Bayesian Networks Introduction to Machine Learning. Matt Gormley Lecture 24 April 9, 2018

Size: px
Start display at page:

Download "Bayesian Networks Introduction to Machine Learning. Matt Gormley Lecture 24 April 9, 2018"

Transcription

1 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks Matt Gormley Lecture 24 April 9,

2 Homework 7: HMMs Reminders Out: Wed, Apr 04 Due: Mon, Apr 16 at 11:59pm Schedule Changes Lecture on Fri, Apr 13 Recitation on Mon, Apr 23 2

3 Peer Tutoring Tutor Tutee 3

4 HIDDEN MARKOV MODELS 4

5 Derivation of Forward Algorithm Definition: Derivation: 5

6 Forward-Backward Algorithm 6

7 Viterbi Algorithm 7

8 Inference in HMMs What is the computational complexity of inference for HMMs? The naïve (brute force) computations for Evaluation, Decoding, and Marginals take exponential time, O(K T ) The forward-backward algorithm and Viterbi algorithm run in polynomial time, O(T*K 2 ) Thanks to dynamic programming! 8

9 Shortcomings of Hidden Markov Models START Y 1 Y 2 Y n X 1 X 2 X n HMM models capture dependences between each state and only its corresponding observation NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (nonlocal) features of the whole line such as line length, indentation, amount of white space, etc. Mismatch between learning objective function and prediction objective function HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y X) Eric CMU,

10 MBR DECODING 10

11 Inference for HMMs Three Inference Problems for an HMM 1. Evaluation: Compute the probability of a given sequence of observations 2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations 3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations 4. MBR Decoding: Find the lowest loss sequence of hidden states, given a sequence of observations (Viterbi decoding is a special case) 11

12 Minimum Bayes Risk Decoding Suppose we given a loss function l(y, y) and are asked for a single tagging How should we choose just one from our probability distribution p(y x)? A minimum Bayes risk (MBR) decoder h(x) returns the variable assignment with minimum expected loss under the model s distribution h (x) = argmin ŷ = argmin ŷ E ( x)[`(ŷ, y)] y p X p (y x)`(ŷ, y) y 12

13 Minimum Bayes Risk Decoding h (x) = argmin ŷ Consider some example loss functions: The 0-1 loss function returns 1 only if the two assignments are identical and 0 otherwise: The MBR decoder is: `(ŷ, y) =1 I(ŷ, y) h (x) = argmin ŷ = argmax ŷ E y p ( x)[`(ŷ, y)] X X which is exactly the Viterbi decoding problem! y p (y x)(1 p (ŷ x) I(ŷ, y)) 13

14 Minimum Bayes Risk Decoding Consider some example loss functions: The Hamming loss corresponds to accuracy and returns the number of incorrect variable assignments: VX `(ŷ, y) = (1 I(ŷ i,y i )) The MBR decoder is: h (x) = argmin ŷ i=1 E y p ( x)[`(ŷ, y)] X ŷ i = h (x) i = argmax ŷ i p (ŷ i x) This decomposes across variables and requires the variable marginals. 14

15 BAYESIAN NETWORKS 15

16 Bayes Nets Outline Motivation Structured Prediction Background Conditional Independence Chain Rule of Probability Directed Graphical Models Writing Joint Distributions Definition: Bayesian Network Qualitative Specification Quantitative Specification Familiar Models as Bayes Nets Conditional Independence in Bayes Nets Three case studies D-separation Markov blanket Learning Fully Observed Bayes Net (Partially Observed Bayes Net) Inference Background: Marginal Probability Sampling directly from the joint distribution Gibbs Sampling 17

17 Bayesian Networks DIRECTED GRAPHICAL MODELS 18

18 Example: Tornado Alarms 1. Imagine that you work at the 911 call center in Dallas 2. You receive six calls informing you that the Emergency Weather Sirens are going off 3. What do you conclude? Figure from 19

19 Example: Tornado Alarms 1. Imagine that you work at the 911 call center in Dallas 2. You receive six calls informing you that the Emergency Weather Sirens are going off 3. What do you conclude? Figure from 20

20 Whiteboard Directed Graphical Models (Bayes Nets) Example: Tornado Alarms Writing Joint Distributions Idea #1: Giant Table Idea #2: Rewrite using chain rule Idea #3: Assume full independence Idea #4: Drop variables from RHS of conditionals Definition: Bayesian Network 21

21 Bayesian Network X2 X 1 X 3 X 4 X 5 p(x 1,X 2,X 3,X 4,X 5 )= p(x 5 X 3 )p(x 4 X 2,X 3 ) p(x 3 )p(x 2 X 1 )p(x 1 ) 22

22 Bayesian Network Definition: X 1 X2 X 3 n i=1 P(X 1 X n ) = P(X i parents(x i )) X 4 X 5 A Bayesian Network is a directed graphical model It consists of a graph G and the conditional probabilities P These two parts full specify the distribution: Qualitative Specification: G Quantitative Specification: P 23

23 Qualitative Specification Where does the qualitative specification come from? Prior knowledge of causal relationships Prior knowledge of modular relationships Assessment from experts Learning from data (i.e. structure learning) We simply link a certain architecture (e.g. a layered graph) Eric CMU,

24 Quantitative Specification Example: Conditional probability tables (CPTs) for discrete random variables a a b b P(a,b,c.d) = P(a)P(b)P(c a,b)p(d c) A B C a 0 b 0 a 0 b 1 a 1 b 0 a 1 b 1 c c D c 0 c 1 d d Eric CMU,

25 A~N(μ a, Σ a ) B~N(μ b, Σ b ) Quantitative Specification Example: Conditional probability density functions (CPDs) for continuous random variables P(a,b,c.d) = P(a)P(b)P(c a,b)p(d c) A B C C~N(A+B, Σ c ) P(D C) D D~N(μ d +C, Σ d ) D C Eric CMU,

26 Quantitative Specification Example: Combination of CPTs and CPDs for a mix of discrete and continuous variables a a b b P(a,b,c.d) = P(a)P(b)P(c a,b)p(d c) A B C C~N(A+B, Σ c ) D D~N(μ d +C, Σ d ) Eric CMU,

27 Whiteboard Directed Graphical Models (Bayes Nets) Observed Variables in Graphical Model Familiar Models as Bayes Nets Bernoulli Naïve Bayes Gaussian Naïve Bayes Gaussian Mixture Model (GMM) Gaussian Discriminant Analysis Logistic Regression Linear Regression 1D Gaussian 28

28 GRAPHICAL MODELS: DETERMINING CONDITIONAL INDEPENDENCIES Slide from William Cohen

29 What Independencies does a Bayes Net Model? In order for a Bayesian network to model a probability distribution, the following must be true: Each variable is conditionally independent of all its non-descendants in the graph given the value of all its parents. This follows from But what else does it imply? n i=1 P(X 1 X n ) = P(X i parents(x i )) n i=1 = P(X i X 1 X i 1 ) Slide from William Cohen

30 What Independencies does a Bayes Net Model? Three cases of interest Cascade Common Parent V-Structure Z Y X Z Y X Z Y X 31

31 What Independencies does a Bayes Net Model? Three cases of interest Cascade Common Parent V-Structure Z Y X Z Y X Z Y X X Z Y X Z Y X Z Y Knowing Y decouples X and Z Knowing Y couples X and Z 32

32 Whiteboard Common Parent Proof of conditional independence X Y Z (The other two cases can be shown just as easily.) X Z Y 33

33 The Burglar Alarm example Your house has a twitchy burglar alarm that is also sometimes triggered by earthquakes. Earth arguably doesn t care whether your house is currently being burgled While you are on vacation, one of your neighbors calls and tells you your home s burglar alarm is ringing. Uh oh! Burglar Alarm Phone Call Earthquake Quiz: True or False? Burglar Earthquake P honecall Slide from William Cohen

34 Markov Blanket Def: the co-parents of a node are the parents of its children Def: the Markov Blanket of a node is the set containing the node s parents, children, and co-parents. X 2 X3 X 1 X 4 Thm: a node is conditionally independent of every other node in the graph given its Markov blanket X 5 X 9 X 6 X 7 X 10 X 8 X 11 X 13 X 12 36

35 Markov Blanket Def: the co-parents of a node are the parents of its children Def: the Markov Blanket of a node is the set containing the node s parents, children, and co-parents. Example: The Markov Blanket of X 6 is {X 3, X 4, X 5, X 8, X 9, X 10 } X 2 X3 X 1 X 4 Theorem: a node is conditionally independent of every other node in the graph given its Markov blanket X 5 X 9 X 6 X 7 X 10 X 8 X 11 X 13 X 12 37

36 Markov Blanket Def: the co-parents of a node are the parents of its children Def: the Markov Blanket of a node is the set containing the node s parents, children, and co-parents. Theorem: a node is conditionally independent of every other node in the graph given its Markov blanket Example: The Markov Blanket of X 6 is {X 3, X 4, X 5, X 8, X 9, X 10 } X 2 X 5 X3 X 9 X 1 Parents X 4 X 6 X 7 Co-parents Parents X 10 X 8 X 11 Children Parents X 13 X 12 38

37 D-Separation If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E Definition #1: Variables X and Z are d-separated given a set of evidence variables E iff every path from X to Z is blocked. A path is blocked whenever: 1. Y on path s.t. Y E and Y is a common parent X 2. Y on path s.t. Y E and Y is in a cascade X Y Y 3. Y on path s.t. {Y, descendants(y)} E and Y is in a v-structure Z Z X Y Z 39

38 D-Separation If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E Definition #2: Variables X and Z are d-separated given a set of evidence variables E iff there does not exist a path in the undirected ancestral moral graph with E removed. 1. Ancestral graph: keep only X, Z, E and their ancestors 2. Moral graph: add undirected edge between all pairs of each node s parents 3. Undirected graph: convert all directed edges to undirected 4. Givens Removed: delete any nodes in E Example Query: A B {D, E} Original: Ancestral: Moral: Undirected: Givens Removed: A B A B A B A B A B C C C C C D E D E D E D E A and B connected not d-separated F 40

39 SUPERVISED LEARNING FOR BAYES NETS 41

40 Machine Learning The data inspires the structures we want to predict Inference finds {best structure, marginals, partition function} for a new observation (Inference is usually called as a subroutine in learning) Domain Knowledge Combinatorial Optimization ML Mathematical Modeling Optimization Our model defines a score for each structure It also tells us what to optimize Learning tunes the parameters of the model 42

41 Machine Learning Data Model X 1 time flies like an arrow X2 X 3 X 4 X 5 Objective Inference Learning (Inference is usually called as a subroutine in learning) 43

42 Learning Fully Observed BNs X2 X 1 X 3 X 4 X 5 p(x 1,X 2,X 3,X 4,X 5 )= p(x 5 X 3 )p(x 4 X 2,X 3 ) p(x 3 )p(x 2 X 1 )p(x 1 ) 44

43 Learning Fully Observed BNs X2 X 1 X 3 X 4 X 5 p(x 1,X 2,X 3,X 4,X 5 )= p(x 5 X 3 )p(x 4 X 2,X 3 ) p(x 3 )p(x 2 X 1 )p(x 1 ) 45

44 Learning Fully Observed BNs X2 X 1 X 3 X 4 X 5 p(x 1,X 2,X 3,X 4,X 5 )= p(x 5 X 3 )p(x 4 X 2,X 3 ) p(x 3 )p(x 2 X 1 )p(x 1 ) How do we learn these conditional and marginal distributions for a Bayes Net? 46

45 Learning Fully Observed BNs Learning this fully observed Bayesian Network is equivalent to learning five (small / simple) independent networks from the same data p(x 1,X 2,X 3,X 4,X 5 )= p(x 5 X 3 )p(x 4 X 2,X 3 ) p(x 3 )p(x 2 X 1 )p(x 1 ) X 1 X 1 X 1 X2 X 3 X 2 X 3 X 4 X 5 X2 X 3 X 3 X 4 X 5 47

46 Learning Fully Observed BNs How do we learn these conditional and marginal distributions for a Bayes Net? X2 X 1 X 3 = argmax = argmax log p(x 1,X 2,X 3,X 4,X 5 ) log p(x 5 X 3, 5 ) + log p(x 4 X 2,X 3, 4 ) + log p(x 3 3 ) + log p(x 2 X 1, 2 ) + log p(x 1 1 ) X 4 X 5 1 = argmax 1 log p(x 1 1 ) 2 = argmax 2 log p(x 2 X 1, 2 ) 3 = argmax 3 log p(x 3 3 ) 4 = argmax 4 log p(x 4 X 2,X 3, 4 ) 5 = argmax 5 log p(x 5 X 3, 5 ) 48

47 Learning Fully Observed BNs Whiteboard Example: Learning for Tornado Alarms 49

48 INFERENCE FOR BAYESIAN NETWORKS 52

49 A Few Problems for Bayes Nets Suppose we already have the parameters of a Bayesian Network 1. How do we compute the probability of a specific assignment to the variables? P(T=t, H=h, A=a, C=c) 2. How do we draw a sample from the joint distribution? t,h,a,c P(T, H, A, C) 3. How do we compute marginal probabilities? P(A) = 4. How do we draw samples from a conditional distribution? t,h,a P(T, H, A C = c) 5. How do we compute conditional marginal probabilities? P(H C = c) = Can we use samples? 53

50 Whiteboard Inference for Bayes Nets Background: Marginal Probability Sampling from a joint distribution Gibbs Sampling 54

51 Sampling from a Joint Distribution We can use these samples to estimate many different probabilities! T H A C 55

52 Gibbs Sampling x 2 p(x) x (t+1) x (t) p(x P (x) 1 x (t) 2 ) a) x 1 ( 56

53 Gibbs Sampling x 2 p(x) x (t+2) x (t+1) P (x) p(x 2 x (t+1) x (t) 1 ) a) x 1 ( 57

54 Gibbs Sampling x 2 p(x) x (t+2) x (t+1) x (t+3) x (t+4) x (t) P (x) a) x 1 ( 58

55 Gibbs Sampling Question: How do we draw samples from a conditional distribution? y 1, y 2,, y J p(y 1, y 2,, y J x 1, x 2,, x J ) (Approximate) Solution: Initialize y 1 (0), y 2 (0),, y J (0) to arbitrary values For t = 1, 2, : y 1 (t+1) p(y 1 y 2 (t),, y J (t), x 1, x 2,, x J ) y 2 (t+1) p(y 2 y 1 (t+1), y 3 (t),, y J (t), x 1, x 2,, x J ) y 3 (t+1) p(y 3 y 1 (t+1), y 2 (t+1), y 4 (t),, y J (t), x 1, x 2,, x J ) y J (t+1) p(y J y 1 (t+1), y 2 (t+1),, y J-1 (t+1), x 1, x 2,, x J ) Properties: This will eventually yield samples from p(y 1, y 2,, y J x 1, x 2,, x J ) But it might take a long time -- just like other Markov Chain Monte Carlo methods 59

56 Gibbs Sampling X 1 Full conditionals only need to condition on the Markov Blanket X 2 X 5 X 3 X 9 X 4 X 6 X 7 X 10 X 8 X 11 X 13 X 12 Must be easy to sample from conditionals Many conditionals are log-concave and are amenable to adaptive rejection sampling 60

57 Learning Objectives Bayesian Networks You should be able to 1. Identify the conditional independence assumptions given by a generative story or a specification of a joint distribution 2. Draw a Bayesian network given a set of conditional independence assumptions 3. Define the joint distribution specified by a Bayesian network 4. User domain knowledge to construct a (simple) Bayesian network for a realworld modeling problem 5. Depict familiar models as Bayesian networks 6. Use d-separation to prove the existence of conditional indenpendencies in a Bayesian network 7. Employ a Markov blanket to identify conditional independence assumptions of a graphical model 8. Develop a supervised learning algorithm for a Bayesian network 9. Use samples from a joint distribution to compute marginal probabilities 10. Sample from the joint distribution specified by a generative story 11. Implement a Gibbs sampler for a Bayesian network 61

Bayesian Networks (Part II)

Bayesian Networks (Part II) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks (Part II) Graphical Model Readings: Murphy 10 10.2.1 Bishop 8.1,

More information

Directed Graphical Models (aka. Bayesian Networks)

Directed Graphical Models (aka. Bayesian Networks) School of Computer Science 10-601B Introduction to Machine Learning Directed Graphical Models (aka. Bayesian Networks) Readings: Bishop 8.1 and 8.2.2 Mitchell 6.11 Murphy 10 Matt Gormley Lecture 21 November

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 22 April 2, 2018 1 Reminders Homework

More information

Bayesian Networks (Part I)

Bayesian Networks (Part I) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks (Part I) Graphical Model Readings: Murphy 10 10.2.1 Bishop 8.1,

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 19 Nov. 5, 2018 1 Reminders Homework

More information

Bayesian Networks: Independencies and Inference

Bayesian Networks: Independencies and Inference Bayesian Networks: Independencies and Inference Scott Davies and Andrew Moore Note to other teachers and users of these slides. Andrew and Scott would be delighted if you found this source material useful

More information

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging

10 : HMM and CRF. 1 Case Study: Supervised Part-of-Speech Tagging 10-708: Probabilistic Graphical Models 10-708, Spring 2018 10 : HMM and CRF Lecturer: Kayhan Batmanghelich Scribes: Ben Lengerich, Michael Kleyman 1 Case Study: Supervised Part-of-Speech Tagging We will

More information

Latent Dirichlet Allocation

Latent Dirichlet Allocation Latent Dirichlet Allocation 1 Directed Graphical Models William W. Cohen Machine Learning 10-601 2 DGMs: The Burglar Alarm example Node ~ random variable Burglar Earthquake Arcs define form of probability

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

CS839: Probabilistic Graphical Models. Lecture 2: Directed Graphical Models. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 2: Directed Graphical Models. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 2: Directed Graphical Models Theo Rekatsinas 1 Questions Questions? Waiting list Questions on other logistics 2 Section 1 1. Intro to Bayes Nets 3 Section

More information

1 : Introduction. 1 Course Overview. 2 Notation. 3 Representing Multivariate Distributions : Probabilistic Graphical Models , Spring 2014

1 : Introduction. 1 Course Overview. 2 Notation. 3 Representing Multivariate Distributions : Probabilistic Graphical Models , Spring 2014 10-708: Probabilistic Graphical Models 10-708, Spring 2014 1 : Introduction Lecturer: Eric P. Xing Scribes: Daniel Silva and Calvin McCarter 1 Course Overview In this lecture we introduce the concept of

More information

Bayes Networks. CS540 Bryan R Gibson University of Wisconsin-Madison. Slides adapted from those used by Prof. Jerry Zhu, CS540-1

Bayes Networks. CS540 Bryan R Gibson University of Wisconsin-Madison. Slides adapted from those used by Prof. Jerry Zhu, CS540-1 Bayes Networks CS540 Bryan R Gibson University of Wisconsin-Madison Slides adapted from those used by Prof. Jerry Zhu, CS540-1 1 / 59 Outline Joint Probability: great for inference, terrible to obtain

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

Lecture 6: Graphical Models

Lecture 6: Graphical Models Lecture 6: Graphical Models Kai-Wei Chang CS @ Uniersity of Virginia kw@kwchang.net Some slides are adapted from Viek Skirmar s course on Structured Prediction 1 So far We discussed sequence labeling tasks:

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models, Spring 2015 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Yi Cheng, Cong Lu 1 Notation Here the notations used in this course are defined:

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Representation of undirected GM. Kayhan Batmanghelich

Representation of undirected GM. Kayhan Batmanghelich Representation of undirected GM Kayhan Batmanghelich Review Review: Directed Graphical Model Represent distribution of the form ny p(x 1,,X n = p(x i (X i i=1 Factorizes in terms of local conditional probabilities

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 18 Oct, 21, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models CPSC

More information

Review: Bayesian learning and inference

Review: Bayesian learning and inference Review: Bayesian learning and inference Suppose the agent has to make decisions about the value of an unobserved query variable X based on the values of an observed evidence variable E Inference problem:

More information

Bayesian Networks Representation

Bayesian Networks Representation Bayesian Networks Representation Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University March 19 th, 2007 Handwriting recognition Character recognition, e.g., kernel SVMs a c z rr r r

More information

Bayesian Network. Outline. Bayesian Network. Syntax Semantics Exact inference by enumeration Exact inference by variable elimination

Bayesian Network. Outline. Bayesian Network. Syntax Semantics Exact inference by enumeration Exact inference by variable elimination Outline Syntax Semantics Exact inference by enumeration Exact inference by variable elimination s A simple, graphical notation for conditional independence assertions and hence for compact specication

More information

Graphical Models - Part I

Graphical Models - Part I Graphical Models - Part I Oliver Schulte - CMPT 726 Bishop PRML Ch. 8, some slides from Russell and Norvig AIMA2e Outline Probabilistic Models Bayesian Networks Markov Random Fields Inference Outline Probabilistic

More information

Bayesian networks. Chapter 14, Sections 1 4

Bayesian networks. Chapter 14, Sections 1 4 Bayesian networks Chapter 14, Sections 1 4 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1 4 1 Bayesian networks

More information

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov

Probabilistic Graphical Models: MRFs and CRFs. CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Probabilistic Graphical Models: MRFs and CRFs CSE628: Natural Language Processing Guest Lecturer: Veselin Stoyanov Why PGMs? PGMs can model joint probabilities of many events. many techniques commonly

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Hidden Markov Models Barnabás Póczos & Aarti Singh Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed

More information

Bayesian networks. Chapter Chapter

Bayesian networks. Chapter Chapter Bayesian networks Chapter 14.1 3 Chapter 14.1 3 1 Outline Syntax Semantics Parameterized distributions Chapter 14.1 3 2 Bayesian networks A simple, graphical notation for conditional independence assertions

More information

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs)

1 Undirected Graphical Models. 2 Markov Random Fields (MRFs) Machine Learning (ML, F16) Lecture#07 (Thursday Nov. 3rd) Lecturer: Byron Boots Undirected Graphical Models 1 Undirected Graphical Models In the previous lecture, we discussed directed graphical models.

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

Alternative Parameterizations of Markov Networks. Sargur Srihari

Alternative Parameterizations of Markov Networks. Sargur Srihari Alternative Parameterizations of Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics Three types of parameterization 1. Gibbs Parameterization 2. Factor Graphs 3. Log-linear Models with Energy functions

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Last Lecture Refresher Lecture Plan Directed

More information

Machine Learning Lecture 14

Machine Learning Lecture 14 Many slides adapted from B. Schiele, S. Roth, Z. Gharahmani Machine Learning Lecture 14 Undirected Graphical Models & Inference 23.06.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Markov chain Monte Carlo Lecture 9

Markov chain Monte Carlo Lecture 9 Markov chain Monte Carlo Lecture 9 David Sontag New York University Slides adapted from Eric Xing and Qirong Ho (CMU) Limitations of Monte Carlo Direct (unconditional) sampling Hard to get rare events

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 11 Oct, 3, 2016 CPSC 422, Lecture 11 Slide 1 422 big picture: Where are we? Query Planning Deterministic Logics First Order Logics Ontologies

More information

Bayes Nets: Independence

Bayes Nets: Independence Bayes Nets: Independence [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Bayes Nets A Bayes

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

Naïve Bayes Introduction to Machine Learning. Matt Gormley Lecture 18 Oct. 31, 2018

Naïve Bayes Introduction to Machine Learning. Matt Gormley Lecture 18 Oct. 31, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Naïve Bayes Matt Gormley Lecture 18 Oct. 31, 2018 1 Reminders Homework 6: PAC Learning

More information

Axioms of Probability? Notation. Bayesian Networks. Bayesian Networks. Today we ll introduce Bayesian Networks.

Axioms of Probability? Notation. Bayesian Networks. Bayesian Networks. Today we ll introduce Bayesian Networks. Bayesian Networks Today we ll introduce Bayesian Networks. This material is covered in chapters 13 and 14. Chapter 13 gives basic background on probability and Chapter 14 talks about Bayesian Networks.

More information

Lecture 8: Bayesian Networks

Lecture 8: Bayesian Networks Lecture 8: Bayesian Networks Bayesian Networks Inference in Bayesian Networks COMP-652 and ECSE 608, Lecture 8 - January 31, 2017 1 Bayes nets P(E) E=1 E=0 0.005 0.995 E B P(B) B=1 B=0 0.01 0.99 E=0 E=1

More information

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010

Hidden Markov Models. Aarti Singh Slides courtesy: Eric Xing. Machine Learning / Nov 8, 2010 Hidden Markov Models Aarti Singh Slides courtesy: Eric Xing Machine Learning 10-701/15-781 Nov 8, 2010 i.i.d to sequential data So far we assumed independent, identically distributed data Sequential data

More information

Another look at Bayesian. inference

Another look at Bayesian. inference Another look at Bayesian A general scenario: - Query variables: X inference - Evidence (observed) variables and their values: E = e - Unobserved variables: Y Inference problem: answer questions about the

More information

Sequential Supervised Learning

Sequential Supervised Learning Sequential Supervised Learning Many Application Problems Require Sequential Learning Part-of of-speech Tagging Information Extraction from the Web Text-to to-speech Mapping Part-of of-speech Tagging Given

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artificial Intelligence Bayesian Networks Stephan Dreiseitl FH Hagenberg Software Engineering & Interactive Media Stephan Dreiseitl (Hagenberg/SE/IM) Lecture 11: Bayesian Networks Artificial Intelligence

More information

Informatics 2D Reasoning and Agents Semester 2,

Informatics 2D Reasoning and Agents Semester 2, Informatics 2D Reasoning and Agents Semester 2, 2017 2018 Alex Lascarides alex@inf.ed.ac.uk Lecture 23 Probabilistic Reasoning with Bayesian Networks 15th March 2018 Informatics UoE Informatics 2D 1 Where

More information

Chapter 16. Structured Probabilistic Models for Deep Learning

Chapter 16. Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 1 Chapter 16 Structured Probabilistic Models for Deep Learning Peng et al.: Deep Learning and Practice 2 Structured Probabilistic Models way of using graphs to describe

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Directed Graphical Models. William W. Cohen Machine Learning

Directed Graphical Models. William W. Cohen Machine Learning Directed Graphical Models William W. Cohen Machine Learning 10-601 MOTIVATION FOR GRAPHICAL MODELS Recap: A paradox of induction A black crow seems to support the hypothesis all crows are black. A pink

More information

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing

Hidden Markov Models. By Parisa Abedi. Slides courtesy: Eric Xing Hidden Markov Models By Parisa Abedi Slides courtesy: Eric Xing i.i.d to sequential data So far we assumed independent, identically distributed data Sequential (non i.i.d.) data Time-series data E.g. Speech

More information

Objectives. Probabilistic Reasoning Systems. Outline. Independence. Conditional independence. Conditional independence II.

Objectives. Probabilistic Reasoning Systems. Outline. Independence. Conditional independence. Conditional independence II. Copyright Richard J. Povinelli rev 1.0, 10/1//2001 Page 1 Probabilistic Reasoning Systems Dr. Richard J. Povinelli Objectives You should be able to apply belief networks to model a problem with uncertainty.

More information

Introduction to Artificial Intelligence. Unit # 11

Introduction to Artificial Intelligence. Unit # 11 Introduction to Artificial Intelligence Unit # 11 1 Course Outline Overview of Artificial Intelligence State Space Representation Search Techniques Machine Learning Logic Probabilistic Reasoning/Bayesian

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Artificial Intelligence Bayes Nets: Independence

Artificial Intelligence Bayes Nets: Independence Artificial Intelligence Bayes Nets: Independence Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter

More information

Probabilistic Reasoning Systems

Probabilistic Reasoning Systems Probabilistic Reasoning Systems Dr. Richard J. Povinelli Copyright Richard J. Povinelli rev 1.0, 10/7/2001 Page 1 Objectives You should be able to apply belief networks to model a problem with uncertainty.

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Learning Bayesian Networks (part 1) Goals for the lecture

Learning Bayesian Networks (part 1) Goals for the lecture Learning Bayesian Networks (part 1) Mark Craven and David Page Computer Scices 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some ohe slides in these lectures have been adapted/borrowed from materials

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets: Independence Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

A brief introduction to Conditional Random Fields

A brief introduction to Conditional Random Fields A brief introduction to Conditional Random Fields Mark Johnson Macquarie University April, 2005, updated October 2010 1 Talk outline Graphical models Maximum likelihood and maximum conditional likelihood

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

What s an HMM? Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) Hidden Markov Models (HMMs) for Information Extraction

What s an HMM? Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) Hidden Markov Models (HMMs) for Information Extraction Hidden Markov Models (HMMs) for Information Extraction Daniel S. Weld CSE 454 Extraction with Finite State Machines e.g. Hidden Markov Models (HMMs) standard sequence model in genomics, speech, NLP, What

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 8 Feb. 12, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 8 Feb. 12, 2018 1 10-601 Introduction

More information

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic CS 188: Artificial Intelligence Fall 2008 Lecture 16: Bayes Nets III 10/23/2008 Announcements Midterms graded, up on glookup, back Tuesday W4 also graded, back in sections / box Past homeworks in return

More information

Machine Learning for Data Science (CS4786) Lecture 19

Machine Learning for Data Science (CS4786) Lecture 19 Machine Learning for Data Science (CS4786) Lecture 19 Hidden Markov Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2017fa/ Quiz Quiz Two variables can be marginally independent but not

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Bayesian Networks. Machine Learning, Fall Slides based on material from the Russell and Norvig AI Book, Ch. 14

Bayesian Networks. Machine Learning, Fall Slides based on material from the Russell and Norvig AI Book, Ch. 14 Bayesian Networks Machine Learning, Fall 2010 Slides based on material from the Russell and Norvig AI Book, Ch. 14 1 Administrativia Bayesian networks The inference problem: given a BN, how to make predictions

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 4 Learning Bayesian Networks CS/CNS/EE 155 Andreas Krause Announcements Another TA: Hongchao Zhou Please fill out the questionnaire about recitations Homework 1 out.

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Graphical Models Adrian Weller MLSALT4 Lecture Feb 26, 2016 With thanks to David Sontag (NYU) and Tony Jebara (Columbia) for use of many slides and illustrations For more information,

More information

PROBABILISTIC REASONING SYSTEMS

PROBABILISTIC REASONING SYSTEMS PROBABILISTIC REASONING SYSTEMS In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory. Outline Knowledge in uncertain

More information

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018

Logistic Regression Introduction to Machine Learning. Matt Gormley Lecture 9 Sep. 26, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Logistic Regression Matt Gormley Lecture 9 Sep. 26, 2018 1 Reminders Homework 3:

More information

Probabilistic Graphical Models: Representation and Inference

Probabilistic Graphical Models: Representation and Inference Probabilistic Graphical Models: Representation and Inference Aaron C. Courville Université de Montréal Note: Material for the slides is taken directly from a presentation prepared by Andrew Moore 1 Overview

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari

Deep Learning Srihari. Deep Belief Nets. Sargur N. Srihari Deep Belief Nets Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines for continuous

More information

CS Lecture 4. Markov Random Fields

CS Lecture 4. Markov Random Fields CS 6347 Lecture 4 Markov Random Fields Recap Announcements First homework is available on elearning Reminder: Office hours Tuesday from 10am-11am Last Time Bayesian networks Today Markov random fields

More information

Need for Sampling in Machine Learning. Sargur Srihari

Need for Sampling in Machine Learning. Sargur Srihari Need for Sampling in Machine Learning Sargur srihari@cedar.buffalo.edu 1 Rationale for Sampling 1. ML methods model data with probability distributions E.g., p(x,y; θ) 2. Models are used to answer queries,

More information

Bayes Nets III: Inference

Bayes Nets III: Inference 1 Hal Daumé III (me@hal3.name) Bayes Nets III: Inference Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 10 Apr 2012 Many slides courtesy

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Markov Random Fields: Representation Conditional Random Fields Log-Linear Models Readings: KF

More information