts) The ammeter, A, reads 30 ma. a) The power dissipated by R is 0.7 W, what is the value of R. Assume that
More informationEE221 Circuits II. Chapter 14 Frequency Response
EE22 Circuits II Chapter 4 Frequency Response Frequency Response Chapter 4 4. Introduction 4.2 Transfer Function 4.3 Bode Plots 4.4 Series Resonance 4.5 Parallel Resonance 4.6 Passive Filters 4.7 Active
More informationSteady State Frequency Response Using Bode Plots
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 3 Steady State Frequency Response Using Bode Plots 1 Introduction
More informationECEN 607 (ESS) OpAmps Stability and Frequency Compensation Techniques. Analog & MixedSignal Center Texas A&M University
ECEN 67 (ESS) OpAmps Stability and Frequency Compensation Techniques Analog & MixedSignal Center Texas A&M University Stability of Linear Systems Harold S. Black, 97 Negative feedback concept Negative
More informationAnalog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology Bombay
Analog Circuits Prof. Jayanta Mukherjee Department of Electrical Engineering Indian Institute of Technology Bombay Week 01 Module 05 Inverting amplifier and Noninverting amplifier Welcome to another
More informationI. Frequency Response of Voltage Amplifiers
I. Frequency Response of Voltage Amplifiers A. CommonEmitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o >, r oc >, R L > Find V BIAS such that I C
More informationName (print): Lab (circle): W8 Th8 Th11 Th2 F8. θ (radians) θ (degrees) cos θ sin θ π/ /2 1/2 π/4 45 2/2 2/2 π/3 60 1/2 3/2 π/
Name (print): Lab (circle): W8 Th8 Th11 Th2 F8 Trigonometric Identities ( cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos θ π ) 2 Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees)
More informationR. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder
R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1. Review of Bode plots Decibels Table 8.1. Expressing magnitudes in decibels G db = 0 log 10
More informationEE101 IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2013 ANALYSIS OF CIRCUITS. Tuesday, 28 May 10:00 am
EE101 IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2013 ExamHeader: EEE/EIE PART I: MEng, Beng and ACGI ANALYSIS OF CIRCUITS Tuesday, 28 May 10:00 am Time allowed:
More informationSophomore Physics Laboratory (PH005/105)
CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision
More information( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function
ECSE CP7 olution Spring 5 ) Bode plot/tranfer function a. Draw magnitude and phae bode plot for the tranfer function H( ). ( ) ( E4) In your magnitude plot, indicate correction at the pole and zero. Step
More informationGeorgia Institute of Technology School of Electrical and Computer Engineering. Midterm1 Exam (Solution)
Georgia Institute of Technology School of Electrical and Computer Engineering Midterm1 Exam (Solution) ECE6414 Spring 2012 Friday, Feb. 17, 2012 Duration: 50min First name Solutions Last name Solutions
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationStudio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.
Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232242 Twostage opamp Analysis Strategy Recognize
More informationElectric Circuit Theory
Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 01094192320 Chapter 18 TwoPort Circuits Nam Ki Min nkmin@korea.ac.kr 01094192320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations
More information6.302 Feedback Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Fall Term 2005 Issued : November 18, 2005 Lab 2 Series Compensation in Practice Due
More informationStart with the transfer function for a secondorder highpass. s 2. ω o. Q P s + ω2 o. = G o V i
aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq
More informationOPERATIONAL AMPLIFIER APPLICATIONS
OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Noninverting Configuration (Chapter 2.3) 2.4 Difference
More informationActive Filter Design by Carsten Kristiansen Napier University. November 2004
by Carsten Kristiansen November 2004 Title page Author: Carsten Kristiansen. Napier No: 0400772. Assignment partner: Benjamin Grydehoej. Assignment title:. Education: Electronic and Computer Engineering.
More informationLaplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
More information2.161 Signal Processing: Continuous and Discrete
MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M MASSACHUSETTS
More informationDesign Engineering MEng EXAMINATIONS 2016
IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
More informationFilters and Tuned Amplifiers
Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,
More informationResonant Matching Networks
Chapter 1 Resonant Matching Networks 1.1 Introduction Frequently power from a linear source has to be transferred into a load. If the load impedance may be adjusted, the maximum power theorem states that
More informationChapter 6 Frequency response of circuits. Stability
Chapter 6 Frequency response of circuits. Stability 6.. The frequency response of elementary functions 6... The frequency bandwidth 6... The frequency bandwidth /A/(dB ) A 0 3dB min max 6... The frequency
More informationEECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3
EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed You may use the equation sheet provided but
More informationEE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2
EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages
More informationLecture 4: RLC Circuits and Resonant Circuits
Lecture 4: RLC Circuits and Resonant Circuits RLC series circuit: What's V R? Simplest way to solve for V is to use voltage divider equation in complex notation: V X L X C V R = in R R + X C + X L L
More informationEE 508 Lecture 22. Sensitivity Functions  Comparison of Circuits  Predistortion and Calibration
EE 58 Lecture Sensitivity Functions  Comparison of Circuits  Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 secondorder lowpass filters (all can realize same
More informationELEC 2501 AB. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.
It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 3 hour(s). Work on your own. Keep your notes and textbook closed. Attempt every question.
More informationOperational Amplifiers
Operational Amplifiers A Linear IC circuit Operational Amplifier (opamp) An opamp is a highgain amplifier that has high input impedance and low output impedance. An ideal opamp has infinite gain and
More informationTexas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos
Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 5: Electrical and Electromagnetic System Components The objective of this
More informationFrequency response. Pavel Máša  XE31EO2. XE31EO2 Lecture11. Pavel Máša  XE31EO2  Frequency response
Frequency response XE3EO2 Lecture Pavel Máša  Frequency response INTRODUCTION Frequency response describe frequency dependence of output to input voltage magnitude ratio and its phase shift as a function
More informationGraduate Diploma in Engineering Circuits and waves
9210112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book nonprogrammable calculator pen, pencil, ruler No additional data is attached
More informationSupplementary Information: Noiseassisted energy transport in electrical oscillator networks with offdiagonal dynamical disorder
Supplementary Information: Noiseassisted energy transport in electrical oscillator networks with offdiagonal dynamical disorder oberto de J. LeónMontiel, Mario A. QuirozJuárez, afael QuinteroTorres,
More informationUNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam
More informationEE348L Lecture 1. EE348L Lecture 1. Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis. Motivation
EE348L Lecture 1 Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis 1 EE348L Lecture 1 Motivation Example CMOS 10Gb/s amplifier Differential in,differential out, 5 stage dccoupled,broadband
More informationECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 119 in the exam: please make sure all are there.
ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages 9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit
More informationElectronics II. Final Examination
The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11
More informationFrequency Response part 2 (I&N Chap 12)
Frequency Response part 2 (I&N Chap 12) Introduction & TFs Decibel Scale & Bode Plots Resonance Scaling Filter Networks Applications/Design Frequency response; based on slides by J. Yan Slide 3.1 Example
More informationAC Circuits Homework Set
Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.
More informationRLC Circuits and Resonant Circuits
P517/617 Lec4, P1 RLC Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0
More informationEECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16
EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use
More information7.2 Controller tuning from specified characteristic polynomial
192 Finn Haugen: PID Control 7.2 Controller tuning from specified characteristic polynomial 7.2.1 Introduction The subsequent sections explain controller tuning based on specifications of the characteristic
More information1(b) Compensation Example S 0 L U T I 0 N S
S 0 L U T I 0 N S Compensation Example I 1U Note: All references to Figures and Equations whose numbers are not preceded by an "S"refer to the textbook. (a) The solution of this problem is outlined in
More informationLecture 6, ATIK. Switchedcapacitor circuits 2 S/H, Some nonideal effects Continuoustime filters
Lecture 6, ATIK Switchedcapacitor circuits 2 S/H, Some nonideal effects Continuoustime filters What did we do last time? Switched capacitor circuits The basics Chargeredistribution analysis Nonidealties
More informationE40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1
E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863866. Reader, Chapter 8 Noninverting Amp http://www.electronicstutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronicstutorials.ws/opamp/opamp_2.html
More informationExperiment 9 Equivalent Circuits
Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 36104 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,
More informationBENG 186B Winter 2013 Quiz 2. February 15, NAME (Last, First): This quiz is closed book and closed notes. You may use a calculator for algebra.
BENG 186B Winter 2013 Quiz 2 February 15, 2013 NAME (Last, First): This quiz is closed book and closed notes. You may use a calculator for algebra. Circle your final answers in the space provided; show
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS
ENG0016 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS MODULE NO: BME6003 Date: Friday 19 January 2018
More informationProblem Set 4 Solutions
University of California, Berkeley Spring 212 EE 42/1 Prof. A. Niknejad Problem Set 4 Solutions Please note that these are merely suggested solutions. Many of these problems can be approached in different
More informationMAE140 Linear Circuits Fall 2016 Final, December 6th Instructions
MAE40 Linear Circuits Fall 206 Final, December 6th Instructions. This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a handheld
More informationSolution: K m = R 1 = 10. From the original circuit, Z L1 = jωl 1 = j10 Ω. For the scaled circuit, L 1 = jk m ωl 1 = j10 10 = j100 Ω, Z L
Problem 9.9 Circuit (b) in Fig. P9.9 is a scaled version of circuit (a). The scaling process may have involved magnitude or frequency scaling, or both simultaneously. If R = kω gets scaled to R = kω, supply
More informationOperational Amplifier (OpAmp) Operational Amplifiers. OPAmp: Components. Internal Design of LM741
(OpAmp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics
More informationSampleandHolds David Johns and Ken Martin University of Toronto
SampleandHolds David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 18 SampleandHold Circuits Also called trackandhold circuits Often needed in A/D converters
More informationUniversity of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS
University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a
More informationThe Approximating Impedance
Georgia Institute of Technology School of Electrical and Computer Engineering ECE 4435 Op Amp Design Laboratory Fall 005 DesignProject,Part A White Noise and Pink Noise Generator The following explains
More informationHomework 6 Solutions and Rubric
Homework 6 Solutions and Rubric EE 140/40A 1. KW Tube Amplifier b) Load Resistor e) Commoncathode a) Input Diff Pair f) CathodeFollower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure
More informationElectrical Circuits Lab Series RC Circuit Phasor Diagram
Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram  Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is
More informationEE202 Exam III April 13, 2006
EE202 Exam III April 13, 2006 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION DeCarlo 2:30 MWF Furgason 3:30 MWF INSTRUCTIONS There are 10 multiple choice worth 5 points each and there is
More informationEE105 Fall 2014 Microelectronic Devices and Circuits
EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)
More information1. Design a 3rd order Butterworth lowpass filters having a dc gain of unity and a cutoff frequency, fc, of khz.
ECE 34 Experiment 6 Active Filter Design. Design a 3rd order Butterworth lowpass ilters having a dc gain o unity and a cuto requency, c, o.8 khz. c :=.8kHz K:= The transer unction is given on page 7 j
More information8.1.6 Quadratic pole response: resonance
8.1.6 Quadratic pole response: resonance Example G(s)= v (s) v 1 (s) = 1 1+s L R + s LC L + Secondorder denominator, of the form 1+a 1 s + a s v 1 (s) + C R Twopole lowpass filter example v (s) with
More informationFigure Circuit for Question 1. Figure Circuit for Question 2
Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question
More informationHomework Assignment 08
Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance
More information