Appendix A: Acronyms of Techniques Related to Surface Science

Size: px
Start display at page:

Download "Appendix A: Acronyms of Techniques Related to Surface Science"

Transcription

1 Appendix A: Acronyms of Techniques Related to Surface Science Acronym AEAPS AES AMEFS APS APAM ARAES ARNPD ARPEFS ARPES ARSES ARUPS ARXPD ARXPS PD DAPS EAPFS EDAX EELS EID ELEED ELNES ELS Meaning Auger-Electron Appearance-Potential Spectroscopy Auger-Electron Spectroscopy Auger-Monitored Extended Fine Structure Appearance-Potential Spectroscopy Atom-Probe Field-Ion Microscopy Angle-Resolved Auger-Electron Spectroscopy Angle-Resolved Normal Photoelectron Diffraction Angle-Resolved Photoelectron Fine Structure Angle-Resolved Photoelectron Spectroscopy Angle-Resolved Secondary-Electron Spectroscopy Angle-Resolved Ultraviolet-Photoelectron Spectroscopy Angle-Resolved X-Ray Photoelectron Diffraction Angle-Resolved X-Ray Photoelectron Spectroscopy ontact-potential Difference (work-function change) Disappearance-Potential Spectroscopy Extended Appearance-Potential Fine Structure Energy Dispersive X-Ray Analysis Electron Energy-Loss Spectroscopy Electron-Impact Desorption Elastic Low-Energy Electron Diffraction Electron-Energy Loss Near-Edge Structure Energy-Loss Spectroscopy

2 526 Appendix A: Acronyms of Techniques Related to Surface Science EM ESA ESD ESDIAD ESR EXAFS EXELFS FEED FEM FIM HEED HEIS HREELS IISS lets lid ILEED INS IPE lras ISS LEED LEIS LEPD LID LIF MDS MEED MEIS MPI Electron Microscopy Electron Spectroscopy for hemical Analysis Electron-Stimulated Desorption Electron-Stimulated Desorption Ion Angular Distributions Electron-Spin Resonance Extended X-Ray-Absorption Fine Structure Extended Electron-Energy-Loss Fine Structure Field-Emission Energy Distribution Field-Emission Microscopy Field-Ion Microscopy High-Energy Electron Diffraction High-Energy Ion Scattering High-Resolution Electron Energy-Loss Spectroscopy Impact-ollision lon-scattering Spectroscopy Inelastic Electron Tunneling Spectroscopy lon-impact Desorption Inelastic Low-Energy Electron Diffraction lon-neutralization Spectroscopy Inverse Photoemission Infrared Reflection-Absorption Spectroscopy lon-scattering Spectroscopy Low-Energy Electron Diffraction Low-Energy Ion Scattering Low-Energy Positron Diffraction Laser-Induced Desorption Laser-Induced Fluorescence Metastable Deexcitation Spectroscopy Medium-Energy Electron Diffraction Medium-Energy Ion Scattering Multi-Photon Ionization

3 Appendix A: Acronyms of Techniques Related to Surface Science 527 NEXAFS NIS NMA NMR NPD OPD PED PES PhD PIES PLEED PSD PSDIAD RBS RHEED SAES SEE SEELFS SEM SERS SEXAFS SIMS SPI SPIES SPLEED SSIMS STEM STM SXAPS SXPS Near-Edge X-Ray-Absorption Fine Structure Neutron Inelastic Scattering Nuclear Microanalysis Nuclear Magnetic Resonance Normal.Photoelectron Diffraction Off-Normal Photoelectron Diffraction Photoelectron Diffraction Photoelectron Spectroscopy Photoelectron Diffraction Penning Ionization Electron Spectroscopy Polarized Low-Energy Electron Diffraction Photon-Stirn ulated Desorption Photon-Stimulated Desorption Ion Angular Distributions Rutherford Backscattering Spectroscopy Reflection High-Energy Electron Diffraction Scanning Auger-Electron Spectroscopy Secondary-Electron Emission Surface" Extended-Energy-Loss Fine Structure Scanning Electron Microscopy Surface-Enhanced Raman Scattering Surface Extended X-Ray-Absorption Fine Structure Secondary-Ion Mass Spectroscopy Surface Penning Ionization Surface Penning Ionization Electron Spectroscopy Spin-Polarized Low-Energy Electron Diffraction Static Secondary-Ion Mass Spectroscopy Scanning Transmission Electron Microscopy Scanning Tunneling Microscopy Soft X-Ray Appearance-Potential Spectroscopy Soft X-Ray Photoelectron Spectroscopy

4 528 TDMS TDS TED TEM THEED TPD TPR UPS VLEED XAES XANES XPD XPS XRD Appendix A: Acronyms of Techniques Related to Surface Science Thermal-Desorption Mass Spectroscopy Thermal-Desorption Spectroscopy Transmission Electron Diffraction Transmission Electron Microscopy Transmission High-Energy Electron Diffraction Temperature-Programmed Desorption Temperature-Programmed Reaction Ultraviolet-Photoelectron Spectroscopy Very-Low-Energy Electron Diffraction X-Ray-Stimulated Auger-Electron Spectroscopy X-Ray-Absorption Near-Edge Structure X-Ray Photoelectron Diffraction X-Ray Photoelectron Spectroscopy X-Ray Diffraction

5 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED Two of the geometrical parameters that are necessary to specify a LEED I-V curve are the incidence angle 9 (the angle of the incident beam with respect to the surface normal) and the azimuthal angle <p (the angle between an arbitrarily chosen axis in the surface plane and the projection of the incident beam direction on the surface). These angles can be obtained from photographs of the LEED pattern, as described in Sect This inyolves a computation for which a program is presented in this Appendix. The program reproduced below can be run without any additional auxiliary subroutines. It is written in standard Fortran language. An example of the input data can be found following the program listing. It should be noted that a pair of initially guessed values for 9 and <p is needed for the input data, and the solutions are weakly dependent on these initially guessed values. The output data can be found following the listing of the input data. The first part of the output data is a more detailed listing of the input data. The second part is the results (for brevity, a middle section of the second part has been omitted). Spot combinations for which 09 or o<p exceeds the allowable maximum errors are omitted in the calculation for the averaged values of 9 and <p, see Sect The regular and weighted averages (Sect ) are computed and listed at the end. Variables whose values the user may wish to change are (see the first group of executable statements) ITUM = allowed number of iterations, TUM = limit of accuracy, TERR = the maximum allowable error in determining the value of 9 due to the uncertainty in measuring the position of the spot, PERR = the maximum allowable error in determining the value of <p due to the uncertainty in measuring the position of the spot.

6 530 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED PROGRAM ANGLE(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) PROGRAM ANGLE PURPOSE= TO USE LEED PHOTOGRAPH ANGLE MEASUREMENTS TO DETERMINE THE ANGLE OF INIDENE OF THE ELETRON BEAM DIMENSION HEAD(20),Al(2),A2(2),Bl(2),B2(2),GX(2),GY(2),ANG(2) DIMENSION BH(15),BK(15),EPS(15),THETA(105),PHI(105),ERAn(15) DIMENSION X(2),D(2),F(2),P(2,2) DIMENSION ERl(5),ER2(5) DIMENSION DTH(105),DPH(105),ETH(4),EPH(4) DIMENSION NOMIT(50,2) OMMON AK,GX,GY,ANG DATA ER1/0.0,1.0,-1.0,-1.0,1.0/ DATA ER2/0.0,-1.0,1.0,-1.0,1.0/ FORMAT STATEMENTS 101 FORMAT(20A4) 102 FORMAT(2FB.3) 104 FORMAT(I3) 105 FORMAT(2F5.l,F10.l) 111 FORMAT(BOX,*IT=*,I2,5X,*F =*,2EI0.2,5X,*D =*,2F6.2) 112 FORMAT(20X,I3,2I10,2F15.2) 113 FORMAT(lHl,10X,20A4) 114 FORMAT(/,10X,*A1 =*,2FB.4,/,10X,*A2 =*,2FB.4) 115 FORMAT(/,10X,*BEAM ENERGY =*,F6.1,* EV*,/,10X, 1 *INITIAL ANGLE GUESS= THETA =*,F6.1,/,31X,*PHI -*,F6.1) 116 FORMAT(//,10X,*INPUT DATA, I*,BX,*BH*,BX,*BK*,9X,*EPS*,/) 117 FORMAT(24X,I2,2FI0.l,F12.1) lib FORMAT(//,10X,*RESULTS*,/,20X,*IND*,5X,*SPOTl*,5X, 1 *SPOT2*,10X,*THETA*,11X,*PHI*,/) 119 FORMAT(26X,2FI0.0,F12.2,F15.2) 120 FORMAT(4BX,2F15.3) 121 FORMAT(/,10X,*REGULAR AVERAGE*,5X,*THETA =*,F6.2,* +/-*,F6.3, 1 l04,*phi =*,F7.2,* +/-*,F6.3) 122 FORMAT(/,10X,*WEIGHTED AVERAGE*,4X,*THETA =*,F6.2,* +/-*,F6.3, 1 10X,*PHI =*,F7.2,* +/-*,F6.3) 123 FORMAT(//,10X,*SUMMARY*,/,10X,20A4,/,10X,*NUMBER OF SPOTS -*, 1 I3,/,10X,*NUMBER OF OMBS. =*,13) 124 FORMAT(2X,14H**** OMIT ****) 125 FORMAT(10X,*NUMBER OF OMITS =*,I3,/,12X,*OMITTED OMBS. -*, 1 2I3,49(/,2BX,2I3» ONSTANTS RAn=I E-2 PI= ONS= B ITLIM=10 TLIM=1.0E-6 TLIM=1.0E-5 TERR=2.5 PERR=4.0 IF(ERl(2).GT.l.l) TERR=4.0 IF(ER2(3).GT.l.l) PERR=6.0 READ EVERYTHING HEAD = HEADING ARD USED TO LABEL THE DATA AND OUTPUT (20A4) Al,A2 = TWO-DIMENSIONAL SURFAE UNIT ELL VETORS IN ANGSTROMS FORMAT OF EAH IS (2FB.3)

7 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED 531 ENERG ENERGY OF THE INIDENT ELETRON RELATIVE TO VAUUM IN ELETRON VOLTS (FB.3) THl,PHl - INITIAL GUESS OF INIDENT ANGLE THETA AND PHI IN DEGREES GUESS SHOULD BE FAIRLY LOSE (2FB.3) NDAT - NUMBER OF DATA POINTS READ (I3) BH(I),BK(I) - (H,K) VALUES FOR THE I-TH DATA POINT EPS(I) - ANGLE EPSILON IN DEGREES FOR I-TH DATA POINT FORMAT FOR DATA POINT IS (2F5.l,FlO.l) READ(5,101) HEAD READ(5,102) Al READ(5,102) A2 READ(5,102) ENERG READ(5,102) THl,PHl READ(5,104) NDAT WRITE(6,113) HEAD WRITE(6,114) Al,A2 WRITE(6,115) ENERG,THl,PHl WRITE ( 6,116) I-l,NDAT READ(5,105) BH(I),BK(I),EPS(I) WRITE(6,117) I,BH(I),BK(I),EPS(I) 10 ERAD(I)-EPS(I)*RAD WRITE ( 6,118) ALULATE REIPROAL LATTIE VETORS AND K VETOR MAGNITUDE TVA=ABS(Al(1)*A2(2)-Al(2)*A2(1» ATV-2.0*PI/TVA Bl(l)- A2(2)*ATV Bl(2)--A2(1)*ATV B2(2)- Al(l)*ATV B2(1)--Al(2)*ATV AK-ONS * SQRT (ENERG) LOOPOVER OMBINATlON OF TWO SPOTS IND-O NER=O IL-NDAT-l I-I,lL JS-I+l J=JS,NDAT IND-IND+l LOOP ON ERRORS IN ANG IERR=1,5 ASSIGN ANGLE FROM PHOTO AND DETERMINE REIPROAL VETORS X(l)=THl*RAD X(2)=PHl*RAD ANG(l)=ERAD(I) + ERl(IERR)*RAD GX(1)=BH(I)*Bl(1)+BK(I)*B2(1) GY(1)=BH(I)*Bl(2)+BK(I)*B2(2) ANG(2)=ERAD(J) + ER2(IERR)*RAD GX(2)=BH(J)*Bl(1)+BK(J)*B2(1) GY(2)-BH(J)*Bl(2)+BK(J)*B2(2)

8 532 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED NEWTONS METHOD LOOP IT=O GO TO IT=IT+l IF(ABS(D(1».GT.0.17) D(1)=SIGN(0.17,D(1» IF(ABS(D(2».GT.0.17) D(2)=SIGN(0.17,D(2» X(l)=X(l)+D(l) X(2)=X(2)+D(2) IF(IT.GT.ITLIM) GO TO ALL FN(X,F,P) PJB=P(1,1)*P(2,2)-P(1,2)*P(2,1) IF(PJB.EQ.O.O) GO TO 30 D(1)=(P(1,2)*F(2)-P(2,2)*F(1»/PJB D(2)=(P(2,1)*F(1)-P(1,1)*F(2»/PJB TST-D(I)**2+D(2)**2 IF(TST.LT.TLIM) GO TO 35 GO TO D1=D(1)/RAD D2-D(2)/RAD WRITE(6,111) IT,F,D1,D2 IND=IND-l NER=NER+1 NOMIT(NER,l)=I NOMIT(NER,2)=J WRITE(6,124) GO TO D(1)=1.0E-2 D(2)--1.0E-2 GO TO ONTINUE STORE RESULTS TH=X(l)/RAD PH=X(2)/RAD IF(IERR.NE.1) GO TO 45 THETA(IND)=TH PHI(IND)=PH WRITE(6,112) IND,I,J,TH,PH GO TO WRITE(6,119) ER1(IERR),ER2(IERR),TH,PH IEX=IERR-1 ETH(IEX)=ABS(TH-THETA(IND» EPH(IEX)=ABS(PH-PHI(IND» 50 ONTINUE DTH(IND)=AMAX1(ETH(1),ETH(2),ETH(3),ETH(4),0.1) DPH(IND)=AMAX1(EPH(1),EPH(2),EPH(3),EPH(4),O.1) WRITE(6,120) DTH(IND),DPH(IND) IF(DTH(IND).GT.TERR) GO TO 52 IF(DPH(IND).GT.PERR) GO TO 52 GO TO ONTINUE IND=IND-1 NER=NER+1 NOMIT(NER,l)=I NOMIT(NER,2)=J WRITE(6,124) 55 ONTINUE

9 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED 533 ALULATE AVERAGES AND STANDARD DEVIATIONS TAVE=O.O PAVE=O.O TWAV=O.O PWAV=O.O TSIG=O.O PSIG=O.O TWT=O.O PWT=O.O DO 60 I=l,IND TAVE=TAVP.+THETA(I) W1=DTH(I)**2 TWT-TWT+ 1. O/W1 TWAV-TWAV+THETA(I)/W1 PAVE-PAVE+PHI(I) W2=DPH(I)**2 PWT=PWT+l. O/W2 PWAV-PWAV+PHI(I)/W2 60 ONTINUE TAVE=TAVE/FLOAT(IND) PAVE=PAVE/FLOAT(IND) TWAV=TWAV/TWT PWAV-PWAV/PWT DO 65 I=l,IND TSIG=TSIG+(THETA(I)-TAVE) **2 PSIG=PSIG+(PHI(I)-PAVE) **2 65 ONTINUE TSIG=SQRT(TSIG/FLOAT(IND» PSIG=SQRT(PSIG/FLOAT(IND» TWIG=SQRT(l.O/TWT) PWIG=SQRT(l.O/PWT) WRITE(6,123) HEAD,NDAT,IND WRITE(6,125) NER,«NOMIT(I,1),NOMIT(I,2»,I=1,NER) WRITE(6,121) TAVE,TSIG,PAVE,PSIG WRITE(6,122) TWAV,TWIG,PWAV,PWIG STOP END SUBROUTINE FN(X,F,P) THIS SUBROUTINE EVALUATES THE FUNTION F(THETA,PHI,BH,BK) FOR TWO HOIES OF THE INDEX PAIR (BH,BK). ALSO OBTAINED AND STORED IN P ARE THE PARTIAL DERIVATIVES OF F WITH RESPET OT THETA AND PHI. REAL KIX,KIY,KFX,KFY,KDUM,KFZ,KLFX,KLFY DIMENSION X(2),F(2),P(2,2),GX(2),GY(2),EPS(2) OMMON AK,GX,GY,EPS ST=SIN(X(l» SP=SIN(X(2» T=OS(X(l» P=OS(X(2»

10 534 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED INITIAL K IN RYSTAL FRAME KIX-ST*P*AK KIY=ST*SP*AK DERIVATIVES OF FINAL K IN RYSTAL FRAME DKFXT -T*P*AK DKFXP--ST*SP*AK DKFYT- T*SP*AK DKFYP- ST*P*AK LOOP FOR THE TWO EVALUATIONS OF THE SAME EQUATION DO 50 1=1,2 FINAL K IN RYSTAL FRAME KFX-KIX + GX(I) KFY=KIY + GY(I) KDUM-AK**2 - KFX**2 - KFY**2 KFZ=-SQRT(ABS(KDUM» DKFZT - -(KFX*DKFXT + KFY*DKFYT)/KFZ DKFZP = -(KFX*DKFXP + KFY*DKFYP)!KFZ FINAL K AND DERIVATIVES IN LAB FRAME KLFX=-SP*KFX+P*KFY KLFY=-T*P*KFX-T*SP*KFY+ST*KFZ DKLFXT=-SP*DKFXT+P*DKFYT DKLFXP=-SP*DKFXP+P*DKFYP-P'*KFX-SP*KFY DKLFYT=ST*P*KFX+ST*SP*KFY+T*KFZ 1 -T*P*DKFXT-T*SP*DKFYT+ST*DKFZT DKLFYP=T*SP*KFX-T*P*KFY 1 -T*P*DKFXP-T*SP*DKFYP+ST*DKFZP ASSIGN FUNTION AND DERIVATIVES TEP=TAN(EPS(I» F(I)=KLFX+TEP*KLFY P(I,l)=DKLFXT+TEP*DKLFYT P(I,2)=DKLFXP+TEP*DKLFYP 50 ONTINUE RETURN END

11 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED 535 Input data: IRIDIUM(lll) SPOT POSITIONS Al A2 ENERG TH1,PH1 NDAT Output data: IRIDIUM(lll) SPOT POSITIONS Al A BEAM ENERGY EV INITIAL ANGLE GUESS= THETA PHI INPUT DATA, I BH BK O O O O EPS O RESULTS IND SPOT1 SPOT2 THETA PHI

12 536 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED **** OMIT **** **** OMIT **** **** OMIT **** **** OMIT **** **** OMIT **** I I. -I I. I I. -I I I I. I I I I I I I I I I I I I I I. -I I I I. -I I. I I :66 I. I

13 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED 537 **** OMIT **** '1: l l l l l l l l AO l l

14 538 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED **** OMIT **** l. -l l. l l l l. l l. -l l. l l. -l l. l l. -l l. l l l. l l l. l l. -l l. l l. -l l. l l. -l l. l l. -l l l. -l l. l l. -l l. l l. -l l. l l. -l l. l ~ l. -l l. l l. -l l. l l. -l l. l l l. l

15 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED : I I I

16 540 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED **** OMIT **** **** OMIT *'*** l. -l l l l l l l l l l l l l l l l l l l. l l

17 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED 541 **** OMIT **** **** OMIT **** **** OMIT **** **** OMIT **** **** OMIT **** I I I I I I I I I I I b I I I I I

18 542 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED **** OMIT **** l :'

19 Appendix B: A omputer Program to Determine the Angle of Incidence in LEED 543 SUMMARY IRIDIUM(III) SPOT POSITIONS NUMBER OF SPOTS - 13 NUMBER OF OMBS NUMBER OF OMITS - 15 OMITTED OMBS III REGULAR AVERAGE WEIGHTED AVERAGE THETA = /-.553 THETA = /-.058 PHI /- PHI /-

20 List of Major Symbols lebsch-gordan or Gaunt coefficients -*-* al,a2 bj,b2 b ~, b ; l(l'm',l"m") E f F g hfl),h}2) h = 21tn h I I Substrate basis vectors Reciprocal substrate basis vectors Superlattice basis vectors Reciprocal superlattice basis vectors lebsch-gordan or Gaunt coefficients Kinetic energy in vacuum Atomic scattering amplitude Fourier transform Green's function Two-dimensional reciprocal lattice vector Hankel functions of the 1 st and 2nd kinds Planck's constant Miller index, as in (hk) beam or (hkl) plane Intensity Unit matrix Imaginary unit:.j=t Miller-Bravais index, as in (hkil) JI J Bessel function Adatom-adatom interaction Boltzmann constant Miller index, see h Wave number k = Ikl Electron wavevector

21 546 List of Major Symbols ki... fo-f; i(s... fout = ki k; [ [ [max m m,m M M = [mll ml21 m21 m22 M*... [ mil mi21 m21 m22 Wave vector incident from vacuum Wave vecter emergent into vacuum Wave vector of beam g± Miller index, see h Angular momentum utoff angular momentum in partial-wave expansion Mass of electron Order parameter Mass of atom or molecule Exponent in Debye-Waller factor Matrix notation for superlattices Matrix notation for reciprocal superlattices Layer diffraction matrix element Linear momentum Patterson function Legendre polynomials Plane-wave propagators General position vector Layer reflection matrix element Momentum transfer S t ±± g'g Structure factor Layer transmission matrix element Reduced temperature t-matrix for single atom t-matrix element for single atom Temperature ritical temperature

22 List of Major Symbols 547 z a v t cp t-matrix for a layer consisting of several Bravais-lattice planes of atoms Inner potential or muffin-tin zero level (>0) oordinates parallel (II) to the surface Spherical harmonic function oordinate perpendicular (.L) to the surface (pointing into the surface) Layer-to-Iayer electron attenuation coefficient ritical exponent Island size Phase shift Polar angle of incidence or emergence Fractional surface coverage Debye temperature Effective Debye temperature Frequency ritical exponent t-matrix for a Bravais-lattice plane of atoms Azimuthal angle of incidence or emergence Work function i-th neighbor adatom-adatom interaction energy (i = 1,2,... )

23 References hapter J. Davisson,. H. Kunsman: Science 54,522 (1921) 1.2 H. E. Farnsworth: Phys. Rev. 20, 358 (1922); Proc. Nat. Acad. Sci. U.S.A. 8, 251 (1922) 1.3 H. E. Farnsworth: Phys. Rev. 25, 41 (1925) 1.4 H. E. Farnsworth: Phys. Rev. 27, 413 (1926); ibid. 31, 405,414,419 (1928) 1.5 L. de Broglie:. R. Acad. Sci. 177, 517,548,630 (1923); These de doctorat, Masson (Paris) (1924); Phil. os. Mag. 47, 446 (1924); Ann. Phys. (Paris) 3,22 (1925) 1.6 M. von Laue: Kon. Bay. Ak. 1912, p W. L. Bragg: Proc. ambridge Philos. Soc. 17,43 (1913) 1.8 R. K. Gehren1?eck: Phys. Today 31,34 (1978); in Fifty Years ofelectron Diffraction, ed. by P. Goodman (D. Reidel, Dordrecht 1981) p J. Davisson, L. H. Germer: Nature (London) 119, 558 (1927) J. Davisson, L. H. Germer: Phys. Rev. 29, 908 (1927) J. Davisson, L. H. Germer: Phys. Rev. 30, 705 (1927) 1.12 G. P. Thompson, A. Reid: Nature (London) 119,890 (1927) 1.13 o. Stem: Naturwissenschaften 17, 391 (1929) I. Estermann, O. Stem: Z. Phys. 61, 95 (1930) I. Estermann, R. Frisch, O. Stem: Z. Phys. 73, 348 (1931) 1.14 T. H. Johnson: Phys. Rev. 35, 1299 (1930); ibid. 37, 847 (1931) 1.15 H. Halban, P. Preiswerk:. R. Acad. Sci. 203, 73 (1936) D. P. Mitchell, P. N. Powers: Phys. Rev. 50, 486 (1936) J. Davisson, L. H. Germer: Proc. Nat. Acad. Sci. U.S.A. 14, 317 (1928); ibid. 14, 619 (1928)

24 550 References G. Darwin: Philos. Mag. 27, 315,675 (1914) 1.18 H. Bethe: Naturwissenschaften 16, 333 (1928) 1.19 H. Bethe: Naturwissenschaften 15, 786 (1927); in Fifty Years of Electron Diffraction, ed. by P. Goodman (D. Reidel, Dordrecht 1981) p H. Bethe: Ann. Phys. (Leipzig) 87, 55 (1928) 1.21 P. P. Ewald: Ann. Phys. (Leipzig) 54,519 (1917) 1.22 P. M. Morse: Phys. Rev. 35, 1310 (1930) 1.23 H. Mark. R. Wierl: Naturwissenschaften 18, 778 (1930) 1.24 This development is described in various articles in Fifty Years of Electron Diffraction, ed. by P. Goodman (D. Reidel, Dordrecht 1981) 1.25 W. Ehrenberg: Philos. Mag 18, 878 (1934) 1.26 E. J. Scheibner, L. H. Germer,. D. Hartman: Rev. Sci. Instrum. 31, 112 (1960) 1.27 J. J. Lander, F. Unterwald, J. Morrison: Rev. Sci. Instrum. 33, 784 (1962) 1.28 R. L. Park, H. E. Farnsworth, Rev. Sci. Instrum. 35, 1592 (1964) 1.29 H. E. Farnsworth: Phys. Rev. 33, 1069 (1929); ibid. 34, 679 (1929); ibid. 36, 1799 (1930) 1.30 H. E. Farnsworth: Adv. atal. 9, 493 (1957); ibid. 15, 31 (1964) 1.31 H. E. Farnsworth: Phys. Rev. 49, 605 (1936) 1.32 H. E. Farnsworth, R. E. Schlier, T. H. George, R. M. Burger: J. Appl. Phys. 26, 252 (1955); ibid. 29, 1150 (1958) 1.33 R. E. Schlier, H. E. Farnsworth: in Semiconductor Surface Physics, ed. by H. Kingston (University of Pennsylvania Press, Philadelphia 1956) p R. E. Schlier, H. E. Farnsworth: J. hern. Phys. 30, 917 (1959) 1.35 J. J. Lander: Prog. Solid State hern. 2,26 (1965) 1.36 P. J. Estrup: in The Structure and hemistry of Solid Surfaces, ed. by G. A. Somorjai, (Wiley, New York 1969) hap R. L. Park, J. E. Houston, D. G. Schreiner: Rev. Sci. Instrum. 42, 60 (1971) 1.38 E. G. McRae:. W. aldwell: Surf. Sci. 2, 409 (1964) 1.39 E. G. McRae: J. hern. Phys. 45, 3258 (1966)

25 1.40 E. G. McRae: Surf. Sci. 11,479,492 (1968) 1.41 D. S. Boudreaux, V. Heine: Surf. Sci. 8, 426 (1967) 1.42 P. M. Marcus, D. W. Jepsen: Phys. Rev. Lett. 20, 925 (1968) References 551 P. M. Marcus, D. W. Jepsen, F. Jona: Surf. Sci. 17, 442 (1969) 1.43 J. L. Beeby: J. Phys. 1, 82 (1968) 1.44 B. W. Holland: Surf. Sci. 28, 258 (1971) B. Duke,. W. Tucker, Jr.: Surf. Sci. 15, 231 (1969); Phys. Rev. Lett. 23, 1163 (1969) 1.46 J.. Slater: Phys. Rev. 51, 840 (1937) 1.47 K. Moliere: Ann. Phys. (Leipig) 34,461 (1939) 1.48 H. Yoshioka: J. Phys. Soc. Jpn. 12,618 (1957) 1.49 K. Hirabayashi: J. Phys. Soc. Jpn. 24, 846 (1968) 1.50 E. R. Jones, J. R. McKinney, M. B. Webb: Phys. Rev. 151, 476 (1966) B. Duke, J. R. Anderson,. W. Tucker, Jr.: Surf. Sci. 19, 117 (1970) 1.52 K. Kambe: Z. Naturforsch. 22a, 322,422 (1967); ibid. 23a, 1280 (1968) B. Duke, G."E. Laramore: Phys. Rev. B 2, 4765,4783 (1970) B. Duke, G. E. Laramore, V. Metze: Solid State ommun. 8, 1189 (1970) 1.55 J. B. Pendry: J. Phys. 2, 1215,2273,2283 (1969); J. Phys. 4, 2501,2514 (1971) 1.56 J. B. Pendry: J. Phys. 4, 3095 (1971) 1.57 J. B. Pendry: Low-Energy Electron Diffraction (Academic, London, 1974) 1.58 M. A. Van Hove, J. B. Pendry: J. Phys. 8, 1362 (1975) 1.59 S. Y. Tong, T. N. Rhodin: Phys. Rev. Lett. 26, 711 (1971) 1.60 S. Y. Tong: Prog. Surf. Sci. 7, 1 (1975) 1.61 R. H. Tait, S. Y. Tong, T. N. Rhodin: Phys. Rev. Lett. 28, 553 (1972) S. Y. Tong, T. N. Rhodin, R. H. Tait: Phys. Rev. B 8, 421,430 (1973); Surf. Sci. 34, 457 (1973)

26 552 References 1.62 D. W. Jepsen, P. M. Marcus, F. Jona: Phys. Rev. Letters 26, 1365 (1971); Phys. Rev. B 5, 3933 (1972) 1.63 V. Hoffstein, D. S. Boudreaux: Phys. Rev. Lett. 25, 512 (1970) 1.64 F. Hoffmann, H. P. Smith, Jr.: Phys. Rev. Lett. 19, 1472 (1967); Phys. Rev. B 1, 2811 (1970) 1.65 R. O. Jones, J. A. Strozier, Jr.: Phys. Rev. Lett. 22, 1186 (1969) J. A. Strozier, R. O. Jones: Phys. Rev. Lett. 25, 516 (1970); Phys. Rev. B 3, 3228 (1971) 1.66 K. Hirabayashi, Y. Takeishi: Surf. Sci. 4, 150 (1966) K. Hirabayashi: Surf. Sci. 28, 621 (1971) 1.67 S. Andersson: Surf. Sci. 18, 325 (1969); ibid. 19, 21 (1970) 1.68 H. B. Lyon, G. A. Somorjai: J. hem. Phys. 44, 3707 (1966) R. M. Goodman, H. H. Farrell, G. A. Somorjai: J. hem. Phys. 48, 1046 (1968) 1.69 M. Lagally, T.. Ngoc, M. B. Webb: Phys. Rev. Lett. 26, 1557 (1971) 1.70 R. S. Zimmer, B. W. Holland: J. Phys. 8,2395 (1975) 1.71 S. Y. Tong, M. A. Van Hove: Phys. Rev. B 16, 1459 (1977) 1.72 M. A. Van Hove, S. Y. Tong: Surface rystallography by LEED, Springer Ser. hem. Phys., Vol. 2 (Springer, Berlin, Heidelberg 1979) N. Masud, J. B. Pendry: J. Phys. 9, 1833 (1976) N. Masud,. G. Kinniburgh, J. B. Pendry: J. Phys. 10, 1 (1977) 1.74 G. A. Somorjai, M. A. Van Hove: Adsorbed Monolayers on Solid Surfaces, Structure and Bonding, Vol. 38 (Springer, Berlin, Heidelberg 1979) hapter 2 R. J. Koestner, M. A. Van Hove, G. A. Somorjai: hemtec 13,376 (1983); J. Phys. hem. 87, 203 (1983) 2.1 M. A. Van Hove, S. Y. Tong, Surface rystallography by LEED, Springer Ser. hem. Phys., Vol. 2 (Springer, Berlin, Heidelberg 1979) M. han, W. H. Weinberg: J. hem. Phys. 71, 2788 (1979). [E.g., the Ir(111)-(2x2)O overlayer structure requires off-normal

27 References 553 incident beam data to distinguish between a p(2x2) structure or three independent domains of (1x2) structures rotated 120 with respect to 0 one another J. Larscheid, J. Kirschner: Rev. Sci. Instrum. 49, 1486 (1978) 2.4 M. K. Debe: Rev. Sci. Instrum. 47, 39 (1976) 2.5 R. hapman, D. L. Blair: Rev. Sci. Instrum. 48, 939 (1977) 2.6 R.. Unwin, K. Hom, P. Geng: private communication. 2.7 R. R. Wilson: Rev. Sci. Instrum. 12, 91 (1941) 2.8 P. Feulner, D. Menzel: private communication J. Davisson, L. H. Germer: Phys. Rev. 30, 705 (1927) 2.10 H. E. Farnsworth: Phys. Rev. 34, 679 (1929) 2.11 F. Jona: Discuss. Faraday Soc. 60, 210 (1975) 2.12 s. P. Weeks,. D. Ehrlich, E. W. Plummer: Rev. Sci. Instrum. 48, 190 (1977) M. han, W. H. Weinberg: J. hern. Phys. 71,3988 (1979) 2.14 P. c. Stair, T. J. Kaminska, L. L. Kesmodel, G. A. Somorjai: Phys. Rev. B 11, 623 (1975) 2.15 P. Heilmann, E. Lang, K. Heinz, K. Milller: Appl. Phys. 9, 247 (1976) 2.16 D.. Frost, K. A. R. Mitchell, F. R. Shepherd, P. R. Watson: J. Vac. Sci. Technol. 13, 1196 (1976) 2.17 T. N. Tommet, G. B. Olszewski, P. A. hadwick, S. L. Bemasek: Rev. Sci. Instrum. 50, 147 (1979) 2.18 E. Lang, P. Heilmann, K. Heinz, K. Milller: Appl. Phys. 19, 287 (1979) 2.19 P.. Stair: Rev. Sci. Instrum. 51, 132 (1980) 2.20 J. E. Houston, R. L. Park: Surface Sci. 21, 209 (1970) 2.21 R. L. Park, J. E. Houston, D. G. Schreiner: Rev. Sci. Instrum. 42, 60 (1971) 2.22 G.. Wang, M. G. Lagally: Surf. Sci. 81, 69 (1979) 2.23 D. G. Welkie, M. G. Lagally: Appl. Surf. Sci. 3, 272 (1979) 2.24 M. Henzler: in Electron Spectroscopy for Sur/ace Analysis, ed. by H. Ibach, Topics urro Phys., Vol. 4 (Springer, Berlin, Heidelberg 1977)

28 554 References 2.25 M. Henzler: Appl. Phys. 9, 11 (1976) c. S. McKee, M. W. Roberts, M. L. Williams: Adv. olloid Interface Sci. 8, 29 (1977) 2.26 R. L. Park: in The Structure and hemistry of Solid Surjace, ed. by G. A. Somorjai (Wiley, New York 1969) 2.27 J. M. Burkstrand: Rev. Sci. InstfQm. 44, 774 (1973), and private communication 2.28 G. E. Thomas, W. H. Weinberg: unpublished J. R. Noonan: private communication S. L. unningham, W. H. Weinberg: Rev. Sci. Instrum. 49, 7 (1978) 2.31 G. P. Price: Rev. Sci. Instrum. 51, 605 (1980) 2.32 A.. Sobrero, W. H. Weinberg: Rev. Sci. Instrum. 53, 1566 (1982) 2.33 H.. lark, R. Herman: Phys. Rev. 139, A860 (1965) 2.34 R. E. Allen, F. W. de Wette: Phys. Rev. 188, 1320 (1969) 2.35 G. E. Laramore,. B. Duke: Phys. Rev. B 2, 4765,4783 (1970) M. han, P. A. Thiel, J. T. Yates, Jr., W. H. Weinberg: Surf. Sci. 76,296 (1978) M. han, E. D. Williams, W. H. Weinberg: Surf. Sci. 82, L577 (1979) 2.38 D. T. Quinto, B. W. Holland, W. D. Robertson: Surf. Sci. 32, 139 (1972) 2.39 D. J. heng, R. F. Wallis,. Megerle, G. A. Somorjai: Phys. Rev. B 12, 5599 (1975) 2.40 D. Tabor, J. M. Wilson, T. J. Bastow: Surf. Sci. 26,471 (1971) 2.41 A. U. MacRae: Surf. Sci. 2, 522 (1964) 2.42 D. Tabor, J. M. Wilson: Surf. Sci. 20, 203 (1970) 2.43 R. M. Goodman, H. H. Farrell, G. A. Somorjai: J. hem. Phys. 48, 1046 (1968) 2.44 R. J. Reid: Surf. Sci. 29, 623 (1972) 2.45 P. J. Estrup: in The Structure and hemistry of Solid Surjaces, ed. by G. A. Somorjai (Wiley, New York 1969) 2.46 G. A. Somorjai, H. H. Farrell: Adv. hem. Phys. 20, 293 (1971) 2.47 H. B. Lyon, G. A. Somorjai: J. hem. Phys. 44, 3707 (1966)

29 References R. Bastasz,. A. olmenares, R. L. Smith: Surf. Sci. 67, 45 (1977) 2.49 V. S. Sundaram, W. D. Robertson: Surf. Sci. 55, 324 (1976) 2.50 W. Gopel, G. Neuenfeldt: Surf. Sci. 55,362 (1976) hapter S. Trajmar: Ace. hem. Res. 13, 14.(1980) 3.2 J. S. Schilling, M. B. Webb: Phys. Rev. B 2, 1665 (1970) 3.3 M. Henzler: Appl. Surf. Sci. 11/12,450 (1982) 3.4 J. B. Pendry: Low-Energy Electron Diffraction (Academic, London 1974) M. A. Van Hove, S. Y. Tong: Surface rystallography by LEED, Springer Ser. hem. Phys., Vol. 2 (Springer, Berlin, Heidelberg 1979) 3.5 International Tables for X-Ray rystallography (Kynoch, Birmingham, England 1952) 3.6. Kittel: Introduction to Solid State Physics, 5th ed. (Wiley, New York 1976) 3.7 E. A. Wood: Bell Syst. Tech. J. XLIII, 541 (1964); J. Appl. Phys. 35, 1306 (1964) 3.8 S. M. Davis, G. A. Somorjai: in Encyclopaedia of Materials Science and Engineering, ed. by M. D. Bever (Pergamon, New York 1982) G. A. Somorjai: hemistry in Two Dimensions: Surfaces (ornell University Press, Ithaca, NY 1981) 3.9 J. F. Nicholas: An Atlas of Models of rystal Surfaces (Gordon and Breach, New York 1965) 3.10 B. Lang, R. W. Joyner, G. A. Somorjai: Surf. Sci. 30, 454 (1972) 3.11 M. A. Van Hove, G. A. Somorjai: Surf. Sci. 92, 489 (1980) 3.12 A comprehensive list of observed LEED patterns is given in G. A. Somorjai, M. A. Van Hove: Adsorbed Monolayers on Solid Surfaces, Structure and Bonding, Vol. 38 (Springer, Berlin, Heidelberg 1979); and in D. G. astner, G. A. Somorjai: hem. Rev. 79, 233 (1979) 3.13 M. K. Debe, D. A. King: Phys. Rev. Lett. 39, 708 (1977); J. Phys. 10, L303 (1977) 3.14 D. Dahlgren, J.. Hemminger: Surf. Sci. 109, L513 (1981) 3.15 M. A. Van Hove, R. J. Koestner, P.. Stair, J. P. Biberian, L. L. Kesmodel, I. Bartos, G. A. Somorjai: Surf. Sci. 103, 189,218 (1981)

30 556 References 3.16 R. L. Park, H. H. Madden: Surf. Sci. 11, 188 (1968) 3.17 A. M. Bradshaw, F. M. Hoffmann: Surf. Sci. 72,513 (1978) 3.18 R. J. Behm, K. hristmann, G. Ertl, M. A. Van Hove, P. A. Thiel, W. H. Weinberg: Surf. Sci. 88, L59 (1979) R. J. Behm, K. hristmann, G. Ertl, M. A. Van Hove: J. hern. Phys. 73, 2984 (1980) 3.19 D. M. Zehner: private communication 3.20 D. G. Fedak, N. A. Gjostein: Surf. Sci. 8, 77 (1967) 3.21 M. D. hinn, S.. Fain, Jr.: J. Vac. Sci. Technol. 14, 314 (1977); Phys. Rev. Lett. 39, 146 (1977). G. Shaw, S.. Fain, Jr., M. D. hinn: Phys. Rev. Lett. 41, 955 (1978) 3.22 P. H. Holloway, J. B. Hudson: Surf. Sci. 43, 123 (1974) G. Dalmai-Imelik, J.. Bertolini, J. Rousseau: Surf. Sci. 63, 67 (1977) D. F. Mitchell, P. B. Sewell, M. ohen: Surf. Sci. 61, 355 (1976) 3.23 J. E. Houston, R. L. Park: Surf. Sci. 21, 209 (1970) 3.24 J.. Tracy: J. hern. Phys. 56, 2748 (1972) J.. Tracy, P. W. Palmberg: J. hern. Phys. 51, 4852 (1969) 3.25 K. Horn, J. Pritchard: Surf. Sci. 55, 701 (1976) S. Andersson, Solid State ommun. 21, 75 (1977) 3.26 J. P. Biberian, M. A. Van Hove: Surf. Sci. 118,443 (1982) H. Ibach, D. L. Mills: Electron Energy Loss Spectroscopy and Surface Vibrations (Academic, New York 1982) 3.27 W. P. Ellis: in Optical Transforms, ed. by H. S. Lipton (Academic, New York 1972) hapter 4 D. G. Fedak, T. E. Fischer, W. D. Robertson: J. Appl. Phys. 39, 5658 (1968) 4.1 R. W. James: The Optical Principles of the Diffraction of X-Rays (ornell University Press, Ithaca, NY 1965) 4.2 H. Lipson, W. ochran: The Determination of rystal Structures (Bell, London 1953)

31 References M. J. Buerger: X-Ray rystallography (Wiley, New York 1942) 4.4 G. E. Bacon: Neutron Diffraction (larendon, Oxford 1955) 4.5 B. K. Vainshtein: Structure Analysis by Electron Diffraction (Macmillan, New York 1964). 4.6 P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. J.. Whelan, Electron Microscopy of Thin rystals (Butterworths, London 1965) 4.7. G. Darwin: Philos. Mag. 27, 315,675 (1914) 4.8 J. B. Pendry: Low Energy Electron Diffraction (Academic, London 1974) 4.9 S. Y. Tong: Prog. Surf. Sci. 7, 1 (1975) 4.10 D. W. Jepsen, P. M. Marcus, F. Jona: Phys. Rev. B 5,3933 (1972) 4.11 A. Ignatiev, J. B. Pendry, T. N. Rhodin: Phys. Rev. Lett. 26, 189 (1971 ) 4.12 D. L. Adams, H. B. Nielsen, M. A. Van Hove: Phys. Rev. B 20, 4789 (1979) 4.13 A. Bagcbi,. B. Duke: Phys. Rev. B 6,2956 (1972) J. M. Burkstrand, F. M. Propst: J. Vac. Sci. Technol. 9, 731 (1972) 4.14 H. Yoshioka: J. Phys. Soc. Jpn. 12,618 (1957) 4.15 M. N. Read, D. N. Lowry: Surf. Sci. 107, L313 (1981) 4.16 J.. Slater: Insulators, Semiconductors and Metals (McGraw-Hill, New York 1967) J.. Slater: Phys. Rev. 81,385 (1951) W. Kohn, L. J. Sham: Phys. Rev. 140, Al133 (1965) 4.17 P. M. Echenique, D. J. Titterington: J. Phys. 10, 625 (1977) R. J. Meyer,. B. Duke, A. Paton: Surf. Sci. 97, 512 (1980) 4.18 T. Loucks: Augmented Plane Wave Method (Benjamin, New York 1967) 4.19 V. L. Moruzzi, J. F. Janak, A. R. Williams: alculated Electronic Properties of Metals (Pergamon, New York 1978) P. M. Morse, H. Feshbach: Methods of Theoretical Physics, Vol. II (McGraw-Hill, New York 1953) p A. Messiah: Quantum Mechanics, Vol. 1 (North-Holland, Amsterdam 1970).

32 558 References 4.22 D. Tabor, J. M. Wilson, T. J. Bastow: Surf. Sci. 26, 477 (1971) 4.23 R. J. Reid: Surf. Sci. 29,623 (1972) 4.24 D. W. Jepsen, P. M. Marcus, F. Jona: Surf. Sci. 41, 223 (1974) 4.25 K. Heinz, K. Miiller: "LEED Intensities - Experimental Progress and New Possibilities of Surface Structure Determination", in Springer Tracts Mod. Phys., Vol. 91 (Springer, Berlin, Heidelberg 1982) p. 1 hapter P. P. Ewald: Fifty Years of X-Ray Diffraction (Oosthoek, Utrecht 1962) L. V. Azaroff: Elements of X-Ray rystallography (McGraw-Hill, New York 1968) 5.2 G. E. Bacon: Neutron Diffraction (larendon Press, Oxford 1955) 5.3 B. K. Vainshtein: Structure Analysis by Electron Diffraction (Pergamon, New York 1964) 5.4 P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. Whelan: Electron Microscopy of Thin rystals (Butterworth, London 1965) 5.5 J. Korringa: Physica 13, 392 (1947) W. Kohn, N. Rostoker: Phys. Rev. 94, 1111 (1954) 5.6 K. Kambe: Z. Naturforsch. 22a, 322,422 (1967); ibid. 23a, 1280 (1968) 5.7 S. Y. Tong: Prog. Surf. Sci. 7, 1 (1975) 5.8 J. L. Beeby: J. Phys. 1, 82 (1968) 5.9 J. B. Pendry: Low Energy Electron Diffraction (Academic, London 1974) 5.10 N. Stoner, M. A. Van Hove, S. Y. Tong: in haracterization of Metal and Polymer Surfaces, Vol. 1, ed. by L. H. Lee (Academic, New York 1977) p B. Duke,. W. Tucker, Jr.: Surf. Sci. 15,231 (1969) 5.12 E. G. McRae: J. hem. Phys. 45,3258 (1966) 5.13 D. W. Jepsen, P. M. Marcus, F. Jona: Phys. Rev. B 5,3933 (1972) 5.14 S. Andersson, J. B. Pendry: J. Phys. 13, 3547 (1980) 5.15 J.. Slater: Quantum Theory of Atomic Structure (McGraw-Hill, New York 1960)

33 5.16 R. S. Zimmer and B. W. Holland, J. Phys. 8,2395 (1975). References D. L. Adams: J. Phys. 14, 789 (1981); in Proc. onf. on Determination of Surface Structure by LEED (Plenum, New York 1985) 5.18 S. Y. Tong, M. A. Van Hove: Phys. Rev. B 16, 1459 (1977) 5.19 D. S. Boudreaux, V. Heine: Surf. Sci. 8, 426 (1967) 5.20 D. W. Jepsen: Phys. Rev. B 22, 5701 (1980) 5.21 Many observed examples are collected in G. A. Somorjai, M. A. Van Hove: Adsorbed Monolayers on Solid Surfaces, Structure and Bonding, Vol. 38 (Springer, Berlin, Heidelberg 1979) 5.22 B. W. Holland: Surf. Sci. 28, 258 (1971) 5.23 c. B. Duke, G. E. Laramore: Phys. Rev. B 2, 4765,4783 (1970) 5.24 D. Tabor, J. M. Wilson, T. J. Bastow: Surf. Sci. 26, 471 (1971) 5.25 N. D. Lang, W. Kohn: Phys. Rev. B 3, 1215 (1971) 5.26 J.. Inkson: Surf. Sci. 28, 69 (1971) 5.27 J. A. Appelbaum, D. R. Hamann: Phys. Rev. B 6, 1122 (1972) 5.28 P. J. Jennings, G. L. Price: Surf. Sci. 93, L124 (1980) 5.29 R. E. Dietz, E. G. McRae, R. L. ampbell: Phys. Rev. Lett. 45, 1280 (1980) 5.30 F. Forstmann; in Photoemission and Electronic Properties of Surfaces, ed. by B. Feuerbacher, B. Fitton, R. F. Willis (Wiley, London 1978) 5.31 J. M. Baribeau, J. D. arette: Phys. Rev. B 23, 6201 (1981) 5.32 E. G. McRae, M. L. Kane: Surf. Sci. 108,435 (1981) 5.33 P. M. Echenique, J. B. Pendry: J. Phys. 11, 2065 (1978) 5.34 J. Rundgren, G. Malmstrom, J. Phys. 10, 4671 (1977) 5.35 D. T. Pierce, R. J. oletta: in Advances in Electronic and Electron, Physics, Vol. 56, ed. by. Marton (Academic, New York 1981) 5.36 R. Feder, J. Kirschner: Surf. Sci. 103, 75 (1981) 5.37 E. L. Garwin, D. T. Pierce, H.. Siegmann: Helv. Phys. Acta 47, 393 (1974) E. L. Garwin, R. E. Kirby: in Proc. 7th Int. Vac. ongr. and 3rd Int. onf. Solid Surfaces, Vienna 1977, ed. and publ. t; R. Dobrozemsky, F. Riidenauer, F. P. Viehbock, A. Breth (Vienna, 1977) p (111)(7x7)

34 560 References 5.38 P. J. Jennings: Surf. Sci. 20, 18 (1970) 5.39 J. Kessler: Polarized Electrons, Texts and Monographs in Physics (Springer, Berlin, Heidelberg 1976) 5.40 S. W. Wang: Solid State ommun. 36, 847 (1980) 5.41 N. Masud,. G. Kinniburgh, J. B. Pendry: J. Phys. 10, 1 (1977) N. Masud: J. Phys. 13, 6359 (1980) 5.42 W. Moritz, H. Jagodzinski, D. Wolf: Surf. Sci. 77, 233,249 (1978) 5.43 W. Moritz: Proc. onf. on Determination of Surface Structure by LEED (Plenum, New York 1985) 5.44 J. M. Ziman: Solid State Phys. 26, 1 (1971) 5.45 M. L. ohen: Phys. Today 32, 40 (1979) 5.46 A. P. Jauho, J. W. Wilkins, M. ohen, R. P. Merrill: Proc. onf. on Determination of Surface Structure by LEED (Plenum, New York 1985) 5.47 P. M. Echenique, D. J. Titterington: J. Phys. 10, 625 (1977) H. Li, S. Y. Tong: Phys. Rev. B 19, 1769 (1979) D. H. Rosenblatt, J. G. Tobin, M. G. Mason, R. F. Davis, S. D. Kevan, D. A. Shirley,. H. Li, S. Y. Tong: Phys. Rev. B 23, 3828 (1981 ) 5.49 J. B. Pendry: J. Phys. 8, 2413 (1975) B. W. Holland: J. Phys. 8, 2679 (1975) 5.50 H. L. Davis, T. Kaplan: Solid State ommun. 19, 595 (1976) 5.51 S. Y. Tong,. H. Li, D. L. Mills: Phys. Rev. Lett. 44, 407 (1980) 5.52 G. Aers, T. B. Grimley, J. B. Pendry, K. L. Sebastian: J. Phys. 14, 3995 (1981) 5.53 P. H. itrin, P. Eisenberger, R.. Hewitt: Surf. Sci. 89, 28 (1979) 5.54 G. E. Laramore, T. L. Einstein, L. D. Roelofs, R. L. Park: Phys. Rev. B 21, 2108 (1980) 5.55 H. L. Davis, J. R. Noonan, L. H. Jenkins: Surf. Sci. 83, 559 (1979) 5.56 R. J. Meyer,. B. Duke, A. Paton, A. Kahn, E. So, J. L. Yen, P. Mark: Phys. Rev. B 19, 5194 (1979) 5.57 R. Feder: Solid State ommun. 21, 1091 (1977) 5.58 N. V. Smith, H. H. Farrell, M. M. Traum, D. P. Woodruff, D. Norman, M. S. Woolfson, B. W. Holland, Phys. Rev. B 21, 3119 (1980)

35 5.59 E. Zanazzi, F. Jona: Surf. Sci. 62, 61 (1977) References D. J. Spanjaard, D. W. Jepsen, P. M. Marcus: Phys. Rev. B 15, 1728 (1977) 5.61 J. B. Pendry: Surf. Sci. 57, 679 (1976) 5.62 J. Rundgren, A. Salwen: omput. Phys. ommun. 9,312 (1975) 5.63 M. A. Van Hove, S. Y. Tong: Surface rystallography by LEED, Springer Ser. hem. Phys., Vol. 2 (Springer, Berlin, Heidelberg 1979) H. Li, S. Y. Tong, D. L. Mills: Phys. Rev. B 21,3057 (1980) hapter J. Davisson, L. H. Germer: Phys. Rev. 30, 705 (1927) 6.2 L. H. Germer, A. U. MacRae,. D. Hartman: J. Appl. Phys. 32, 2432,2923 (1962) 6.3 J. J. Lander, J. Morrison: J. hem. Phys. 37, 729 (1962); J. Appl. Phys. 34, 1403 (1963) 6.4 R. Seiwatz: Surf. Sci. 2, 473 (1964) 6.5 G. Gafner: Surf. Sci. 2, 534 (1964) 6.6 A. U. MacRae, G. W. Gobeli: J. Appl. Phys. 35, 1629 (1964) 6.7 A. Ignatiev, J. B. Pendry, T. N. Rhodin: Phys. Rev. Lett. 26, 189 (1971) 6.8 K. hristmann, G. Ertl, O. Schober: Surf. Sci. 40, 61 (1973) 6.9 K. hristmann, G. Ertl, T. Pignet: Surf. Sci. 54, 365 (1976) 6.10 K. hristmann, G.Ertl: private communication 6.11 M. A. Van Hove: unpublished 6.12 J. A. Appelbaum, D. R. Hamann: Surf. Sci. 74, 21 (1978) 6.13 S. Andersson, B. Kasemo: Surf. Sci. 25, 273 (1971) 6.14 R. M. Stem, S. Sinharoy: Surf. Sci. 33, 131 (1972) 6.15 P. Mark, S.. hang, W. F. reighton, B. W. Lee: rit. Rev. Solid State Sci. 5, 189 (1975) 6.16 M. G. Lagally, T.. Ngoc, M. B. Webb: Phys. Rev. Lett. 26, 1557 (1971) 6.17 J. B. Pendry: J. Phys. 5,2567 (1972) 6.18 T.. Ngoc, M. G. Lagally, M. B. Webb: Surf. Sci. 35, 117 (1973)

36 562 References 6.19 J. E. Demuth, P. M. Marcus, D. W. Jepsen: Phys. Rev. B 11, 1460 (1975) 6.20 R. Feder: Phys. Rev. B 15, 1751 (1977) 6.21 W. N. Unertl, M. B. Webb, Surf. Sci. 59,373 (1976) 6.22 L. McDonnell, D. P. Woodruff, K. A. R. Mitchell: Surf. Sci.. 45, 1 (1975) 6.23 J. H. Onuferko, D. P. Woodruff: Surf. Sci. 91, 400 (1980) 6.24 D. P. Woodruff: Discuss. Faraday Soc. 60, 218 (1976) 6.25 D. Aberdam, R. Baudoing,. Gaubert, E. G. McRae, Surf. Sci. 57, 715 (1976) G. Darwin: Philos. Mag. 27, 675 (1914) 6.27 D. Aberdam, R. Baudoing,. Gaubert: Surf. Sci. 52, 125 (1973) 6.28 P. P. Ewald: Fifty Years of X-ray Diffraction (Oosthoek, Utrecht 1962) 6.29 L. V. Azaroff: Elements of X-ray rystallography (McGraw-Hill, New York 1968) W. Tucker, Jr.: Surf. Sci. 2, 516 (1964) W. Tucker, Jr.: J. Appl. Phys. 37, 3013 (1966) W. Tucker, Jr.,. B. Duke: Surf. Sci. 29,237 (1972) 6.33 T. A. lark, R. Mason, M. Tescari: Surf. Sci. 30, 553 (1972) 6.34 T. A. lark, R. Mason, M. Tescari, Proc. Roy. Soc. Lond. A 331, 321 (1972) T. A. lark, R. Mason, M. Tescari, Surf. Sci. 40, 1 (1973) 6.36 S. Andersson, J. B. Pendry: Solid State ommun. 16, 563 (1975) 6.37 J. E. Demuth, D. W. Jepsen, P. M. Marcus: J. Phys. 13, L25 (1975) 6.38 J. c. Buchholz, M. G. Lagally, M. B. Webb: Surf. Sci. 41, 248 (1974) 6.39 P. I. ohen, J. Unguris, M. B. Webb: Surf. Sci. 58, 429 (1976) 6.40 S. L. unningham,.-m. han, W. H. Weinberg: Phys. Rev. B 18, 1537 (1978) M. han, S. L. unningham, M. A. Van Hove, W. H. Weinberg: Surf. Sci. 67, 1 (1977) M. han, S. L. unningham, M. A. Van Hove, W. H. Weinberg, S. P. Withrow, Surf. Sci. 66, 394 (1977)

37 References U. Landman, D. L. Adams: J. Vac. Sci. Technol. 11, 195 (1974) 6.44 D. L. Adams, U. Landman: Phys. Rev. Lett. 33, 585 (1974) 6.45 D. L. Adams, U. Landman, J.. Hamilton: J. Vac. Sci. Technol. 12, 206 (1975) 6.46 D. L. Adams, U Landman: ~ Phys. Rev. B 15, 3775 (1977) M. han, P. A. Thiel, J. T. Yates, Jr., W. H. Weinberg, Surf. Sci. 76,296 (1978) 6.48 J. E. Demuth, P. M. Marcus, D. W. Jepsen: Phys. Rev. B 11, 1460 (1978) 6.49 c. B. Duke, G. E. Laramore, B. W. Holland, A. M. Gibbons: Surf. Sci. 27, 523 (1971) G. E. Laramore,. B. Duke: Phys. Rev. B 5,267 (1972) 6.50 W. Moritz: PhD Thesis, University of Munich (1976) M. AUI': PhD Thesis, University of Munich (1976) 6.51 M. Maglietta, E. Zanazzi, F. Jona, D. W. Jepsen, P. M. Marcus: J. Phys. 10, 3287 (1977) M. han, S. L. unningham, M. A. Van Hove, W. H. Weinberg: unpublished R. V. Southwell: Relaxation Methods in Engineering Science (Oxford University Press, Oxford 1964) 6.54 J. Unguris, L. W. Bruch, E. R. Moog, M. B. Webb: Surf. Sci. 87, 415 (1979) 6.55 N. Stoner; M. A. Van Hove, S. Y. Tong, M. B. Webb: Phys. Rev. Lett. 40, 243 (1978) 6.56 T.. Ngoc, M. G. Lagally, M. B. Webb: Surf. Sci. 35, 117 (1973) 6.57 c. G. Shaw, S.. Fain, Jr., M. D. hinn, M. F. Toney: Surf. Sci. 97, 128 (1980) 6.58 S. J. White, D.. Frost, K. A. R. Mitchell: Surf. Sci. 108, L435 (1981) 6.59 S. Andersson, B. Kasemo, J. B. Pendry, M. A. Van Hove: Phys. Rev. Lett. 31, 595 (1973) 6.60 J. E. Demuth, D. W. Jepsen, P. M. Marcus: Phys. Rev. Lett. 31, 540 (1973) 6.61 S. Y. Tong, K. H. Lau: Phys. Rev. B 25, 7382 (1982)

38 564 References 6.62 T. H. Upton, W. A. Goddard: Phys. Rev. Lett. 46, 1635 (1981) 6.63 J. E. Demuth, D. W. Jepsen, P. M. Marcus: Solid State ommun. 13, 1311 (1973) P. M. Marcus, J. E. Demuth, D. W. Jepsen: Surf. Sci. 53, 501 (1973) 6.64 M. A. Van Hove, S. Y. Tong: Phys. Rev. Lett. 35, 1092 (1975)' 6.65 M. A. Van Hove, S. Y. Tong, M. H. Elconin: Surf. Sci. 64,85 (1977) 6.66 A. Ignatiev, F. Jona, D. W. Jepsen, P. M. Marcus: LEED 7 Seminar Notes, Am. Phys. Soc. Meeting, San Diego, alifornia, March 19-21, 1973 (unpublished) 6.67 U. Landman, D. L. Adams: Surf. Sci. 51, 149 (1975) 6.68 E. Zanazzi, F. Jona: Surf. Sci. 62, 61 (1977) 6.69 P. R. Watson, F. R. Shepherd, D.. Frost, K. A. R. Mitchell: Surf. Sci. 72, 562 (1978) 6.70 G. G. Kleiman, J. M. Burkstrand: Solid State ommun. 21, 5 (1977) 6.71 D. L. Adams, H. B. Nielsen, M. A. Van Hove: Phys. Rev. B 20, 4789 (1979) 6.72 J. B. Pendry: J. Phys. 13, 937 (1980) 6.73 J. Philip, J. Rundgren: in Proc. onf. Determination of Surface Structure by LEED (Plenum, New York 1985) 6.74 M. A. Van Hove, R.J. Koestner: in Proc. onf. Determination of Surface Structure by LEED (Plenum, New York 1985) 6.75 R. J. Koestner, M. A. Van Hove, G. A. SomOljai: Surf. Sci. 107,439 (1981) 6.76 M. A. Van Hove, R. J. Koestner, G. A. Somorjai: Surf. Sci. 121, 321 (1982) 6.77 F. Jona: in Proc. onf. Determination of Surface Structure by LEED (Plenum, New York 1985) 6.78 R. Z. Bachrach, G. V. Hansson, R. S. Bauer: Surf. Sci. 109, L560 (1981) 6.79 F. Jona, D. Sondericker, P. M. Marcus: J. Phys. 13, L155 (1980) 6.80 R. E. Walpole, R. H. Myers: Probability and Statistics for Engineers and Scientists (MacMillan, New York 1972)

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1)

Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1) Table 1.1 Surface Science Techniques (page 19-28) Acronym Name Description Primary Surface Information Adsorption or selective chemisorption (1) Atoms or molecules are physisorbed into a porous structure

More information

Recommendations for abbreviations in surface science and chemical spectroscopy. (1) The electron, photoelectron and related spectroscopies

Recommendations for abbreviations in surface science and chemical spectroscopy. (1) The electron, photoelectron and related spectroscopies 17.6.3 Recommendations for abbreviations in surface science and chemical spectroscopy The overall list of selected techniques and their abbreviations have been subdivided under the following principal

More information

MODERN TECHNIQUES OF SURFACE SCIENCE

MODERN TECHNIQUES OF SURFACE SCIENCE MODERN TECHNIQUES OF SURFACE SCIENCE Second edition D. P. WOODRUFF & T. A. DELCHAR Department ofphysics, University of Warwick CAMBRIDGE UNIVERSITY PRESS Contents Preface to first edition Preface to second

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

Surface Analysis - The Principal Techniques

Surface Analysis - The Principal Techniques Surface Analysis - The Principal Techniques Edited by John C. Vickerman Surface Analysis Research Centre, Department of Chemistry UMIST, Manchester, UK JOHN WILEY & SONS Chichester New York Weinheim Brisbane

More information

Low Energy Electrons and Surface Chemistry

Low Energy Electrons and Surface Chemistry G. Ertl, J. Küppers Low Energy Electrons and Surface Chemistry VCH 1 Basic concepts 1 1.1 Introduction 1 1.2 Principles of ultrahigh vacuum techniques 2 1.2.1 Why is UHV necessary? 2 1.2.2 Production of

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

Preamble: Emphasis: Material = Device? MTSE 719 PHYSICAL PRINCIPLES OF CHARACTERIZATION OF SOLIDS

Preamble: Emphasis: Material = Device? MTSE 719 PHYSICAL PRINCIPLES OF CHARACTERIZATION OF SOLIDS MTSE 719 PHYSICAL PRINCIPLES OF CHARACTERIZATION OF SOLIDS MTSE 719 - PHYSCL PRIN CHARACTIZTN SOLIDS Section # Call # Days / Times 001 96175 -View Book Info - F:100PM - 355PM - TIER114 Preamble: Core course

More information

Fundamentals of Nanoscale Film Analysis

Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis Terry L. Alford Arizona State University Tempe, AZ, USA Leonard C. Feldman Vanderbilt University Nashville, TN, USA James W. Mayer Arizona State University Tempe,

More information

Surface Analysis - The Principal Techniques

Surface Analysis - The Principal Techniques Surface Analysis - The Principal Techniques 2nd Edition Editors johnc.vickerman Manchester Interdisciplinary Biocentre, University of Manchester, UK IAN S. GILMORE National Physical Laboratory, Teddington,

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

4. Other diffraction techniques

4. Other diffraction techniques 4. Other diffraction techniques 4.1 Reflection High Energy Electron Diffraction (RHEED) Setup: - Grazing-incidence high energy electron beam (3-5 kev: MEED,

More information

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy

Electron spectroscopy Lecture Kai M. Siegbahn ( ) Nobel Price 1981 High resolution Electron Spectroscopy Electron spectroscopy Lecture 1-21 Kai M. Siegbahn (1918 - ) Nobel Price 1981 High resolution Electron Spectroscopy 653: Electron Spectroscopy urse structure cture 1. Introduction to electron spectroscopies

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Surface crystallography

Surface crystallography Modern Methods in Heterogeneous Catalysis Research Surface crystallography Dirk Rosenthal Department of Inorganic Chemistry Fritz-Haber-Institut der MPG Faradayweg 4-6, DE 14195 Berlin Part of the lecture

More information

An introduction to X- ray photoelectron spectroscopy

An introduction to X- ray photoelectron spectroscopy An introduction to X- ray photoelectron spectroscopy X-ray photoelectron spectroscopy belongs to a broad class of spectroscopic techniques, collectively called, electron spectroscopy. In general terms,

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Appearance Potential Spectroscopy

Appearance Potential Spectroscopy Appearance Potential Spectroscopy Submitted by Sajanlal P. R CY06D009 Sreeprasad T. S CY06D008 Dept. of Chemistry IIT MADRAS February 2006 1 Contents Page number 1. Introduction 3 2. Theory of APS 3 3.

More information

AN ALTERNATIVE MODEL OF THE RECONSTRUCTED (100) SURFACES OF GOLD, PLATINUM AND IRIDIUM

AN ALTERNATIVE MODEL OF THE RECONSTRUCTED (100) SURFACES OF GOLD, PLATINUM AND IRIDIUM Surface Science 97 (1980) 257-263 0 North-Holland Publishing Company AN ALTERNATIVE MODEL OF THE RECONSTRUCTED (100) SURFACES OF GOLD, PLATINUM AND IRIDIUM JP. BIBERIAN Centre de Recherches sur les M&wtismes

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center Film Characterization Tutorial G.J. Mankey, 01/23/04 Theory vs. Experiment A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the

More information

X-ray Standing-Wave Investigation of (1X2)Rb/ Cu(110)

X-ray Standing-Wave Investigation of (1X2)Rb/ Cu(110) University of Rhode Island DigitalCommons@URI Physics Faculty Publications Physics 2000 X-ray Standing-Wave Investigation of (1X2)Rb/ Cu(110) David R. Heskett University of Rhode Island, dheskett@uri.edu

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 13:00 Monday, 12/February/2018 (P/T 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Vibrational Spectroscopy of Molecules on Surfaces

Vibrational Spectroscopy of Molecules on Surfaces Vibrational Spectroscopy of Molecules on Surfaces Edited by John T. Yates, Jr. University of Pittsburgh Pittsburgh, Pennsylvania and Theodore E. Madey National Bureau of Standards Gaithersburg, Maryland

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

disordered, ordered and coherent with the substrate, and ordered but incoherent with the substrate.

disordered, ordered and coherent with the substrate, and ordered but incoherent with the substrate. 5. Nomenclature of overlayer structures Thus far, we have been discussing an ideal surface, which is in effect the structure of the topmost substrate layer. The surface (selvedge) layers of the solid however

More information

Lecture 5: Characterization methods

Lecture 5: Characterization methods Lecture 5: Characterization methods X-Ray techniques Single crystal X-Ray Diffration (XRD) Powder XRD Thin film X-Ray Reflection (XRR) Microscopic methods Optical microscopy Electron microscopies (SEM,

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex.

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex. For MChem, Spring, 2009 5) Surface photoelectron spectroscopy Dr. Qiao Chen (room 3R506) http://www.sussex.ac.uk/users/qc25/ University of Sussex Today s topics 1. Element analysis with XPS Binding energy,

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Low Energy Electron Diffraction - LEED

Low Energy Electron Diffraction - LEED Modern Methods in Heterogeneous Catalysis Research: Theory and Experiment Low Energy Electron Diffraction - LEED Wolfgang Ranke Dep. Inorganic Chemistry Group Model Surface Analysis Fritz-Haber-Institut

More information

ELECTRON EMISSION SPECTROSCOPY

ELECTRON EMISSION SPECTROSCOPY ELECTRON EMISSION SPECTROSCOPY ELECTRON EMISSION SPECTROSCOPY PROCEEDINGS OF THE NATO SUMMER INSTITUTE HELD AT THE UNIVERSITY OF GENT, AUGUST 28 - SEPTEMBER 7, 1972 Edited by W. DEKEYSER, L. FIERMANS,

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Structure of Surfaces

Structure of Surfaces Structure of Surfaces C Stepped surface Interference of two waves Bragg s law Path difference = AB+BC =2dsin ( =glancing angle) If, n =2dsin, constructive interference Ex) in a cubic lattice of unit cell

More information

ELECTRON CURRENT IMAGE DIFFRACTION FROM CRYSTAL SURFACES AT LOW ENERGIES

ELECTRON CURRENT IMAGE DIFFRACTION FROM CRYSTAL SURFACES AT LOW ENERGIES C. BRENT BARGERON, A. NORMAN JETTE, and BERRY H. NALL ELECTRON CURRENT IMAGE DIFFRACTION FROM CRYSTAL SURFACES AT LOW ENERGIES Low-energy electron diffraction patterns in current images of crystal surfaces

More information

The University of Hong Kong Department of Physics

The University of Hong Kong Department of Physics The University of Hong Kong Department of Physics Physics Laboratory PHYS3551 Introductory Solid State Physics Experiment No. 3551-2: Electron and Optical Diffraction Name: University No: This experiment

More information

Table 1: Residence time (τ) in seconds for adsorbed molecules

Table 1: Residence time (τ) in seconds for adsorbed molecules 1 Surfaces We got our first hint of the importance of surface processes in the mass spectrum of a high vacuum environment. The spectrum was dominated by water and carbon monoxide, species that represent

More information

Matter Waves. Chapter 5

Matter Waves. Chapter 5 Matter Waves Chapter 5 De Broglie pilot waves Electromagnetic waves are associated with quanta - particles called photons. Turning this fact on its head, Louis de Broglie guessed : Matter particles have

More information

Ted Madey s Scientific Career at NBS/NIST: Aspects of Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), and Vacuum Science

Ted Madey s Scientific Career at NBS/NIST: Aspects of Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), and Vacuum Science Ted Madey s Scientific Career at NBS/NIST: Aspects of Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), and Vacuum Science Cedric J. Powell 1. Ted s 25-year career at NBS/NIST:

More information

Contrasted strengths and weakness of EDS, WDS and AES for determining the composition of samples

Contrasted strengths and weakness of EDS, WDS and AES for determining the composition of samples Contrasted strengths and weakness of EDS, WDS and AES for determining the composition of samples Ana-Marija Nedić Course 590B 12/07/2018 Iowa State University Contrasted strengths and weakness of EDS,

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

Electron Spettroscopies

Electron Spettroscopies Electron Spettroscopies Spettroscopy allows to characterize a material from the point of view of: chemical composition, electronic states and magnetism, electronic, roto-vibrational and magnetic excitations.

More information

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

Techniken der Oberflächenphysik

Techniken der Oberflächenphysik Techniken der Oberflächenphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik 18.01.2018 Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

Site-specific electron diffraction resolved via nuclear recoil

Site-specific electron diffraction resolved via nuclear recoil Site-specific electron diffraction resolved via nuclear recoil Aimo Winkelmann Maarten Vos Max-Planck-Institut für Mikrostrukturphysik Halle (Saale), Germany Research School of Physics and Engineering

More information

APPLIED PHYSICS 216 X-RAY AND VUV PHYSICS (Sept. Dec., 2006)

APPLIED PHYSICS 216 X-RAY AND VUV PHYSICS (Sept. Dec., 2006) APPLIED PHYSICS 216 X-RAY AND VUV PHYSICS (Sept. Dec., 2006) Course Meeting: Monday, Wednesdays 11-12:15 Professor: Office Hours: Secretary: Mid Term: Final Exam: Another Course: Zhi-Xun Shen McCullough

More information

5.8 Auger Electron Spectroscopy (AES)

5.8 Auger Electron Spectroscopy (AES) 5.8 Auger Electron Spectroscopy (AES) 5.8.1 The Auger Process X-ray and high energy electron bombardment of atom can create core hole Core hole will eventually decay via either (i) photon emission (x-ray

More information

General introduction to XAS

General introduction to XAS General introduction to XAS Júlio Criginski Cezar LNLS - Laboratório Nacional de Luz Síncrotron CNPEM - Centro Nacional de Pesquisa em Energia e Materiais julio.cezar@lnls.br 5 th School on X-ray Spectroscopy

More information

Nanoscale Surface Physics PHY 5XXX

Nanoscale Surface Physics PHY 5XXX SYLLABUS Nanoscale Surface Physics PHY 5XXX Spring Semester, 2006 Instructor: Dr. Beatriz Roldán-Cuenya Time: Tuesday and Thursday 4:00 to 5:45 pm Location: Theory: MAP 306, Laboratory: MAP 148 Office

More information

1 Introduction COPYRIGHTED MATERIAL. 1.1 HowdoweDefinetheSurface?

1 Introduction COPYRIGHTED MATERIAL. 1.1 HowdoweDefinetheSurface? 1 Introduction JOHN C. VICKERMAN Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK The surface behaviour of materials

More information

PROFESSOR GABOR A. SOMORJAI

PROFESSOR GABOR A. SOMORJAI Revised April 18, 2001 PROFESSOR GABOR A. SOMORJAI Materials Sciences Division Lawrence Berkeley National Laboratory and Department of Chemistry University of California Berkeley, California USA please

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

X-ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS) As part of the course Characterization of Catalysts and Surfaces Prof. Dr. Markus Ammann Paul Scherrer Institut markus.ammann@psi.ch Resource for further reading:

More information

Lecture 23 X-Ray & UV Techniques

Lecture 23 X-Ray & UV Techniques Lecture 23 X-Ray & UV Techniques Schroder: Chapter 11.3 1/50 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

X-ray diffraction and Crystal Structure Solutions from Thin Films

X-ray diffraction and Crystal Structure Solutions from Thin Films X-ray diffraction and Crystal Structure Solutions from Thin Films Ingo Salzmann Humboldt-Universität zu Berlin Institut für Physik Overview Experimental technique X-ray diffraction The principal phenomenon

More information

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE - 411007 SYLLABUS for the M.Phil. (Physics ) Course Each Student will be required to do 3 courses, out of which two are common courses. The third course syllabus

More information

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment Harald Ibach Hans Lüth SOLID-STATE PHYSICS An Introduction to Theory and Experiment With 230 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents

More information

Atomic helium scattering and diffraction from solid surfaces

Atomic helium scattering and diffraction from solid surfaces J. Phys. C: Solid State Phys., Vol. 5, 1972. Printed in Great Britain. @ 1972 Atomic helium scattering and diffraction from solid surfaces W H WEINBERG Division of Chemistry and Chemical Engineering, California

More information

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst Text Books Conventional Transmission Electron Microscopy EMSE-509 CWRU Frank Ernst D. B. Williams and C. B. Carter: Transmission Electron Microscopy, New York: Plenum Press (1996). L. Reimer: Transmission

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

PHYSICAL REVIEW B 69,

PHYSICAL REVIEW B 69, Structure determination of disordered organic molecules on surfaces from the Bragg spots of low-energy electron diffraction and total energy calculations H. C. Poon, M. Weinert, and D. K. Saldin Department

More information

Photon Energy Dependence of Contrast in Photoelectron Emission Microscopy of Si Devices

Photon Energy Dependence of Contrast in Photoelectron Emission Microscopy of Si Devices Photon Energy Dependence of Contrast in Photoelectron Emission Microscopy of Si Devices V. W. Ballarotto, K. Siegrist, R. J. Phaneuf, and E. D. Williams University of Maryland and Laboratory for Physical

More information

Application of Photoelectron Diffraction for studies of random and ordered metal surface alloys. Abner de Siervo Instituto de Física - Unicamp

Application of Photoelectron Diffraction for studies of random and ordered metal surface alloys. Abner de Siervo Instituto de Física - Unicamp Application of Photoelectron Diffraction for studies of random and ordered metal surface alloys Abner de Siervo Instituto de Física - Unicamp Outline Introduction Overview on experimental Aspects of PED

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Advanced Spectroscopies of Modern Quantum Materials

Advanced Spectroscopies of Modern Quantum Materials Advanced Spectroscopies of Modern Quantum Materials The part about Advanced spectroscopies Some course goals: Better understand the link between experiment and the microscopic world of quantum materials.

More information

Supplementary Information

Supplementary Information Supplementary Information Direct observation of crystal defects in an organic molecular crystals of copper hexachlorophthalocyanine by STEM-EELS Mitsutaka Haruta*, Hiroki Kurata Institute for hemical Research,

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

8 Summary and outlook

8 Summary and outlook 91 8 Summary and outlook The main task of present work was to investigate the growth, the atomic and the electronic structures of Co oxide as well as Mn oxide films on Ag(001) by means of STM/STS at LT

More information

One-Step Theory of Photoemission: Band Structure Approach

One-Step Theory of Photoemission: Band Structure Approach One-Step Theory of Photoemission: Band Structure Approach E. KRASOVSKII Christian-Albrechts University Kiel Dresden, 19 April 2007 CONTENTS One-Step Theory Theory of Band Mapping Valence band photoemission

More information

Author(s) Okuyama, H; Aruga, T; Nishijima, M. Citation PHYSICAL REVIEW LETTERS (2003), 91(

Author(s) Okuyama, H; Aruga, T; Nishijima, M. Citation PHYSICAL REVIEW LETTERS (2003), 91( Title Vibrational characterization of the Si(111)-(7x7) Author(s) Okuyama, H; Aruga, T; Nishijima, M Citation PHYSICAL REVIEW LETTERS (2003), 91( Issue Date 2003-12-19 URL http://hdl.handle.net/2433/49840

More information

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012 EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012 Office: 8 St. Mary s Street, Room no: 835 Phone: 353-5431 e-mail: tdm@bu.edu

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Experimental Determination of Crystal Structure

Experimental Determination of Crystal Structure Experimental Determination of Crystal Structure Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 624: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys624/phys624.html

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

SYLLABUS FOR THE COURSE IN M.PHIL IN PHYSICS (SFC MODE)

SYLLABUS FOR THE COURSE IN M.PHIL IN PHYSICS (SFC MODE) P.G. DEPARTMENT OF APPLIED PHYSICS AND BALLISTICS SYLLABUS FOR THE COURSE IN M.PHIL IN PHYSICS (SFC MODE) FOR THE SESSION2015-2016 F.M. UNIVERSITY, BALASORE 1 M.Phil. PhYSiCS SYLLABUS 2015 2016 P.G. Department

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

MATSE 482/Phys 430 TUNNELING MICROSCOPIES Spring 2003

MATSE 482/Phys 430 TUNNELING MICROSCOPIES Spring 2003 MATSE 482/Phys 430 TUNNELING MICROSCOPIES Spring 2003 Projection Microscopy, Field Emission and Field Ion Microscopy R. Gomer, Field Emission and Field Ionization (Harvard University Press, 1961), pp.

More information

MatSE 482/Phys 430 Spring 2003 SURFACE SPECTROSCOPIES

MatSE 482/Phys 430 Spring 2003 SURFACE SPECTROSCOPIES MatSE 482/Phys 430 Spring 2003 OVERVIEW SURFACE SPECTROSCOPIES D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science (Cambridge Univ. Press, Cambridge 1986) Chapts. 3,4. G. Ertl and J.

More information

Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion.

Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion. Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion. Supplementary Figure 2: SE spectra from blend films. a) and b) compare

More information

THE STRUCTURE OF ATOMIC NITROGEN ADSORBED ON Fe( 100) Chemie, Unioersittit Miinchen, D Mijnchen 2, Fed. Rep. of Germany

THE STRUCTURE OF ATOMIC NITROGEN ADSORBED ON Fe( 100) Chemie, Unioersittit Miinchen, D Mijnchen 2, Fed. Rep. of Germany Surface Science 123 (1982) 129-140 North-Holland Publishing Company 129 THE STRUCTURE OF ATOMIC NITROGEN ADSORBED ON Fe( 100) R. IMBIHL, R.J. BEHM and G. ERTL Institut ftir Physikalrsche Chemie, Unioersittit

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

T. Pradeep

T. Pradeep Analytical Instrumentation Analytical of analysis Analysis ana + lysis, Greek total, whole + separating, loosing Separating the whole into parts, by examination Analyst, analytical, analytic, analytics,

More information