Probing Ergodicity and Nonergodicity

Size: px
Start display at page:

Download "Probing Ergodicity and Nonergodicity"

Transcription

1 Probing Ergodicity and Nonergodicity Sergej FLACH Center for Theoretical Physics of Complex Systems Institute for Basic Science Daejeon South Korea 1. Intermittent Nonlinear Many-Body Dynamics 2. Discrete Time Quantum Walks

2 Probing Ergodicity and Nonergodicity Sergej FLACH Center for Theoretical Physics of Complex Systems Institute for Basic Science Daejeon South Korea 1. Intermittent Nonlinear Many-Body Dynamics 2. Discrete Time Quantum Walks

3 Intermittent Nonlinear Many Body Dynamics 1. Warm Up 2. Equipartition and Ergodicity 3. Fermi, Pasta, Ulam 4. Klein-Gordon 5. DNLS 6. Outlook

4 Warm Up Test: what is integrability?

5 Warm Up Liouville integrability: phase space dimension: 2N there exists a maximal set of N Poisson commuting invariants functions on phase space whose Poisson bracket with H vanish there exist special canonical sets: action-angle variables dynamics happens on N-dimensional tori, each with N fixed actions, and angles evolving linear in time

6 Warm Up Test: what is Anderson Localization?

7 Anderson localization Anderson (1958) in Eigenvalues: Width of EV spectrum: Asymptotic decay: Localization length: Localization volume of NM: L l

8 Anderson localization Anderson (1958) in Eigenvalues: Width of EV spectrum: Asymptotic decay: Localization length: Localization volume of NM: L l

9 Warm Up Test: what is Many Body Localization?

10 Warm Up It is Anderson localization in Fock space of EFs of noninteracting problem Take a fermionic system, assume that all single particle states are localized Add local (two body) interaction Gauge the ground state energy to zero Consider excited states with finite energy densities T States below T c1 are in MBL phase (zero conductivity) States above T c1 but below T c2 are in nonergodic metallic state (nonzero conductivity, fractal wavefunctions) You can not explain this transition using finite energy excitations above the ground state This is probably an example of quantizing Arnold diffusion and fractal phase space flow structure of a corresponding classical interacting wave problem It pays off to look into nonlinear dynamical systems close to integrability

11 Equipartition and Ergodicity What a nice and stable (integrable?) nonergodic system!

12 Equipartition and Ergodicity But: There is a small chance that the Earth and Venus could collide in the next 5 billion years (Illustration: J Vidal-Madjar/NASA/IMCCE-CNRS) Jaques Laskar, Paris Observatory

13 Equipartition and Ergodicity J. Laskar's work spans various field of fundamental astronomy, his main interest being the study of motions in planetary systems. He devoted large efforts to obtain accurate solutions for the long-term motion of planets in the Solar System that are used as the world reference for paleoclimate studies. In pursuing this work, he demonstrated that the orbital motion of the planets of the Solar System is chaotic, with exponential divergence of the orbits of a factor of 10 every 10 million years, making it impossible to predict its motion beyond 60 million years. He showed that planetary perturbations create a large chaotic zone for the spin axis motion of all the terrestrial planets. He demonstrated that without the presence of the Moon, the Earth s axis would be highly unstable, and could vary from 0 to about 85 degrees. He also demonstrated that the spin axis of Mars is chaotic, and can vary between 0 and 60 degrees, inducing high climatic variations on its surface. In order to improve the long-term ephemeris for the Solar System, he initiated the development of the INPOP planetary ephemerides

14 Equipartition and Ergodicity Variations in the Earth s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System

15 Equipartition and Ergodicity Classical ergodicity: visit all parts of phase space under constraints due to integrals of motion all microstates have the same weight time averages equal phase space averages close to integrable limits: adiabatic invariants, KAM, Arnold diffusion Quantum ergodicity: wave function present in all parts of Hilbert space close to integrable limits: nonergodic wave functions, MBL choice of the Hilbert basis? Is MBL a result of quantizing the Arnold web?

16 Equipartition and Ergodicity noninteracting (single particle) systems: pathological interacting few body systems: chaos, stickiness, mixed phase space interacting many body systems: è no strict ergodicity (on the order of the universe lifetime for any reasonable system example) è exponential growth of microstates with algebraic decay of transition times (e.g. Gaveau and Schulman 2015) still: many macroscopic systems behave good or ergodic yet: more and more systems are getting on the list of bad or nonergodic è many body localization è nonergodic metals è glasses è interacting many body systems on lattices with bounded sp spectra they all have in common being close to some integrable limit Need novel approaches to predict loss of ergodicity!

17 Equipartition and Ergodicity At the very integrable limit: a set of frozen actions, i.e. integrals of motion Close to the integrable limit: additional coupling network between the actions destroys integrability and unfreezes actions What are the simplest qualitatively different network classes? è Short range networks with countable set of actions è Long range networks with countable set of actions Long range networks: è Translationally invariant systems, any interactions low energy densities, homogeneous slowing down Short range networks: è Disordered systems with Anderson Localization, local interactions low energy densities, inhomogeneous slowing down, MBL è Systems with local interactions, short range hoppings high energy densities, inhomogeneous slowing down, MBL And there can be many other intermediate interpolating classes! Glasses????

18 Equipartition and Ergodicity Goal: run a system in an ergodic parameter region, quantitatively characterize its distance from a nonergodic parameter region Idea: compute statistics of fluctuations instead of correlation functions Why: fluctuations of interest are well defined, can be traced back to their microscopic dynamics, and analyzed Method: choose observable f (should be sensitive to nonergodic fluctuations close to the integrable limit, i.e sensitive to adiabatic invariants) obtain <f> - defines a generalized Poincare equilibrium manifold f=<f> if system is ergodic, trajectory will pierce infinitely many times measure excursion times between piercings compute probability distribution functions (PDF) Note: if tail of PDF is proportional to x -Υ then: 1 st and 2 nd moments diverge if γ 2, ergodicity is broken!

19 Equipartition and Ergodicity Symplectic Integration scheme Assume integrabls A, B and

20 Equipartition and Ergodicity Symplectic Integration scheme O(τ 2 ) Integrable corrector: : O(τ 4 )

21 Equipartition and Ergodicity Test: what are the integrals of motion of various models in various energy density limits?

22 Equipartition and Ergodicity models, integrable limits: H = P N n=1 h i p 2 n 2 + V (q n)+w (q n+1 q n ) FPU: V (q) =0,W(q) = 1 2 q q q4 KG: V (q) = 1 2 q q4,w(q) = k 2 q2 JJs (rotors): V (q) = 0,W(q) =(1 cos(q)) DNLS (BH): H = P N n=1 ( n n+1 + cc)+ g 4 n 4

23 Equipartition and Ergodicity Example: DNLS Symplectic Integration scheme

24 Fermi, Pasta, Ulam Origin of equipartion and ergodicity? Wave interactions! 1955 FPU problem: N=32, excited mode q=1 did not observe equipartition energy stays localized in few modes recurrences after more integrations thresholds in energy, system size etc two time scales T1: formation of exponentially localized packets in normal mode space T2: gradual destruction of exponential localization, and equipartition

25 Fermi, Pasta, Ulam x n (t) = Q q +! 2 qq q = NX q=1 Q q (t)sin( qn N +1 ),! q q =2sin( 2(N + 1) ) p 2(N + 1) X q 1,q 2 =1 N! q! q1! q2 B q,q1,q 2 Q q1 Q q2 B q,q1,q 2 = X ± ( q±q1 ±q 2,0 q±q 1 ±q 2,2(N+1)) selective but long range network In some sense translationally invariant systems are similar to huge quantum dots with zero level spacing

26

27 Galgani and Scotti (1972): exponential localization after short transient Galgani, Giorgilli, Benettin, Ponno, Penati, and many many others ( much later ): slow delocalization in tails, equipartition After potentially very long second time scale Casetti, Cerruti-Sola, Pettini, Cohen (1997): scaling of second time scale T2? Ponno, Christodoulidi, Skokos, SF (2011): energy diffusion from core to tail modes, indication of divergence of T2 at KAM threshold? Theory for T2? Theory for equipartition? Where is KAM regime? Relation to turbulence?

28 FPU: time to reach equipartition Hunting T2 (Danieli,Campbell,SF) Danieli, Campbell, SF PRE R (2017) criterium for reaching T2: entropy (similar to Casetti et al): E q (t) =( Q 2 q +! 2 qq 2 q)/2,e = P q E q q = E q /E, S = P q q ln( q ),S max =lnn (t) = S(t) S max S(0) S max,0apple apple1 Weakly coupled normal modes in Gibbs equilibrium: eq = 1 ln N, 0, 5772 (Euler constant) FPU with N = 32 : eq = η eq defines a phase space separating manifold which we can use similar to a Poincare sectioning surface for arbitrary trajectories!

29 PRE R (2017)

30 Danieli, Campbell, SF PRE R (2017)

31 PRE R (2017) Blue open squares: Casetti Black filled circles: We Casetti: FPU T2= days of CPU We: FPU T2 = years of CPU 3 months 1 year on GPU cluster Unless KAM hits

32 FPU : intermittent equipartition PRE R (2017) Measuring distributions of return times at equipartition Long excursions in phase space Stickiness to regular orbits ε = Power law tails t - γ 1 st moment finite, 2 nd diverges Scale free relaxation!

33 FPU : intermittent equipartition PRE R (2017) Measuring distributions of return times at equipartition Long excursions in phase space Stickiness to regular orbits ε = Power law tails t - γ 1 st moment finite, 2 nd diverges Also in correlation functions Scale free relaxation!

34 Indeed it is stickiness to regular orbits! ε = PRE R (2017) here we stick è ç here we stick to a q-torus è ç to a q-breather with high frequency è with high frequency ç A consistent quantitative way to study relaxations at equilibrium, and stickiness, in high-dimensional nonlinear dynamical systems

35 Strong Nonlinearity: Discrete Breathers Nonlinear wave interaction generates localization by frequency detuning Exciting a plane wave in a two-dimensional lattice Time-periodic spatially localized exact solutions Josephson junction networks Coupled nonlinear optical waveguides BEC in optical lattices Driven micromechanical cantilever arrays Antiferromagnetic layered structures (C2H5NH3)2CuCl4 Poly-γ-benzyl-L-glutamate (PBLG) H on Si(111), CO on Ru(001) PtCl based crystals, α-uranium

36 Discrete Breathers: experimentally observed and studied in Josephson junction networks Ustinov Coupled nonlinear optical waveguides Silberberg, Segev BEC in optical lattices Oberthaler Driven micromechanical cantilever arrays Sievers, Sato Antiferromagnetic layered structures (C2H5NH3)2CuCl4 Sievers, Sato Poly-γ-benzyl-L-glutamate (PBLG) Hamm H on Si(111), CO on Ru(001) Guyott-Syonnest, Jakob PtCl based crystals, α-uranium Swanson

37 Klein-Gordon

38 KG : intermittent equipartition PRE R (2017) Long excursions in phase space Stickiness to regular orbits ε = Power law tails t - γ 1 st moment finite, 2 nd diverges Scale free relaxation!

39 DNLS, from N=32 to N=4096 DNLS (BH): H = P N n=1 ( n n+1 + cc)+ g 4 n 4 Large N: sensitivity of observable to fluctuations e.g. participation number: average of order N variance of order N 1/2 need fluctuation of order N 1/4 thus: choose many observables: simply the integrals of motion (actions) of the integrable limit DNLS: ψ n 2 Simultaneously define N equilibrium manifolds, track piercings through all of them!

40 DNLS, from N=32 to N= y Non-Gibbsian norm density β = β=0 y=2x+x 2 /2 Gibbsian x PDF (a) N = 1024 PDF + (t r ) PDF - (t r ) PDF + (t r ) N=512 N=1024 N=2048 N= Log 10 t r Log 10 t r α y=2x+x 2 /2 y=x x x =2, y=3 x =2, y=4 x =2, y=5.79 x =2, y=6 log 10 Λ(t) log 10 t

41 Main results 1 st moment of excursion time PDFs diverges close to integrable limit Long range networks: ergodicity breaks only at the limit, all relaxation times diverge at the limit Short range networks: ergodicity breaks at finite distance to limit, some relaxation times diverge, some stay finite at a finite distance to the limit We have a quantitative tool to probe nonergodicity C. Danieli D.K. Campbell Y. Kati Mithun T

Chaos in disordered nonlinear lattices

Chaos in disordered nonlinear lattices Chaos in disordered nonlinear lattices Haris Skokos Physics Department, Aristotle University of Thessaloniki Thessaloniki, Greece E-mail: hskokos@auth.gr URL: http://users.auth.gr/hskokos/ Work in collaboration

More information

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains

Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Spreading mechanism of wave packets in one dimensional disordered Klein-Gordon chains Haris Skokos Max Planck Institute for the Physics of Complex Systems Dresden, Germany E-mail: hskokos@pks.mpg.de URL:

More information

Chaotic behavior of disordered nonlinear systems

Chaotic behavior of disordered nonlinear systems Chaotic behavior of disordered nonlinear systems Haris Skokos Department of Mathematics and Applied Mathematics, University of Cape Town Cape Town, South Africa E-mail: haris.skokos@uct.ac.za URL: http://math_research.uct.ac.za/~hskokos/

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

The Fermi-Pasta Ulam (FPU) Problem:

The Fermi-Pasta Ulam (FPU) Problem: The Fermi-Pasta Ulam (FPU) Problem: A Path to Complexity David K. Campbell Boston University Scuola Int. di Fisica Enrico Fermi Course CLXXVI Complex Materials in Physics and Biology June 29, 2010 1 Prolog:

More information

Quantum q-breathers in a finite Bose-Hubbard chain: The case of two interacting bosons

Quantum q-breathers in a finite Bose-Hubbard chain: The case of two interacting bosons PHYSICAL REVIEW B 75, 21433 27 Quantum q-breathers in a finite Bose-Hubbard chain: The case of two interacting bosons Jean Pierre Nguenang, 1,2 R. A. Pinto, 1 and Sergej Flach 1 1 Max-Planck-Institut für

More information

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley Emergent Phenomena And Universality In Quantum Systems Far From Thermal Equilibrium Ehud Altman Weizmann Institute and Visiting Miller Prof. UC Berkeley A typical experiment in traditional Condensed Matter

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

arxiv: v2 [nlin.cd] 5 Apr 2014

arxiv: v2 [nlin.cd] 5 Apr 2014 Complex Statistics and Diffusion in Nonlinear Disordered Particle Chains Ch. G. Antonopoulos, 1,a) T. Bountis, 2,b) Ch. Skokos, 3,4,c) and L. Drossos 5,d) 1) Institute for Complex Systems and Mathematical

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004 Preprint CAMTP/03-8 August 2003 Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004 Marko Robnik CAMTP - Center for Applied

More information

(De)-localization in mean-field quantum glasses

(De)-localization in mean-field quantum glasses QMATH13, Georgia Tech, Atlanta October 10, 2016 (De)-localization in mean-field quantum glasses Chris R. Laumann (Boston U) Chris Baldwin (UW/BU) Arijeet Pal (Oxford) Antonello Scardicchio (ICTP) CRL,

More information

Pasta-Ulam problem. The birth of nonlinear physics and dynamical chaos. Paolo Valentini

Pasta-Ulam problem. The birth of nonlinear physics and dynamical chaos. Paolo Valentini The Fermi-Pasta Pasta-Ulam problem The birth of nonlinear physics and dynamical chaos Paolo Valentini SUMMARY The Fermi-Pasta Pasta-Ulam experiment on MANIAC at LANL in 1955 The ergodic hypothesis The

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

The Transition to Chaos

The Transition to Chaos Linda E. Reichl The Transition to Chaos Conservative Classical Systems and Quantum Manifestations Second Edition With 180 Illustrations v I.,,-,,t,...,* ', Springer Dedication Acknowledgements v vii 1

More information

Abstracts. Furstenberg The Dynamics of Some Arithmetically Generated Sequences

Abstracts. Furstenberg The Dynamics of Some Arithmetically Generated Sequences CHAOS AND DISORDER IN MATHEMATICS AND PHYSICS Monday 10:00-11:00 Okounkov Algebraic geometry of random surfaces 11:30-12:30 Furstenberg Dynamics of Arithmetically Generated Sequences 12:30-14:30 lunch

More information

Microscopic Hamiltonian dynamics perturbed by a conservative noise

Microscopic Hamiltonian dynamics perturbed by a conservative noise Microscopic Hamiltonian dynamics perturbed by a conservative noise CNRS, Ens Lyon April 2008 Introduction Introduction Fourier s law : Consider a macroscopic system in contact with two heat baths with

More information

Interaction of discrete breathers with thermal fluctuations

Interaction of discrete breathers with thermal fluctuations LOW TEMPERATURE PHYSICS VOLUME 34, NUMBER 7 JULY 2008 Interaction of discrete breathers with thermal fluctuations M. Eleftheriou Department of Physics, University of Crete, P.O. Box 2208, Heraklion 71003,

More information

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential Chapter Ensemble Theory in Statistical Physics: Free Energy Potential Abstract In this chapter, we discuss the basic formalism of statistical physics Also, we consider in detail the concept of the free

More information

Global theory of one-frequency Schrödinger operators

Global theory of one-frequency Schrödinger operators of one-frequency Schrödinger operators CNRS and IMPA August 21, 2012 Regularity and chaos In the study of classical dynamical systems, the main goal is the understanding of the long time behavior of observable

More information

Hamiltonian Chaos and the standard map

Hamiltonian Chaos and the standard map Hamiltonian Chaos and the standard map Outline: What happens for small perturbation? Questions of long time stability? Poincare section and twist maps. Area preserving mappings. Standard map as time sections

More information

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS

UNDERSTANDING BOLTZMANN S ANALYSIS VIA. Contents SOLVABLE MODELS UNDERSTANDING BOLTZMANN S ANALYSIS VIA Contents SOLVABLE MODELS 1 Kac ring model 2 1.1 Microstates............................ 3 1.2 Macrostates............................ 6 1.3 Boltzmann s entropy.......................

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

First UQUAM Topical Workshop on. Open Quantum Systems. April 13-15, 2016 Israel

First UQUAM Topical Workshop on. Open Quantum Systems. April 13-15, 2016 Israel First UQUAM Topical Workshop on April 13-15, 2016 Israel Program Wednesday, April 13 Thursday, April 14 Friday, April 15 08:45 Transport from Hotel to WIS 09:30-10:15 Mykola Maksymenko Jorge Yago Malo

More information

arxiv: v1 [astro-ph] 22 Feb 2008

arxiv: v1 [astro-ph] 22 Feb 2008 Chaotic diffusion in the Solar System. J. Laskar arxiv:8.3371v1 [astro-ph] Feb 8 Abstract Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR88, Observatoire de Paris, 77 Av. Denfert-Rochereau, 7514 Paris,

More information

Applied Asymptotic Analysis

Applied Asymptotic Analysis Applied Asymptotic Analysis Peter D. Miller Graduate Studies in Mathematics Volume 75 American Mathematical Society Providence, Rhode Island Preface xiii Part 1. Fundamentals Chapter 0. Themes of Asymptotic

More information

Effects of thermal noise on transport in soliton ratchet systems

Effects of thermal noise on transport in soliton ratchet systems Effects of thermal noise on transport in soliton ratchet systems With L. Morales, V. Stehr, P. Müller (Bayreuth) A. Sanchez (Madrid), N.R. Quintero (Sevilla) A.R. Bishop (Los Alamos) J. Buceta, K. Lindenberg

More information

The Fermi-Pasta Ulam (FPU) Problem:

The Fermi-Pasta Ulam (FPU) Problem: The Fermi-Pasta Ulam (FPU) Problem: The Birth of Nonlinear Science David K. Campbell Boston University Lilienfeld Prize Lecture APS March Meeting March 17, 2010 1 Outline Prolog: nonlinear science, experimental

More information

Solvable model for a dynamical quantum phase transition from fast to slow scrambling

Solvable model for a dynamical quantum phase transition from fast to slow scrambling Solvable model for a dynamical quantum phase transition from fast to slow scrambling Sumilan Banerjee Weizmann Institute of Science Designer Quantum Systems Out of Equilibrium, KITP November 17, 2016 Work

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

Elements of Statistical Mechanics

Elements of Statistical Mechanics Elements of Statistical Mechanics Thermodynamics describes the properties of macroscopic bodies. Statistical mechanics allows us to obtain the laws of thermodynamics from the laws of mechanics, classical

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the soliton p. 7 The soliton concept in physics p. 11 Linear

More information

Chopping time of the FPU α-model

Chopping time of the FPU α-model Chopping time of the FPU α-model A. Carati A. Ponno May 2, 2017 Abstract We study, both numerically and analytically, the time needed to observe the breaking of an FPU α-chain in two or more pieces, starting

More information

ON THE ARROW OF TIME. Y. Charles Li. Hong Yang

ON THE ARROW OF TIME. Y. Charles Li. Hong Yang DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2014.7.1287 DYNAMICAL SYSTEMS SERIES S Volume 7, Number 6, December 2014 pp. 1287 1303 ON THE ARROW OF TIME Y. Charles Li Department of Mathematics University

More information

Chapter 29. Quantum Chaos

Chapter 29. Quantum Chaos Chapter 29 Quantum Chaos What happens to a Hamiltonian system that for classical mechanics is chaotic when we include a nonzero h? There is no problem in principle to answering this question: given a classical

More information

Simulating rare events in dynamical processes. Cristian Giardina, Jorge Kurchan, Vivien Lecomte, Julien Tailleur

Simulating rare events in dynamical processes. Cristian Giardina, Jorge Kurchan, Vivien Lecomte, Julien Tailleur Simulating rare events in dynamical processes Cristian Giardina, Jorge Kurchan, Vivien Lecomte, Julien Tailleur Laboratoire MSC CNRS - Université Paris Diderot Computation of transition trajectories and

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Basics of Statistical Mechanics

Basics of Statistical Mechanics Basics of Statistical Mechanics Review of ensembles Microcanonical, canonical, Maxwell-Boltzmann Constant pressure, temperature, volume, Thermodynamic limit Ergodicity (see online notes also) Reading assignment:

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

Localization and equipartition of energy in the β-fpu chain: Chaotic breathers

Localization and equipartition of energy in the β-fpu chain: Chaotic breathers Physica D 121 (1998) 109 126 Localization and equipartition of energy in the β-fpu chain: Chaotic breathers Thierry Cretegny a,b, Thierry Dauxois a,b,, Stefano Ruffo a,1, Alessandro Torcini a,2 a Dipartimento

More information

Chaotic transport through the solar system

Chaotic transport through the solar system The Interplanetary Superhighway Chaotic transport through the solar system Richard Taylor rtaylor@tru.ca TRU Math Seminar, April 12, 2006 p. 1 The N -Body Problem N masses interact via mutual gravitational

More information

arxiv:chao-dyn/ v1 5 Mar 1996

arxiv:chao-dyn/ v1 5 Mar 1996 Turbulence in Globally Coupled Maps M. G. Cosenza and A. Parravano Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes, A. Postal 26 La Hechicera, Mérida 5251, Venezuela (To appear,

More information

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS ANALYTICAL MECHANICS LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS Preface xi 1 LAGRANGIAN MECHANICS l 1.1 Example and Review of Newton's Mechanics: A Block Sliding on an Inclined Plane 1

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields

Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields Turbulent Magnetic Helicity Transport and the Rapid Growth of Large Scale Magnetic Fields Jungyeon Cho Dmitry Shapovalov MWMF Madison, Wisconsin April 2012 The Large Scale Dynamo The accumulation of magnetic

More information

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania THERMODYNAMICS AND AN INTRODUCTION TO THERMOSTATISTICS SECOND EDITION HERBERT B. University of Pennsylvania CALLEN JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CONTENTS PART I GENERAL

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 3 Beforehand Weak Localization and Mesoscopic Fluctuations Today

More information

arxiv:chao-dyn/ v1 4 Aug 1994

arxiv:chao-dyn/ v1 4 Aug 1994 Conditions on the existence of localized excitations in nonlinear discrete systems. arxiv:chao-dyn/9407020v1 4 Aug 1994 S. Flach Department of Physics, Boston University, Boston, Massachusetts 02215, flach@buphy.bu.edu

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits

Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICSA: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 34 (2001) 10029 10043 PII: S0305-4470(01)25097-5 Alignment indices: a new, simple method for determining

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 2, 24 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Chaos and stability in the vicinity of a Jovian planet

Chaos and stability in the vicinity of a Jovian planet BEREA COLLEGE Chaos and stability in the vicinity of a Jovian planet by Shiblee Ratan Barua Berea College /22/28 It has been widely known that the influence of large bodies (the Sun, the terrestrial and

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Nonintegrability and the Fourier heat conduction law

Nonintegrability and the Fourier heat conduction law Nonintegrability and the Fourier heat conduction law Giuliano Benenti Center for Nonlinear and Complex Systems, Univ. Insubria, Como, Italy INFN, Milano, Italy In collaboration with: Shunda Chen, Giulio

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 127a: Class Notes Lecture 15: Statistical Mechanics of Superfluidity Elementary excitations/quasiparticles In general, it is hard to list the energy eigenstates, needed to calculate the statistical

More information

Classical Statistical Mechanics: Part 1

Classical Statistical Mechanics: Part 1 Classical Statistical Mechanics: Part 1 January 16, 2013 Classical Mechanics 1-Dimensional system with 1 particle of mass m Newton s equations of motion for position x(t) and momentum p(t): ẋ(t) dx p =

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

Controlling chaotic transport in Hamiltonian systems

Controlling chaotic transport in Hamiltonian systems Controlling chaotic transport in Hamiltonian systems Guido Ciraolo Facoltà di Ingegneria, Università di Firenze via S. Marta, I-50129 Firenze, Italy Cristel Chandre, Ricardo Lima, Michel Vittot CPT-CNRS,

More information

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956

ORIGINS. E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 ORIGINS E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956 P.W. Anderson, Absence of Diffusion in Certain Random Lattices ; Phys.Rev., 1958, v.109, p.1492 L.D. Landau, Fermi-Liquid

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

QUANTUM CHAOS IN NUCLEAR PHYSICS

QUANTUM CHAOS IN NUCLEAR PHYSICS QUANTUM CHAOS IN NUCLEAR PHYSICS Investigation of quantum chaos in nuclear physics is strongly hampered by the absence of even the definition of quantum chaos, not to mention the numerical criterion of

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

Google Matrix, dynamical attractors and Ulam networks Dima Shepelyansky (CNRS, Toulouse)

Google Matrix, dynamical attractors and Ulam networks Dima Shepelyansky (CNRS, Toulouse) Google Matrix, dynamical attractors and Ulam networks Dima Shepelyansky (CNRS, Toulouse) wwwquantwareups-tlsefr/dima based on: OGiraud, BGeorgeot, DLS (CNRS, Toulouse) => PRE 8, 267 (29) DLS, OVZhirov

More information

Symplectic maps. James D. Meiss. March 4, 2008

Symplectic maps. James D. Meiss. March 4, 2008 Symplectic maps James D. Meiss March 4, 2008 First used mathematically by Hermann Weyl, the term symplectic arises from a Greek word that means twining or plaiting together. This is apt, as symplectic

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

Conference on Superconductor-Insulator Transitions May 2009

Conference on Superconductor-Insulator Transitions May 2009 2035-10 Conference on Superconductor-Insulator Transitions 18-23 May 2009 Phase transitions in strongly disordered magnets and superconductors on Bethe lattice L. Ioffe Rutgers, the State University of

More information

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/ Statistical physics and light-front quantization Jörg Raufeisen (Heidelberg U.) JR and S.J. Brodsky, Phys. Rev. D70, 085017 (2004) and hep-th/0409157 Introduction: Dirac s Forms of Hamiltonian Dynamics

More information

Chopping time of the FPU α-model

Chopping time of the FPU α-model Chopping time of the FPU α-model A. Carati A. Ponno November 24, 2017 Abstract We study, both numerically and analytically, the time needed to observe the breaking of an FPU α-chain in two or more pieces,

More information

Chaos Indicators. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N.

Chaos Indicators. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N. Maffione November 17 th 2016 Wolfgang Sakuler Introduction Major question in celestial

More information

Application of the Lanczos Algorithm to Anderson Localization

Application of the Lanczos Algorithm to Anderson Localization Application of the Lanczos Algorithm to Anderson Localization Adam Anderson The University of Chicago UW REU 2009 Advisor: David Thouless Effect of Impurities in Materials Naively, one might expect that

More information

Aditi Mitra New York University

Aditi Mitra New York University Entanglement dynamics following quantum quenches: pplications to d Floquet chern Insulator and 3d critical system diti Mitra New York University Supported by DOE-BES and NSF- DMR Daniel Yates, PhD student

More information

Soliton trains in photonic lattices

Soliton trains in photonic lattices Soliton trains in photonic lattices Yaroslav V. Kartashov, Victor A. Vysloukh, Lluis Torner ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica

More information

Basics of Statistical Mechanics

Basics of Statistical Mechanics Basics of Statistical Mechanics Review of ensembles Microcanonical, canonical, Maxwell-Boltzmann Constant pressure, temperature, volume, Thermodynamic limit Ergodicity (see online notes also) Reading assignment:

More information

Ergodicity of quantum eigenfunctions in classically chaotic systems

Ergodicity of quantum eigenfunctions in classically chaotic systems Ergodicity of quantum eigenfunctions in classically chaotic systems Mar 1, 24 Alex Barnett barnett@cims.nyu.edu Courant Institute work in collaboration with Peter Sarnak, Courant/Princeton p.1 Classical

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Title Coupled Cantilever Arrays( Disserta. https://doi.org/ /doctor.k14

Title Coupled Cantilever Arrays( Disserta. https://doi.org/ /doctor.k14 Title Studies on the Manipulation of Intr Coupled Cantilever Arrays( Disserta Author(s) Kimura, Masayuki Citation Kyoto University ( 京都大学 ) Issue Date 29-3-23 URL https://doi.org/1.14989/doctor.k14 Right

More information

On localized solutions of chains of oscillators with cubic nonlinearity

On localized solutions of chains of oscillators with cubic nonlinearity On localized solutions of chains of oscillators with cubic nonlinearity Francesco Romeo, Giuseppe Rega Dipartimento di Ingegneria Strutturale e Geotecnica, SAPIENZA Università di Roma, Italia E-mail: francesco.romeo@uniroma1.it,

More information

arxiv: v3 [cond-mat.quant-gas] 5 May 2015

arxiv: v3 [cond-mat.quant-gas] 5 May 2015 Quantum walk and Anderson localization of rotational excitations in disordered ensembles of polar molecules T. Xu and R. V. Krems 1 arxiv:151.563v3 [cond-mat.quant-gas] 5 May 215 1 Department of Chemistry,

More information

Leaking dynamical systems: a fresh view on Poincaré recurrences

Leaking dynamical systems: a fresh view on Poincaré recurrences Leaking dynamical systems: a fresh view on Poincaré recurrences Tamás Tél Eötvös University Budapest tel@general.elte.hu In collaboration with J. Schneider, Z. Neufeld, J. Schmalzl, E. G. Altmann Two types

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Lectures on Dynamical Systems. Anatoly Neishtadt

Lectures on Dynamical Systems. Anatoly Neishtadt Lectures on Dynamical Systems Anatoly Neishtadt Lectures for Mathematics Access Grid Instruction and Collaboration (MAGIC) consortium, Loughborough University, 2007 Part 3 LECTURE 14 NORMAL FORMS Resonances

More information

The Smaller (SALI) and the Generalized (GALI) Alignment Index Methods of Chaos Detection: Theory and Applications. Haris Skokos

The Smaller (SALI) and the Generalized (GALI) Alignment Index Methods of Chaos Detection: Theory and Applications. Haris Skokos The Smaller (SALI) and the Generalized (GALI) Alignment Index Methods of Chaos Detection: Theory and Applications Haris Skokos Max Planck Institute for the Physics of Complex Systems Dresden, Germany E-mail:

More information

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS

NUMERICAL METHODS FOR QUANTUM IMPURITY MODELS NUMERICAL METODS FOR QUANTUM IMPURITY MODELS http://www.staff.science.uu.nl/~mitch003/nrg.html March 2015 Andrew Mitchell, Utrecht University Quantum impurity problems Part 1: Quantum impurity problems

More information

Extensive adiabatic invariants for nonlinear chains

Extensive adiabatic invariants for nonlinear chains Noname manuscript No. (will be inserted by the editor) Antonio Giorgilli Simone Paleari Tiziano Penati Extensive adiabatic invariants for nonlinear chains Received: date / Accepted: date Abstract We look

More information

Many-Body Localization. Geoffrey Ji

Many-Body Localization. Geoffrey Ji Many-Body Localization Geoffrey Ji Outline Aside: Quantum thermalization; ETH Single-particle (Anderson) localization Many-body localization Some phenomenology (l-bit model) Numerics & Experiments Thermalization

More information

Understanding the Nonlinear Beam Dynamics of the Advanced Light Source

Understanding the Nonlinear Beam Dynamics of the Advanced Light Source LBNL-39384 UC-410 ERNESTORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Understanding the Nonlinear Beam Dynamics of the Advanced Light Source D. Robin and J. Laskar Accelerator and Fusion Research Division

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

Thermal pure quantum state

Thermal pure quantum state Thermal pure quantum state Sho Sugiura ( 杉浦祥 ) Institute for Solid State Physics, Univ. Tokyo Collaborator: Akira Shimizu (Univ. Tokyo) SS and A.Shimizu, PRL 108, 240401 (2012) SS and A.Shimizu, PRL 111,

More information

2017, James Sethna, all rights reserved. This exercise was developed in collaboration with Christopher Myers.

2017, James Sethna, all rights reserved. This exercise was developed in collaboration with Christopher Myers. Invariant measures (Sethna, "Entropy, Order Parameters, and Complexity", ex. 4.3) 2017, James Sethna, all rights reserved. This exercise was developed in collaboration with Christopher Myers. Liouville's

More information