Analysis of Regression and Bayesian Predictive Uncertainty Measures

Size: px
Start display at page:

Download "Analysis of Regression and Bayesian Predictive Uncertainty Measures"

Transcription

1 Analysis of and Predictive Uncertainty Measures Dan Lu, Mary C. Hill, Ming Ye Florida State University, Tallahassee, FL, USA U.S. Geological Survey, Boulder, CO, USA ABSTRACT Predictive uncertainty can be quantified using confidence and probability intervals constructed around predictions. Confidence intervals are based on regression inferential theory; probability intervals are based on theory. For the confidence intervals, this work considered linear and nonlinear confidence intervals obtained using methods that require tens and hundreds of model runs, respectively. The probability intervals are obtained using Markov Chain Monte Carlo (MCMC) methods that require,s of model runs. Confidence and probability intervals are conceptually different and only mathematically equivalent under certain conditions. We use simple test cases to show that for linear models, the two types of intervals are mathematically equivalent with proper choices of prior probability. However, for nonlinear models, regardless of choice of prior probability, the two types of intervals are always different. The discrepancy depends on the model total nonlinearity. Therefore, it is inappropriate to use the two intervals to validate each other, as has been done in previous practice. INTRODUCTION Groundwater modeling is often used to predict effects of future anthropomorphic or natural occurrences. Since modeling predictions are inherently uncertain, quantification of predictive uncertainty is necessary. Confidence intervals and probability intervals constructed around the predictions can be used as measures of predictive uncertainty. Confidence intervals are based on inferential statistical theory from regression; linear and nonlinear intervals can be calculated. Probability intervals are based on theory. Markov chain Monte Carlo (MCMC) has been popular for estimating the probability intervals. While comparative studies of the two types of predictive uncertainty measures have been conducted (e.g., Vrugt and Bouten, ; Gallagher and Doherty, 7), underlying theoretical differences remain unclear. The purpose of this work is to compare the two kinds of predictive uncertainty measures by investigating their theoretical differences. To illustrate these differences, we consider a set of simple test cases with linear and nonlinear models. CONFIDENCE INTERVALS AND PROBABILITY INTERVALS Confidence intervals, from the frequentist point of view, represent the percent of the time in repeated sampling that the confidence intervals contain true predictions. To understand this better, consider the procedure of evaluating the confidence intervals. It involves first sampling N sets of observations based on distribution of errors and then calculating the confidence intervals (with confidence level -)for a certain prediction function based on the generated N sets of observations. For the N intervals, (- % of the intervals contain the true value. For linear intervals, the portions that the true value is either larger than the upper or smaller than the lower confidence limits are equal, being /. For nonlinear intervals the portions are not necessarily equal. The probability intervals, inferred from theory, represent posterior probability that the predictions lies in the interval. In statistics, a prediction is thought of as a random variable with its own distribution. The posterior distribution summarizes the state of knowledge about the unknown prediction conditional on the prior and current data. The narrower the distribution is, the greater our knowledge about the prediction. The amount is measured by the probability interval, which is a probabilistic region around posterior statistics such as posterior mean. They are calculated here using Markov Chain Monte Carlo (MCMC) methods that generate the entire posterior probability distribution from which the intervals are determined.

2 RELATIONSHIP BETWEEN CONFIDENCE AND PROBABILITY INTERVALS First consider a linear model, y Xβε, with n observations in the vector y, p unknown true parameters in the vector β, true random errors in the vector. The random error is assumed to be multivariate Gaussian, i.e., ε Nn (, C), where C ω and is the weight matrix used in objective function of inverse modeling. The estimates of β are multivariate Gaussian, i.e., ˆ * T β N p ( β, ( X ωx) ), where X is sensitivity matrix. Consider a linear prediction function g( β) Zβ. Using regression theory, the ( ) % confidence interval on the prediction (assuming that the model correctly represents reality) is given for two circumstances with unknown and known σ. When σ is unknown, and it is estimated by the calculated variance ˆ T s ( yxβ) ω( yxβ ˆ)/( n p), the distribution of g( β ˆ) is t-distribution, and the confidence interval is (Hill and Tiedeman, 7) ˆ T T / g( β) t /( n p)[ s Z ( X ωx) Z ] () where t -/ (n-p) is a t statistic with significance level and degrees of freedom equal to (n-p). When σ is known, the distribution of g( β ˆ) is normal distribution, the confidence interval is (McClave and Sincich, ) ˆ T T / g( β) z /[ Z ( X C X) Z ] () where z / is the z statistic with significance level. In statistics with noninformative priors for which p( β) constant and p( ) /, the posterior distribution of g( β ) is multivariate t-distribution. Thus, the ( ) % probability intervals for g( β) are the same as those of equation () derived from regression theories. In the same context, for informative conjugate prior with p( β) N p ( β p,c p ), and assume σ is known, the posterior distribution of g( β ) is multivariate normal. Thus, the ( ) % probability interval for g( β ) (assuming that the model correctly represents reality) is given as (McLaughlin and Townley, 996) ' T T / g( β p) z /[ Z ( X C XCp ) Z ] (3) As C p I, equation (3) reduces to equation (). The only difference is that the prediction is evaluated ' for β p the posterior mean, as determined from theory, instead of ˆβ the least square estimate, as determined from regression theory. For a linear problem, the two quantities of parameters are the same and equations () and (3) produce the same intervals. For a nonlinear model y f ( β) ε with parameters β, errors ε Nn(, C) with known C, based on theorem, with noninformative prior, the posterior density of parameter β is (Berger, 985) exp[log p( y β)] p( β y) (4) exp[log p( y)] dβ Consider a Taylor series expansion of log p( y β ) about ˆβ to the second order term, where ˆβ maximizes the log likelihood, log p( y β ). Then equation (4) is approximated by:

3 where ˆ ˆ T exp log ( ) ( ) ( ˆ)( ˆ p y β ββ I β ββ) p( β y) ˆ exp log ( ) ( ˆ T ) ( ˆ)( ˆ p y β ββ I β ββ) d β exp ( ˆ T ) I( ˆ)( ˆ ββ β ββ) p/ ˆ / ( ) I( β) ˆ log p( y β) I( β) T ββ β β ˆ β Xβ ), the posterior density ˆ ˆ p( β y) Nn β, [ I( β)] is the Fisher information matrix. When the model is linear (i.e., f ( ) is exact with [ ( ˆ T I β)] XC X. In this case, the probability interval of g( β ) from posterior distribution is mathematically equivalent with its confidence interval in regression as shown in equation (). However, if the model is highly nonlinear as indicated by large total nonlinearity, ignoring the higher order terms can cause significant error. In this case, confidence and probability intervals can be very different. The difference depends on the size of the higher order terms, which is reflected in the skew of the distribution. In addition to the linear confidence intervals above, nonlinear confidence intervals are also available from regression theories (Vecchia and Cooley, 987; Cooley, 4; Hill and Tiedeman, 7) that should be able to account for higher order terms resulted from model linearization. Nonlinear intervals can be calculated using likelihood method of Vecchia and Cooley (987). It determines the minimum and maximum values of prediction over a confidence region on the parameter set. The confidence region is defined in p-dimensional parameter space and has a specified probability of containing the true set of parameter values, as illustrated in Figure. (5) SA Figure : Geometry of a nonlinear confidence interval on prediction g(b). The parameter confidence region (shaded area), contours of constant g(b) (dashed lines), and locations of the minimum (g(b)=c, with b=b L ) and maximum (g(b)=c 4, with b=b U ) values of the prediction on the confidence region are shown. The lower and upper limits of the nonlinear confidence interval on prediction g(b) are thus c and c 4, respectively. (Adapted from Hill and Tiedeman, 7, Figure 8.3.) The method for computing nonlinear confidence intervals involves first defining the (-)-percent parameter confidence region. This region is defined as the set of parameter values for which the objective-function values, S(b), satisfy the following condition: ' / S( b) S( b ) s t ( n p) (6) Nonlinear intervals are also shown in the results below for simple test cases.

4 SIMPLE TEST CASES To compare the predictive uncertainty measures of confidence intervals in regression and probability intervals from theory, we apply the three measures, linear and nonlinear confidence intervals and probability intervals, to two simple test cases. In both test cases, we employ MCMC implemented in MICA code (Doherty, 3) to calculate the probability intervals. Linear Test Case Linear model y axbε, with parameters a= and b=3 and true errors i N(,) conjugate prior of the two parameters with C p. We consider I. Twenty data (x=,, ) are used to calibrate model and the calibrated model is used to predict the point at x=3. Nonlinear Test Case In the nonlinear test problem, the model is y x/ asin( abx) ε. All the other conditions are the same as those of the linear test problem. Cumulative distribution function F(a).8.6. Linear Model (a) Parameter a Cumulative distribution function F(a).8.6. Nonlinear Model (d) Parameter a Cumulative distribution function F(b).8.6. (b) Parameter b Cumulative distribution function F(b).8.6. (e) Parameter b Cumulative distribution function F(y).8.6. (c) Prediction y Cumulative distribution function F(y).8.6. (f) Prediction y Figure : Cumulative distribution functions of parameters and prediction based on regression and theory for parameter a and b, and prediction y in both linear simple test case (a, b, and c); and nonlinear simple test case (d, e, and f). Figure 3: The nonlinear confidence interval limits (red dots), the minimum and maximum values of prediction (red lines), the confidence region of parameter set bounded by the objective function goal (black contour); the probability interval limits (blue dot), where the upper.5% and lower.5% prediction values include parameter samples indicated by green dots from MCMC, and the median 95% prediction values include the samples indicated by yellow dots. Figure plots the cumulative distribution functions (CDFs) of the parameters and prediction for the linear and nonlinear test cases. The left panel of Figure confirms that the distributions of parameters and prediction from regression and theory are identical in the linear model case, as the mathematical theory above indicates. Therefore, for the linear model, the confidence and probability intervals are equivalent. However, for the nonlinear model, due to nonzero higher order derivatives of the likelihood function that are discarded in equation (5), these two intervals are distinct. In this case, the probability interval is smaller than the linear confidence interval, as shown in the right panel of Figure. And it is also smaller than the nonlinear confidence interval as illustrated in Figure 3. In Figure 3, the

5 black ellipse represents the 95% confidence region of the true parameters, the black star at the center of the ellipse. The red lines are model evaluations that intersect with the ellipse, and the intersections are the maximum and maximum values of the prediction (specific to the confidence region). The yellow and green dots are parameter samples obtained from MCMC simulation. Model predictions of these samples are first sorted and the threshold parameters values of the.5% and 97.5% percentiles of the predictions are identified. Their corresponding model evaluations are plotted in blue lines in Figure 3. Figure 3 shows the discrepancy between nonlinear confidence interval determined by the minimum and maximum values of prediction over a confidence region on the parameter set and probability interval from MCMC samples. CONCLUSIONS This work includes theoretical analysis and numerical experiments (using simple test cases) for comparing the confidence intervals based on regression theory and probability intervals based on theory. For linear models, the two types of intervals are mathematically and numerically equivalent only with noninformative prior information. However, for the nonlinear models, the confidence intervals and probability intervals are distinct mathematically and numerically. Their discrepancy depends on the model total nonlinearity. For groundwater models that are always nonlinear, it is not appropriate to validate the confidence intervals and probability intervals for each other. ACKNOWLEDGMENTS The authors thank John Doherty for providing the MICA code of MCMC simulation. This work was supported in part by NSF-EAR grant 974 and DOE-SBR grant DE-SC687. REFERENCES Berger, J.O., 985. Statistical decision theory and analysis, nd edition, Springer. Cooley, R. L., 4. A theory for modelling groundwater flow in heterogeneous media, U. S. Geological Survey Professional Paper 979. Doherty, J., 3. MICA: model-independent Markov Chain Monte Carlo analysis, Watermark Numerical Computing, Brisbane, Australia. Gallagher M., Doherty J., 7. Parameter estimation and uncertainty analysis for a watershed model, Environmental Modelling and Software,, -. Hill, M.C., Tiedeman C., 7. Effective calibration of ground water models, with analysis of data, sensitivities, predictions, and uncertainty, John Wiley, New York. McClave, J.T., Sincich T.,. Statistics, 8 th edition, Prentice Hall. McLaughlin, D., Townley L.R., 996. A reassessment of the groundwater inverse problem, Water Resour. Res., 3(5), 3-6. Vecchia, A.V., Cooley R.L., 987. Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model, Water Resour. Res., 3(7), Vrugt, J. A., Bouten W.,. Validity of first-order approximations to describe parameter uncertainty in soil hydraulic models, Soil Sci. Soc. Am. J. 66:74-75.

Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification

Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification WATER RESOURCES RESEARCH, VOL. 48,, doi:10.1029/2011wr011289, 2012 Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification Dan Lu, 1 Ming Ye, 1 and Mary

More information

Estimation of Operational Risk Capital Charge under Parameter Uncertainty

Estimation of Operational Risk Capital Charge under Parameter Uncertainty Estimation of Operational Risk Capital Charge under Parameter Uncertainty Pavel V. Shevchenko Principal Research Scientist, CSIRO Mathematical and Information Sciences, Sydney, Locked Bag 17, North Ryde,

More information

Xiaoqing Shi Ming Ye* Stefan Finsterle Jichun Wu

Xiaoqing Shi Ming Ye* Stefan Finsterle Jichun Wu Special Section: Model-Data Fusion in the Vadose Zone Xiaoqing Shi Ming Ye* Stefan Finsterle Jichun Wu Evalua ng predic ve performance of regression confidence intervals and Bayesian credible intervals

More information

for Complex Environmental Models

for Complex Environmental Models Calibration and Uncertainty Analysis for Complex Environmental Models PEST: complete theory and what it means for modelling the real world John Doherty Calibration and Uncertainty Analysis for Complex

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits www.pp.rhul.ac.uk/~cowan/stat_aachen.html Graduierten-Kolleg RWTH Aachen 10-14 February 2014 Glen Cowan Physics Department

More information

Bayesian Inference: Concept and Practice

Bayesian Inference: Concept and Practice Inference: Concept and Practice fundamentals Johan A. Elkink School of Politics & International Relations University College Dublin 5 June 2017 1 2 3 Bayes theorem In order to estimate the parameters of

More information

Development of Stochastic Artificial Neural Networks for Hydrological Prediction

Development of Stochastic Artificial Neural Networks for Hydrological Prediction Development of Stochastic Artificial Neural Networks for Hydrological Prediction G. B. Kingston, M. F. Lambert and H. R. Maier Centre for Applied Modelling in Water Engineering, School of Civil and Environmental

More information

Sampling: A Brief Review. Workshop on Respondent-driven Sampling Analyst Software

Sampling: A Brief Review. Workshop on Respondent-driven Sampling Analyst Software Sampling: A Brief Review Workshop on Respondent-driven Sampling Analyst Software 201 1 Purpose To review some of the influences on estimates in design-based inference in classic survey sampling methods

More information

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University

Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Probability theory and statistical analysis: a review Modeling Uncertainty in the Earth Sciences Jef Caers Stanford University Concepts assumed known Histograms, mean, median, spread, quantiles Probability,

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayesian Learning. Tobias Scheffer, Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayesian Learning Tobias Scheffer, Niels Landwehr Remember: Normal Distribution Distribution over x. Density function with parameters

More information

BAYESIAN ESTIMATION OF LINEAR STATISTICAL MODEL BIAS

BAYESIAN ESTIMATION OF LINEAR STATISTICAL MODEL BIAS BAYESIAN ESTIMATION OF LINEAR STATISTICAL MODEL BIAS Andrew A. Neath 1 and Joseph E. Cavanaugh 1 Department of Mathematics and Statistics, Southern Illinois University, Edwardsville, Illinois 606, USA

More information

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM

MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM Eco517 Fall 2004 C. Sims MAXIMUM LIKELIHOOD, SET ESTIMATION, MODEL CRITICISM 1. SOMETHING WE SHOULD ALREADY HAVE MENTIONED A t n (µ, Σ) distribution converges, as n, to a N(µ, Σ). Consider the univariate

More information

Finite Population Correction Methods

Finite Population Correction Methods Finite Population Correction Methods Moses Obiri May 5, 2017 Contents 1 Introduction 1 2 Normal-based Confidence Interval 2 3 Bootstrap Confidence Interval 3 4 Finite Population Bootstrap Sampling 5 4.1

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bayesian Econometrics

Bayesian Econometrics Bayesian Econometrics Christopher A. Sims Princeton University sims@princeton.edu September 20, 2016 Outline I. The difference between Bayesian and non-bayesian inference. II. Confidence sets and confidence

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Deciding, Estimating, Computing, Checking

Deciding, Estimating, Computing, Checking Deciding, Estimating, Computing, Checking How are Bayesian posteriors used, computed and validated? Fundamentalist Bayes: The posterior is ALL knowledge you have about the state Use in decision making:

More information

Deciding, Estimating, Computing, Checking. How are Bayesian posteriors used, computed and validated?

Deciding, Estimating, Computing, Checking. How are Bayesian posteriors used, computed and validated? Deciding, Estimating, Computing, Checking How are Bayesian posteriors used, computed and validated? Fundamentalist Bayes: The posterior is ALL knowledge you have about the state Use in decision making:

More information

Introduction to Probability and Statistics (Continued)

Introduction to Probability and Statistics (Continued) Introduction to Probability and Statistics (Continued) Prof. icholas Zabaras Center for Informatics and Computational Science https://cics.nd.edu/ University of otre Dame otre Dame, Indiana, USA Email:

More information

Quantile POD for Hit-Miss Data

Quantile POD for Hit-Miss Data Quantile POD for Hit-Miss Data Yew-Meng Koh a and William Q. Meeker a a Center for Nondestructive Evaluation, Department of Statistics, Iowa State niversity, Ames, Iowa 50010 Abstract. Probability of detection

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

Statistical Practice

Statistical Practice Statistical Practice A Note on Bayesian Inference After Multiple Imputation Xiang ZHOU and Jerome P. REITER This article is aimed at practitioners who plan to use Bayesian inference on multiply-imputed

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) = Until now we have always worked with likelihoods and prior distributions that were conjugate to each other, allowing the computation of the posterior distribution to be done in closed form. Unfortunately,

More information

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples Bayesian inference for sample surveys Roderick Little Module : Bayesian models for simple random samples Superpopulation Modeling: Estimating parameters Various principles: least squares, method of moments,

More information

Bayesian Modeling of Accelerated Life Tests with Random Effects

Bayesian Modeling of Accelerated Life Tests with Random Effects Bayesian Modeling of Accelerated Life Tests with Random Effects Ramón V. León Avery J. Ashby Jayanth Thyagarajan Joint Statistical Meeting August, 00 Toronto, Canada Abstract We show how to use Bayesian

More information

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence

Bayesian Inference in GLMs. Frequentists typically base inferences on MLEs, asymptotic confidence Bayesian Inference in GLMs Frequentists typically base inferences on MLEs, asymptotic confidence limits, and log-likelihood ratio tests Bayesians base inferences on the posterior distribution of the unknowns

More information

Statistical techniques for data analysis in Cosmology

Statistical techniques for data analysis in Cosmology Statistical techniques for data analysis in Cosmology arxiv:0712.3028; arxiv:0911.3105 Numerical recipes (the bible ) Licia Verde ICREA & ICC UB-IEEC http://icc.ub.edu/~liciaverde outline Lecture 1: Introduction

More information

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.

PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation. PARAMETER ESTIMATION: BAYESIAN APPROACH. These notes summarize the lectures on Bayesian parameter estimation.. Beta Distribution We ll start by learning about the Beta distribution, since we end up using

More information

Multivariate statistical methods and data mining in particle physics

Multivariate statistical methods and data mining in particle physics Multivariate statistical methods and data mining in particle physics RHUL Physics www.pp.rhul.ac.uk/~cowan Academic Training Lectures CERN 16 19 June, 2008 1 Outline Statement of the problem Some general

More information

When using physical experimental data to adjust, or calibrate, computer simulation models, two general

When using physical experimental data to adjust, or calibrate, computer simulation models, two general A Preposterior Analysis to Predict Identifiability in Experimental Calibration of Computer Models Paul D. Arendt Northwestern University, Department of Mechanical Engineering 2145 Sheridan Road Room B214

More information

Inference when identifying assumptions are doubted. A. Theory B. Applications

Inference when identifying assumptions are doubted. A. Theory B. Applications Inference when identifying assumptions are doubted A. Theory B. Applications 1 A. Theory Structural model of interest: A y t B 1 y t1 B m y tm u t nn n1 u t i.i.d. N0, D D diagonal 2 Bayesian approach:

More information

Theory and Methods of Statistical Inference. PART I Frequentist theory and methods

Theory and Methods of Statistical Inference. PART I Frequentist theory and methods PhD School in Statistics cycle XXVI, 2011 Theory and Methods of Statistical Inference PART I Frequentist theory and methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007 Bayesian inference Fredrik Ronquist and Peter Beerli October 3, 2007 1 Introduction The last few decades has seen a growing interest in Bayesian inference, an alternative approach to statistical inference.

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Theory and Methods of Statistical Inference

Theory and Methods of Statistical Inference PhD School in Statistics cycle XXIX, 2014 Theory and Methods of Statistical Inference Instructors: B. Liseo, L. Pace, A. Salvan (course coordinator), N. Sartori, A. Tancredi, L. Ventura Syllabus Some prerequisites:

More information

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain

A BAYESIAN MATHEMATICAL STATISTICS PRIMER. José M. Bernardo Universitat de València, Spain A BAYESIAN MATHEMATICAL STATISTICS PRIMER José M. Bernardo Universitat de València, Spain jose.m.bernardo@uv.es Bayesian Statistics is typically taught, if at all, after a prior exposure to frequentist

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

Effect of correlated observation error on parameters, predictions, and uncertainty

Effect of correlated observation error on parameters, predictions, and uncertainty WATER RESOURCES RESEARCH, VOL. 49, 6339 6355, doi:10.1002/wrcr.20499, 2013 Effect of correlated observation error on parameters, predictions, and uncertainty Claire R. Tiedeman 1 and Christopher T. Green

More information

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

A Note on Bayesian Inference After Multiple Imputation

A Note on Bayesian Inference After Multiple Imputation A Note on Bayesian Inference After Multiple Imputation Xiang Zhou and Jerome P. Reiter Abstract This article is aimed at practitioners who plan to use Bayesian inference on multiplyimputed datasets in

More information

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods PhD School in Statistics XXV cycle, 2010 Theory and Methods of Statistical Inference PART I Frequentist likelihood methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA

BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA BAYESIAN METHODS FOR VARIABLE SELECTION WITH APPLICATIONS TO HIGH-DIMENSIONAL DATA Intro: Course Outline and Brief Intro to Marina Vannucci Rice University, USA PASI-CIMAT 04/28-30/2010 Marina Vannucci

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 11 Maximum Likelihood as Bayesian Inference Maximum A Posteriori Bayesian Gaussian Estimation Why Maximum Likelihood? So far, assumed max (log) likelihood

More information

The Bayesian Approach to Multi-equation Econometric Model Estimation

The Bayesian Approach to Multi-equation Econometric Model Estimation Journal of Statistical and Econometric Methods, vol.3, no.1, 2014, 85-96 ISSN: 2241-0384 (print), 2241-0376 (online) Scienpress Ltd, 2014 The Bayesian Approach to Multi-equation Econometric Model Estimation

More information

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION Pak. J. Statist. 2017 Vol. 33(1), 37-61 INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION A. M. Abd AL-Fattah, A.A. EL-Helbawy G.R. AL-Dayian Statistics Department, Faculty of Commerce, AL-Azhar

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Inference when identifying assumptions are doubted. A. Theory. Structural model of interest: B 1 y t1. u t. B m y tm. u t i.i.d.

Inference when identifying assumptions are doubted. A. Theory. Structural model of interest: B 1 y t1. u t. B m y tm. u t i.i.d. Inference when identifying assumptions are doubted A. Theory B. Applications Structural model of interest: A y t B y t B m y tm nn n i.i.d. N, D D diagonal A. Theory Bayesian approach: Summarize whatever

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

A Bayesian Treatment of Linear Gaussian Regression

A Bayesian Treatment of Linear Gaussian Regression A Bayesian Treatment of Linear Gaussian Regression Frank Wood December 3, 2009 Bayesian Approach to Classical Linear Regression In classical linear regression we have the following model y β, σ 2, X N(Xβ,

More information

Probing the covariance matrix

Probing the covariance matrix Probing the covariance matrix Kenneth M. Hanson Los Alamos National Laboratory (ret.) BIE Users Group Meeting, September 24, 2013 This presentation available at http://kmh-lanl.hansonhub.com/ LA-UR-06-5241

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

Bayesian Methods in Multilevel Regression

Bayesian Methods in Multilevel Regression Bayesian Methods in Multilevel Regression Joop Hox MuLOG, 15 september 2000 mcmc What is Statistics?! Statistics is about uncertainty To err is human, to forgive divine, but to include errors in your design

More information

Fundamental Probability and Statistics

Fundamental Probability and Statistics Fundamental Probability and Statistics "There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are

More information

A MultiGaussian Approach to Assess Block Grade Uncertainty

A MultiGaussian Approach to Assess Block Grade Uncertainty A MultiGaussian Approach to Assess Block Grade Uncertainty Julián M. Ortiz 1, Oy Leuangthong 2, and Clayton V. Deutsch 2 1 Department of Mining Engineering, University of Chile 2 Department of Civil &

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

Basics of Uncertainty Analysis

Basics of Uncertainty Analysis Basics of Uncertainty Analysis Chapter Six Basics of Uncertainty Analysis 6.1 Introduction As shown in Fig. 6.1, analysis models are used to predict the performances or behaviors of a product under design.

More information

Bivariate Degradation Modeling Based on Gamma Process

Bivariate Degradation Modeling Based on Gamma Process Bivariate Degradation Modeling Based on Gamma Process Jinglun Zhou Zhengqiang Pan Member IAENG and Quan Sun Abstract Many highly reliable products have two or more performance characteristics (PCs). The

More information

PIRLS 2016 Achievement Scaling Methodology 1

PIRLS 2016 Achievement Scaling Methodology 1 CHAPTER 11 PIRLS 2016 Achievement Scaling Methodology 1 The PIRLS approach to scaling the achievement data, based on item response theory (IRT) scaling with marginal estimation, was developed originally

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Krzysztof Fidkowski, David Galbally*, Karen Willcox* (*MIT) Computational Aerospace Sciences Seminar Aerospace Engineering

More information

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling

A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling A Statistical Input Pruning Method for Artificial Neural Networks Used in Environmental Modelling G. B. Kingston, H. R. Maier and M. F. Lambert Centre for Applied Modelling in Water Engineering, School

More information

Dynamic System Identification using HDMR-Bayesian Technique

Dynamic System Identification using HDMR-Bayesian Technique Dynamic System Identification using HDMR-Bayesian Technique *Shereena O A 1) and Dr. B N Rao 2) 1), 2) Department of Civil Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India 1) ce14d020@smail.iitm.ac.in

More information

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014

Bayesian Prediction of Code Output. ASA Albuquerque Chapter Short Course October 2014 Bayesian Prediction of Code Output ASA Albuquerque Chapter Short Course October 2014 Abstract This presentation summarizes Bayesian prediction methodology for the Gaussian process (GP) surrogate representation

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 7 Approximate

More information

Using training sets and SVD to separate global 21-cm signal from foreground and instrument systematics

Using training sets and SVD to separate global 21-cm signal from foreground and instrument systematics Using training sets and SVD to separate global 21-cm signal from foreground and instrument systematics KEITH TAUSCHER*, DAVID RAPETTI, JACK O. BURNS, ERIC SWITZER Aspen, CO Cosmological Signals from Cosmic

More information

Imperfect Data in an Uncertain World

Imperfect Data in an Uncertain World Imperfect Data in an Uncertain World James B. Elsner Department of Geography, Florida State University Tallahassee, Florida Corresponding author address: Dept. of Geography, Florida State University Tallahassee,

More information

ML estimation: Random-intercepts logistic model. and z

ML estimation: Random-intercepts logistic model. and z ML estimation: Random-intercepts logistic model log p ij 1 p = x ijβ + υ i with υ i N(0, συ) 2 ij Standardizing the random effect, θ i = υ i /σ υ, yields log p ij 1 p = x ij β + σ υθ i with θ i N(0, 1)

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

A Likelihood Ratio Test

A Likelihood Ratio Test A Likelihood Ratio Test David Allen University of Kentucky February 23, 2012 1 Introduction Earlier presentations gave a procedure for finding an estimate and its standard error of a single linear combination

More information

Flexible Regression Modeling using Bayesian Nonparametric Mixtures

Flexible Regression Modeling using Bayesian Nonparametric Mixtures Flexible Regression Modeling using Bayesian Nonparametric Mixtures Athanasios Kottas Department of Applied Mathematics and Statistics University of California, Santa Cruz Department of Statistics Brigham

More information

Probabilistic Machine Learning. Industrial AI Lab.

Probabilistic Machine Learning. Industrial AI Lab. Probabilistic Machine Learning Industrial AI Lab. Probabilistic Linear Regression Outline Probabilistic Classification Probabilistic Clustering Probabilistic Dimension Reduction 2 Probabilistic Linear

More information

Bayesian Dynamic Linear Modelling for. Complex Computer Models

Bayesian Dynamic Linear Modelling for. Complex Computer Models Bayesian Dynamic Linear Modelling for Complex Computer Models Fei Liu, Liang Zhang, Mike West Abstract Computer models may have functional outputs. With no loss of generality, we assume that a single computer

More information

Bayesian Inference. Chapter 1. Introduction and basic concepts

Bayesian Inference. Chapter 1. Introduction and basic concepts Bayesian Inference Chapter 1. Introduction and basic concepts M. Concepción Ausín Department of Statistics Universidad Carlos III de Madrid Master in Business Administration and Quantitative Methods Master

More information

CE 3710: Uncertainty Analysis in Engineering

CE 3710: Uncertainty Analysis in Engineering FINAL EXAM Monday, December 14, 10:15 am 12:15 pm, Chem Sci 101 Open book and open notes. Exam will be cumulative, but emphasis will be on material covered since Exam II Learning Expectations for Final

More information

Outline Lecture 2 2(32)

Outline Lecture 2 2(32) Outline Lecture (3), Lecture Linear Regression and Classification it is our firm belief that an understanding of linear models is essential for understanding nonlinear ones Thomas Schön Division of Automatic

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

On the Optimal Scaling of the Modified Metropolis-Hastings algorithm

On the Optimal Scaling of the Modified Metropolis-Hastings algorithm On the Optimal Scaling of the Modified Metropolis-Hastings algorithm K. M. Zuev & J. L. Beck Division of Engineering and Applied Science California Institute of Technology, MC 4-44, Pasadena, CA 925, USA

More information

Best Linear Unbiased Prediction: an Illustration Based on, but Not Limited to, Shelf Life Estimation

Best Linear Unbiased Prediction: an Illustration Based on, but Not Limited to, Shelf Life Estimation Libraries Conference on Applied Statistics in Agriculture 015-7th Annual Conference Proceedings Best Linear Unbiased Prediction: an Illustration Based on, but Not Limited to, Shelf Life Estimation Maryna

More information

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK

Practical Bayesian Quantile Regression. Keming Yu University of Plymouth, UK Practical Bayesian Quantile Regression Keming Yu University of Plymouth, UK (kyu@plymouth.ac.uk) A brief summary of some recent work of us (Keming Yu, Rana Moyeed and Julian Stander). Summary We develops

More information

Fast Likelihood-Free Inference via Bayesian Optimization

Fast Likelihood-Free Inference via Bayesian Optimization Fast Likelihood-Free Inference via Bayesian Optimization Michael Gutmann https://sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology

More information

Statistics for the LHC Lecture 2: Discovery

Statistics for the LHC Lecture 2: Discovery Statistics for the LHC Lecture 2: Discovery Academic Training Lectures CERN, 14 17 June, 2010 indico.cern.ch/conferencedisplay.py?confid=77830 Glen Cowan Physics Department Royal Holloway, University of

More information

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances Advances in Decision Sciences Volume 211, Article ID 74858, 8 pages doi:1.1155/211/74858 Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances David Allingham 1 andj.c.w.rayner

More information

Obtaining Uncertainty Measures on Slope and Intercept

Obtaining Uncertainty Measures on Slope and Intercept Obtaining Uncertainty Measures on Slope and Intercept of a Least Squares Fit with Excel s LINEST Faith A. Morrison Professor of Chemical Engineering Michigan Technological University, Houghton, MI 39931

More information

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment

Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Approximate Bayesian computation for spatial extremes via open-faced sandwich adjustment Ben Shaby SAMSI August 3, 2010 Ben Shaby (SAMSI) OFS adjustment August 3, 2010 1 / 29 Outline 1 Introduction 2 Spatial

More information

A novel determination of the local dark matter density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg

A novel determination of the local dark matter density. Riccardo Catena. Institut für Theoretische Physik, Heidelberg A novel determination of the local dark matter density Riccardo Catena Institut für Theoretische Physik, Heidelberg 28.04.2010 R. Catena and P. Ullio, arxiv:0907.0018 [astro-ph.co]. Riccardo Catena (ITP)

More information

Modelling Operational Risk Using Bayesian Inference

Modelling Operational Risk Using Bayesian Inference Pavel V. Shevchenko Modelling Operational Risk Using Bayesian Inference 4y Springer 1 Operational Risk and Basel II 1 1.1 Introduction to Operational Risk 1 1.2 Defining Operational Risk 4 1.3 Basel II

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances

Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances Tutorial 4: Power and Sample Size for the Two-sample t-test with Unequal Variances Preface Power is the probability that a study will reject the null hypothesis. The estimated probability is a function

More information