Radical Expressions. Say Thanks to the Authors Click (No sign in required)

Size: px
Start display at page:

Download "Radical Expressions. Say Thanks to the Authors Click (No sign in required)"

Transcription

1 Radical Expressions Say Thanks to the Authors Click (No sign in required)

2 To access a customizable version of this book, as well as other interactive content, visit CK-1 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-1 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-1 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook textbooks). Copyright 01 CK-1 Foundation, The names CK-1 and CK1 and associated logos and the terms FlexBook and FlexBook Platform (collectively CK-1 Marks ) are trademarks and service marks of CK-1 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-1 Content (including CK-1 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial.0 Unported (CC BY-NC.0) License ( licenses/by-nc/.0/), as amended and updated by Creative Commons from time to time (the CC License ), which is incorporated herein by this reference. Complete terms can be found at terms-of-use. Printed: September 1, 01

3 Chapter 1. Radical Expressions CHAPTER 1 Radical Expressions Learning Objectives Use the product and quotient properties of radicals. Rationalize the denominator. Add and subtract radical expressions. Multiply radical expressions. Solve real-world problems using square root functions. Introduction A radical reverses the operation of raising a number to a power. For example, the square of 4 is 4 = 4 4 = 16, and so the square root of 16 is 4. The symbol for a square root is. This symbol is also called the radical sign. In addition to square roots, we can also take cube roots, fourth roots, and so on. For example, since 64 is the cube of 4, 4 is the cube root of = 4 since 4 = = 64 We put an index number in the top left corner of the radical sign to show which root of the number we are seeking. Square roots have an index of, but we usually don t bother to write that out. 6 = 6 = 6 The cube root of a number gives a number which when raised to the power three gives the number under the radical sign. The fourth root of number gives a number which when raised to the power four gives the number under the radical sign: 4 81 = since 4 = = 81 And so on for any power we can name. Even and Odd Roots Radical expressions that have even indices are called even roots and radical expressions that have odd indices are called odd roots. There is a very important difference between even and odd roots, because they give drastically different results when the number inside the radical sign is negative. 1

4 Any real number raised to an even power results in a positive answer. Therefore, when the index of a radical is even, the number inside the radical sign must be non-negative in order to get a real answer. On the other hand, a positive number raised to an odd power is positive and a negative number raised to an odd power is negative. Thus, a negative number inside the radical sign is not a problem. It just results in a negative answer. Example 1 Evaluate each radical expression. a) 11 b) 1 c) 4 6 d) a) 11 = 11 b) 1 = c) 6 is not a real number d) = Use the Product and Quotient Properties of Radicals Radicals can be re-written as rational powers. The radical: Example m a n is defined as a n m. Write each expression as an exponent with a rational value for the exponent. a) b) 4 a c) 4xy d) 6 x a) = 1 b) 4 a = a 1 4 c) 4xy = (4xy) 1 d) 6 x = x 6 As a result of this property, for any non-negative number a we know that n a n = a n n = a. Since roots of numbers can be treated as powers, we can use exponent rules to simplify and evaluate radical expressions. Let s review the product and quotient rule of exponents. Raising a product to a power: Raising a quotient to a power: (x y) n = x n y n ( ) x n = xn y y n

5 Chapter 1. Radical Expressions In radical notation, these properties are written as Raising a product to a power: Raising a quotient to a power: m x y = m x m y m x m x y = m y A very important application of these rules is reducing a radical expression to its simplest form. This means that we apply the root on all the factors of the number that are perfect roots and leave all factors that are not perfect roots inside the radical sign. For example, in the expression 16, the number 16 is a perfect square because 16 = 4. This means that we can simplify it as follows: 16 = 4 = 4 Thus, the square root disappears completely. On the other hand, in the expression, the number is not a perfect square, so we can t just remove the square root. However, we notice that = 16, so we can write as the product of a perfect square and another number. Thus, = 16 If we apply the raising a product to a power rule we get: = 16 = 16 Since 16 = 4, we get: = 4 = 4 Example Write the following expressions in the simplest radical form. a) 8 b) 0 1 c) 7 The strategy is to write the number under the square root as the product of a perfect square and another number. The goal is to find the highest perfect square possible; if we don t find it right away, we just repeat the procedure until we can t simplify any longer. a) We can write 8 = 4, so With the Raising a product to a power rule, that becomes 8 = Evaluate 4 and we re left with.

6 b) We can write 0 =, so: 0 = Use Raising a product to a power rule: = = c) Use Raising a quotient to a power rule to separate the fraction: 1 7 = Re-write each radical as a product of a perfect square and another number: = The same method can be applied to reduce radicals of different indices to their simplest form. Example 4 Write the following expression in the simplest radical form. a) 40 b) c) = 6 6 In these cases we look for the highest possible perfect cube, fourth power, etc. as indicated by the index of the radical. a) Here we are looking for the product of the highest perfect cube and another number. We write: 40 = 8 = 8 = b) Here we are looking for the product of the highest perfect fourth power and another number Re-write as the quotient of two radicals: 80 = Simplify each radical separately: = 4 = 16 Recombine the fraction under one radical sign: = = 4 4 c) Here we are looking for the product of the highest perfect cube root and another number. Often it s not very easy to identify the perfect root in the expression under the radical sign. In this case, we can factor the number under the radical sign completely by using a factor tree: 4

7 Chapter 1. Radical Expressions We see that 1 = =. Therefore 1 = = =. (You can find a useful tool for creating factor trees at Click on User Number to type in your own number to factor, or just click New Number for a random number if you want more practice factoring.) Now let s see some examples involving variables. Example Write the following expression in the simplest radical form. a) 1x y b) 4 10x 7 40y 9 Treat constants and each variable separately and write each expression as the products of a perfect power as indicated by the index of the radical and another number. a) Re-write as a product of radicals: Simplify each radical separately: Combine all terms outside and inside the radical sign: 1x y = 1 x y ( ) ( ) ( ) ( 4 x x y4 y = ) (x x ) (y y ) = xy xy b) x Re-write as a quotient of radicals: 7 10x 40y 9 = y x Simplify each radical separately: = 4 x y 4 y 4 y = 4 x 4 x 4 y y 4 y = x 4 x y 4 y Recombine fraction under one radical sign: = x 4 x y y Add and Subtract Radical Expressions When we add and subtract radical expressions, we can combine radical terms only when they have the same expression under the radical sign. This is a lot like combining like terms in variable expressions. For example, 4 + = = It s important to reduce all radicals to their simplest form in order to make sure that we re combining all possible like terms in the expression. For example, the expression 8 0 looks like it can t be simplified any more because it has no like terms. However, when we write each radical in its simplest form we get 10, and we can combine those terms to get 8. or

8 Example 6 Simplify the following expressions as much as possible. a) b) a) Simplify 1 to its simplest form: = = Combine like terms: = 8 b) Simplify 4 and 8 to their simplest form: = = There are no like terms. Example 7 Simplify the following expressions as much as possible. a) b) x 4x 9x a) Re-write radicals in simplest terms: = = 16 Combine like terms: = 11 b) Re-write radicals in simplest terms: Combine like terms: x x 1x x = x x 1x x = 9x x Multiply Radical Expressions When we multiply radical expressions, we use the raising a product to a power rule: m x y = m x m y. In this case we apply this rule in reverse. For example: 6 8 = 6 8 = 48 Or, in simplest radical form: 48 = 16 = 4. We ll also make use of the fact that: a a = a = a. When we multiply expressions that have numbers on both the outside and inside the radical sign, we treat the numbers outside the radical sign and the numbers inside the radical sign separately. For example, a b c d = ac bd. 6

9 Chapter 1. Radical Expressions Example 8 Multiply the following expressions. a) ( ) + b) x ( y x ) ( c) + )( ) 6 d) ( x + 1 )( x ) In each case we use distribution to eliminate the parentheses. a) Distribute inside the parentheses: ( + ) = + Use the raising a product to a power rule: = + Simplify: = b) Distribute x inside the parentheses: Multiply: = ( ) ( x y ) ( x x ) = 6 xy x Simplify: = 6 xy x c) Distribute: ( + )( ( 6) = ( ) 6) ( + ) ( ) 6 Simplify: = d) Distribute: ( x 1 )( x ) = 10 x x + x Simplify: = 11 x x Rationalize the Denominator Often when we work with radicals, we end up with a radical expression in the denominator of a fraction. It s traditional to write our fractions in a form that doesn t have radicals in the denominator, so we use a process called rationalizing the denominator to eliminate them. Rationalizing is easiest when there s just a radical and nothing else in the denominator, as in the fraction. All we have to do then is multiply the numerator and denominator by a radical expression that makes the expression inside the radical into a perfect square, cube, or whatever power is appropriate. In the example above, we multiply by : = 7

10 Cube roots and higher are a little trickier than square roots. For example, how would we rationalize 7? We can t just multiply by, because then the denominator would be. To make the denominator a whole number, we need to multiply the numerator and the denominator by : 7 = 7 = 7 Trickier still is when the expression in the denominator contains more than one term. For example, consider the expression. We can t just multiply by, because we d have to distribute that term and then the denominator + would be +. Instead, we multiply by (. This is a good choice because the product + )( ) is a product of a sum and a difference, which means it s a difference of squares. The radicals cancel each other out when we multiply ( out, and the denominator works out to + )( ) ( ) = = 4 = 1. When we multiply both the numerator and denominator by, we get: + = ( ) 4 = 4 1 = 4 Now consider the expression x 1 x y. In order to eliminate the radical expressions in the denominator we must multiply by x + y. ( )( ) x 1 x+ y x 1 x+ y We get: = ( )( ) = x y x+ xy x y x+ y x y x+ y x 4y Solve Real-World Problems Using Radical Expressions Radicals often arise in problems involving areas and volumes of geometrical figures. Example 9 A pool is twice as long as it is wide and is surrounded by a walkway of uniform width of 1 foot. The combined area of the pool and the walkway is 400 square feet. Find the dimensions of the pool and the area of the pool. Make a sketch: 8

11 Chapter 1. Radical Expressions Let x = the width of the pool. Then: Area = length width Combined length of pool and walkway = x + Combined width of pool and walkway = x + Area = (x + )(x + ) Since the combined area of pool and walkway is 400 ft we can write the equation (x + )(x + ) = 400 Multiply in order to eliminate the parentheses: x + 4x + x + 4 = 400 Collect like terms: x + 6x + 4 = 400 Move all terms to one side of the equation: x + 6x 96 = 0 Divide all terms by : x + x 198 = 0 Use the quadratic formula: x = b ± b 4ac a x = ± 4(1)( 198) (1) x = ± 801 = x = 1.6 f eet ± 8. (The other answer is negative, so we can throw it out because only a positive number makes sense for the width of a swimming pool.) Check by plugging the result in the area formula: Area = ((1.6) + )(1.6 + ) = = 400 ft. The answer checks out. Example 10 The volume of a soda can is cm. The height of the can is four times the radius of the base. Find the radius of the base of the cylinder. Make a sketch: Let x = the radius of the cylinder base. Then the height of the cylinder is 4x. 9

12 The volume of a cylinder is given by V = πr h; in this case, R is x and h is 4x, and we know the volume is. Solve the equation: = πx (4x) = 4πx x = 4π x = 4π Check by substituting the result back into the formula: =.046 cm So the volume is cm. The answer checks out. V = πr h = π(.046) (4.046) = cm Review Questions Evaluate each radical expression Write each expression as a rational exponent zw 7. a 9 8. y Write the following expressions in simplest radical form x 8 48a b 7 16x 1y 4 Simplify the following expressions as much as possible. 10

13 Chapter 1. Radical Expressions x 4x 98x 1. 48a + 7a. 4x + x 6 Multiply the following expressions ( ) ( a b )( a + b ) ( x + )( x + ) Rationalize the denominator x 8. x 9. y x + x y y 4. The volume of a spherical balloon is 90 cm. Find the radius of the balloon. (Volume of a sphere = 4 πr ).. A rectangular picture is 9 inches wide and 1 inches long. The picture has a frame of uniform width. If the combined area of picture and frame is 180 in, what is the width of the frame? 11

2.2 Radical Expressions I

2.2 Radical Expressions I 2.2 Radical Expressions I Learning objectives Use the product and quotient properties of radicals to simplify radicals. Add and subtract radical expressions. Solve real-world problems using square root

More information

Solving Absolute Value Equations and Inequalities

Solving Absolute Value Equations and Inequalities Solving Absolute Value Equations and Inequalities Say Thanks to the Authors Click http://www.ck1.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Inverse Functions. Say Thanks to the Authors Click (No sign in required)

Inverse Functions. Say Thanks to the Authors Click  (No sign in required) Inverse Functions Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

The Pythagorean Theorem and Its Converse

The Pythagorean Theorem and Its Converse The Pythagorean Theorem and Its Converse Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Area of Circles. Say Thanks to the Authors Click (No sign in required)

Area of Circles. Say Thanks to the Authors Click  (No sign in required) Area of Circles Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Determining the Best Method to Solve a Linear System

Determining the Best Method to Solve a Linear System Determining the Best Method to Solve a Linear System Lori Jordan Kate Dirga Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this

More information

Polynomials. Eve Rawley, (EveR) Anne Gloag, (AnneG) Andrew Gloag, (AndrewG)

Polynomials. Eve Rawley, (EveR) Anne Gloag, (AnneG) Andrew Gloag, (AndrewG) Polynomials Eve Rawley, (EveR) Anne Gloag, (AnneG) Andrew Gloag, (AndrewG) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book,

More information

Intermediate Algebra Textbook for Skyline College

Intermediate Algebra Textbook for Skyline College Intermediate Algebra Textbook for Skyline College Andrew Gloag Anne Gloag Mara Landers Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org To access a customizable

More information

Using Similar Right Triangles

Using Similar Right Triangles Using Similar Right Triangles Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit

More information

Applying the Pythagorean Theorem

Applying the Pythagorean Theorem Applying the Pythagorean Theorem Laura Swenson, (LSwenson) Joy Sheng, (JSheng) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this

More information

Complex Numbers CK-12. Say Thanks to the Authors Click (No sign in required)

Complex Numbers CK-12. Say Thanks to the Authors Click  (No sign in required) Complex Numbers CK-12 Say Thanks to the Authors Click http://www.ck12.org/saythanks No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Intermediate Algebra

Intermediate Algebra Intermediate Algebra Anne Gloag Andrew Gloag Mara Landers Remixed by James Sousa Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org To access a customizable

More information

Significant Figures. CK12 Editor. Say Thanks to the Authors Click (No sign in required)

Significant Figures. CK12 Editor. Say Thanks to the Authors Click  (No sign in required) Significant Figures CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content,

More information

Suspensions. Ck12 Science. Say Thanks to the Authors Click (No sign in required)

Suspensions. Ck12 Science. Say Thanks to the Authors Click  (No sign in required) Suspensions Ck12 Science Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

MAHS-DV Algebra 1-2 Q4

MAHS-DV Algebra 1-2 Q4 MAHS-DV Algebra 1-2 Q4 Adrienne Wooten Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org To access a customizable version of this book, as well as other interactive

More information

Vectors (Trigonometry Explanation)

Vectors (Trigonometry Explanation) Vectors (Trigonometry Explanation) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Midpoints and Bisectors

Midpoints and Bisectors Midpoints and Bisectors Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Circumference and Arc Length

Circumference and Arc Length Circumference and Arc Length Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit

More information

Inside the Atom. Say Thanks to the Authors Click (No sign in required)

Inside the Atom. Say Thanks to the Authors Click   (No sign in required) Inside the Atom Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Inside the Atom. Say Thanks to the Authors Click (No sign in required)

Inside the Atom. Say Thanks to the Authors Click   (No sign in required) Inside the Atom Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

The Law of Cosines. Say Thanks to the Authors Click (No sign in required)

The Law of Cosines. Say Thanks to the Authors Click  (No sign in required) The Law of Cosines Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Two-Column Proofs. Bill Zahner Lori Jordan. Say Thanks to the Authors Click (No sign in required)

Two-Column Proofs. Bill Zahner Lori Jordan. Say Thanks to the Authors Click   (No sign in required) Two-Column Proofs Bill Zahner Lori Jordan Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Inverse Functions and Trigonometric Equations - Solution Key

Inverse Functions and Trigonometric Equations - Solution Key Inverse Functions and Trigonometric Equations - Solution Key CK Editor Say Thanks to the Authors Click http://www.ck.org/saythanks (No sign in required To access a customizable version of this book, as

More information

Trigonometric Ratios. Lori Jordan Kate Dirga. Say Thanks to the Authors Click (No sign in required)

Trigonometric Ratios. Lori Jordan Kate Dirga. Say Thanks to the Authors Click   (No sign in required) Trigonometric Ratios Lori Jordan Kate Dirga Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Gravity. James H Dann, Ph.D. Say Thanks to the Authors Click (No sign in required)

Gravity. James H Dann, Ph.D. Say Thanks to the Authors Click   (No sign in required) Gravity James H Dann, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit

More information

Properties of Arcs. Say Thanks to the Authors Click (No sign in required)

Properties of Arcs. Say Thanks to the Authors Click   (No sign in required) Properties of Arcs Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Inequalities. CK12 Editor. Say Thanks to the Authors Click (No sign in required)

Inequalities. CK12 Editor. Say Thanks to the Authors Click  (No sign in required) Inequalities CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Correlation Using Relative Ages

Correlation Using Relative Ages Correlation Using Relative Ages Dana Desonie, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Quadratic Equations and Quadratic Functions

Quadratic Equations and Quadratic Functions Quadratic Equations and Quadratic Functions Andrew Gloag Anne Gloag Say Thanks to the Authors Click http://www.ck1.org/saythanks (No sign in required) To access a customizable version of this book, as

More information

Acids and Bases. Say Thanks to the Authors Click (No sign in required)

Acids and Bases. Say Thanks to the Authors Click  (No sign in required) Acids and Bases Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

History of the Pythagorean Theorem

History of the Pythagorean Theorem History of the Pythagorean Theorem Laura Swenson, (LSwenson) Joy Sheng, (JSheng) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of

More information

History of the Atom. Say Thanks to the Authors Click (No sign in required)

History of the Atom. Say Thanks to the Authors Click   (No sign in required) History of the Atom Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

The Shape, Center and Spread of a Normal Distribution - Basic

The Shape, Center and Spread of a Normal Distribution - Basic The Shape, Center and Spread of a Normal Distribution - Basic Brenda Meery, (BrendaM) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version

More information

Galaxies. Say Thanks to the Authors Click (No sign in required)

Galaxies. Say Thanks to the Authors Click  (No sign in required) Galaxies Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12

More information

Electron Arrangement

Electron Arrangement Electron Arrangement Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion James H Dann, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Inclined Planes. Say Thanks to the Authors Click (No sign in required)

Inclined Planes. Say Thanks to the Authors Click  (No sign in required) Inclined Planes Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Polar Equations and Complex Numbers

Polar Equations and Complex Numbers Polar Equations and Complex Numbers Art Fortgang, (ArtF) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit

More information

Solids, Liquids, Gases, and Plasmas

Solids, Liquids, Gases, and Plasmas Solids, Liquids, Gases, and Plasmas Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content,

More information

CK-12 FOUNDATION. Separating Mixtures. Say Thanks to the Authors Click (No sign in required)

CK-12 FOUNDATION. Separating Mixtures. Say Thanks to the Authors Click   (No sign in required) CK-12 FOUNDATION Separating Mixtures Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) Forsythe Robinson To access a customizable version of this book, as well as other

More information

Electrochemistry Worksheets

Electrochemistry Worksheets Electrochemistry Worksheets Donald Calbreath, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Ozone Depletion. Dana Desonie, Ph.D. Say Thanks to the Authors Click (No sign in required)

Ozone Depletion. Dana Desonie, Ph.D. Say Thanks to the Authors Click  (No sign in required) Ozone Depletion Dana Desonie, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content,

More information

CK-12 Math Analysis. Mara Landers Nick Fiori Art Fortgang Raja Almukahhal Melissa Vigil

CK-12 Math Analysis. Mara Landers Nick Fiori Art Fortgang Raja Almukahhal Melissa Vigil CK-12 Math Analysis Mara Landers Nick Fiori Art Fortgang Raja Almukahhal Melissa Vigil Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org To access a customizable

More information

Ions and Ion Formation

Ions and Ion Formation Ions and Ion Formation Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Electric Circuits: Capacitors

Electric Circuits: Capacitors Electric Circuits: Capacitors James H Dann, Ph.D. Say Thanks to the Authors Click http://www.ck2.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Quadratic Equations and Quadratic Functions

Quadratic Equations and Quadratic Functions Quadratic Equations and Quadratic Functions Eve Rawley, (EveR) Anne Gloag, (AnneG) Andrew Gloag, (AndrewG) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access

More information

Electricity Worksheets

Electricity Worksheets Electricity Worksheets Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Cell Division - Teacher s Guide (Human Biology)

Cell Division - Teacher s Guide (Human Biology) Cell Division - Teacher s Guide (Human Biology) The Program in Human Biology, Stanford Uni- versity, (HumBio) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required)

More information

LESSON 9.1 ROOTS AND RADICALS

LESSON 9.1 ROOTS AND RADICALS LESSON 9.1 ROOTS AND RADICALS LESSON 9.1 ROOTS AND RADICALS 67 OVERVIEW Here s what you ll learn in this lesson: Square Roots and Cube Roots a. Definition of square root and cube root b. Radicand, radical

More information

Polynomials and Factoring

Polynomials and Factoring Polynomials and Factoring Andrew Gloag Melissa Kramer Anne Gloag Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well

More information

Electron Configuration and the Periodic Table C-SE-TE

Electron Configuration and the Periodic Table C-SE-TE Electron Configuration and the Periodic Table C-SE-TE Richard Parsons, (RichardP) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of

More information

Contents. To the Teacher... v

Contents. To the Teacher... v Katherine & Scott Robillard Contents To the Teacher........................................... v Linear Equations................................................ 1 Linear Inequalities..............................................

More information

2.4 Radical Equations

2.4 Radical Equations 2.4. Radical Equations www.ck12.org 2.4 Radical Equations Learning Objectives Solve a radical equation. Solve radical equations with radicals on both sides. Identify extraneous solutions. Solve real-world

More information

Introduction to Prokaryotes

Introduction to Prokaryotes Introduction to Prokaryotes Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit

More information

In a previous lesson, we solved certain quadratic equations by taking the square root of both sides of the equation.

In a previous lesson, we solved certain quadratic equations by taking the square root of both sides of the equation. In a previous lesson, we solved certain quadratic equations by taking the square root of both sides of the equation. x = 36 (x 3) = 8 x = ± 36 x 3 = ± 8 x = ±6 x = 3 ± Taking the square root of both sides

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content,

More information

Systems of Linear Equations and Inequalities

Systems of Linear Equations and Inequalities Systems of Linear Equations and Inequalities Lori Jordan Kate Dirga Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as

More information

Predicting Formulas of Ionic Compounds

Predicting Formulas of Ionic Compounds Predicting Formulas of Ionic Compounds CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

Section 3.7: Solving Radical Equations

Section 3.7: Solving Radical Equations Objective: Solve equations with radicals and check for extraneous solutions. In this section, we solve equations that have roots in the problem. As you might expect, to clear a root we can raise both sides

More information

12.2 Simplifying Radical Expressions

12.2 Simplifying Radical Expressions Name Class Date 1. Simplifying Radical Expressions Essential Question: How can you simplify expressions containing rational exponents or radicals involving nth roots? Explore A.7.G Rewrite radical expressions

More information

Never leave a NEGATIVE EXPONENT or a ZERO EXPONENT in an answer in simplest form!!!!!

Never leave a NEGATIVE EXPONENT or a ZERO EXPONENT in an answer in simplest form!!!!! 1 ICM Unit 0 Algebra Rules Lesson 1 Rules of Exponents RULE EXAMPLE EXPLANANTION a m a n = a m+n A) x x 6 = B) x 4 y 8 x 3 yz = When multiplying with like bases, keep the base and add the exponents. a

More information

Summer Work for students entering PreCalculus

Summer Work for students entering PreCalculus Summer Work for students entering PreCalculus Name Directions: The following packet represent a review of topics you learned in Algebra 1, Geometry, and Algebra 2. Complete your summer packet on separate

More information

7.5 Rationalizing Denominators and Numerators of Radical Expressions

7.5 Rationalizing Denominators and Numerators of Radical Expressions 440 CHAPTER Rational Exponents, Radicals, and Complex Numbers 86. Find the area and perimeter of the trapezoid. (Hint: The area of a trapezoid is the product of half the height 6 meters and the sum of

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II. 2 nd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES. ALGEBRA I Part II. 2 nd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I Part II 2 nd Nine Weeks, 2016-2017 1 OVERVIEW Algebra I Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

Summer Work for students entering PreCalculus

Summer Work for students entering PreCalculus Summer Work for students entering PreCalculus Name Directions: The following packet represent a review of topics you learned in Algebra 1, Geometry, and Algebra 2. Complete your summer packet on separate

More information

Use properties of exponents. Use the properties of rational exponents to simplify the expression. 12 d.

Use properties of exponents. Use the properties of rational exponents to simplify the expression. 12 d. EXAMPLE 1 Use properties of exponents Use the properties of rational exponents to simplify the expression. a. 7 1/ 7 1/2 7 (1/ + 1/2) 7 / b. (6 1/2 1/ ) 2 (6 1/2 ) 2 ( 1/ ) 2 6( 1/2 2 ) ( 1/ 2 ) 6 1 2/

More information

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n

EXPONENT REVIEW!!! Concept Byte (Review): Properties of Exponents. Property of Exponents: Product of Powers. x m x n = x m + n Algebra B: Chapter 6 Notes 1 EXPONENT REVIEW!!! Concept Byte (Review): Properties of Eponents Recall from Algebra 1, the Properties (Rules) of Eponents. Property of Eponents: Product of Powers m n = m

More information

4.4 Rational Expressions

4.4 Rational Expressions 4.4 Rational Epressions Learning Objectives Simplify rational epressions. Find ecluded values of rational epressions. Simplify rational models of real-world situations. Introduction A rational epression

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Lori Jordan Kate Dirga Say Thanks to the Authors Click http://www.ck1.org/saythanks (No sign in required) To access a customizable version of this book, as well as

More information

Equations. Rational Equations. Example. 2 x. a b c 2a. Examine each denominator to find values that would cause the denominator to equal zero

Equations. Rational Equations. Example. 2 x. a b c 2a. Examine each denominator to find values that would cause the denominator to equal zero Solving Other Types of Equations Rational Equations Examine each denominator to find values that would cause the denominator to equal zero Multiply each term by the LCD or If two terms cross-multiply Solve,

More information

Basic Physics SE-Motion

Basic Physics SE-Motion Basic Physics SE-Motion James H. Dann, Ph.D. (JamesHD) James J. Dann, (JamesJD) Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this

More information

Evidence of Evolution

Evidence of Evolution Evidence of Evolution Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

12.2 Simplifying Radical Expressions

12.2 Simplifying Radical Expressions x n a a m 1 1 1 1 Locker LESSON 1. Simplifying Radical Expressions Texas Math Standards The student is expected to: A.7.G Rewrite radical expressions that contain variables to equivalent forms. Mathematical

More information

Part 2 - Beginning Algebra Summary

Part 2 - Beginning Algebra Summary Part - Beginning Algebra Summary Page 1 of 4 1/1/01 1. Numbers... 1.1. Number Lines... 1.. Interval Notation.... Inequalities... 4.1. Linear with 1 Variable... 4. Linear Equations... 5.1. The Cartesian

More information

Algebra I. Exponents and Polynomials. Name

Algebra I. Exponents and Polynomials. Name Algebra I Exponents and Polynomials Name 1 2 UNIT SELF-TEST QUESTIONS The Unit Organizer #6 2 LAST UNIT /Experience NAME 4 BIGGER PICTURE DATE Operations with Numbers and Variables 1 CURRENT CURRENT UNIT

More information

Intermediate Algebra

Intermediate Algebra Intermediate Algebra George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 102 George Voutsadakis (LSSU) Intermediate Algebra August 2013 1 / 40 Outline 1 Radicals

More information

Note-Taking Guides. How to use these documents for success

Note-Taking Guides. How to use these documents for success 1 Note-Taking Guides How to use these documents for success Print all the pages for the module. Open the first lesson on the computer. Fill in the guide as you read. Do the practice problems on notebook

More information

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS:

Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS: Math 2 Variable Manipulation Part 2 Powers & Roots PROPERTIES OF EXPONENTS: 1 EXPONENT REVIEW PROBLEMS: 2 1. 2x + x x + x + 5 =? 2. (x 2 + x) (x + 2) =?. The expression 8x (7x 6 x 5 ) is equivalent to?.

More information

Unit 5 AB Quadratic Expressions and Equations 1/9/2017 2/8/2017

Unit 5 AB Quadratic Expressions and Equations 1/9/2017 2/8/2017 Unit 5 AB Quadratic Expressions and Equations 1/9/2017 2/8/2017 Name: By the end of this unit, you will be able to Add, subtract, and multiply polynomials Solve equations involving the products of monomials

More information

SOLUTIONS FOR PROBLEMS 1-30

SOLUTIONS FOR PROBLEMS 1-30 . Answer: 5 Evaluate x x + 9 for x SOLUTIONS FOR PROBLEMS - 0 When substituting x in x be sure to do the exponent before the multiplication by to get (). + 9 5 + When multiplying ( ) so that ( 7) ( ).

More information

Chapter 3: Factors, Roots, and Powers

Chapter 3: Factors, Roots, and Powers Chapter 3: Factors, Roots, and Powers Section 3.1 Chapter 3: Factors, Roots, and Powers Section 3.1: Factors and Multiples of Whole Numbers Terminology: Prime Numbers: Any natural number that has exactly

More information

Polar System. Bradley Hughes Larry Ottman Lori Jordan Mara Landers Andrea Hayes Brenda Meery Art Fortgang

Polar System. Bradley Hughes Larry Ottman Lori Jordan Mara Landers Andrea Hayes Brenda Meery Art Fortgang Polar System Bradley Hughes Larry Ottman Lori Jordan Mara Landers Andrea Hayes Brenda Meery Art Fortgang Say Thanks to the Authors Click http://www.ck12.org/saythanks No sign in required) To access a customizable

More information

Chapter 9, Quadratics from Beginning and Intermediate Algebra by Tyler Wallace is available under a Creative Commons Attribution 3.

Chapter 9, Quadratics from Beginning and Intermediate Algebra by Tyler Wallace is available under a Creative Commons Attribution 3. Chapter 9, Quadratics from Beginning and Intermediate Algebra by Tyler Wallace is available under a Creative Commons Attribution 3.0 Unported license. 010. 9.1 Quadratics - Solving with Radicals Objective:

More information

MA094 Part 2 - Beginning Algebra Summary

MA094 Part 2 - Beginning Algebra Summary MA094 Part - Beginning Algebra Summary Page of 8/8/0 Big Picture Algebra is Solving Equations with Variables* Variable Variables Linear Equations x 0 MA090 Solution: Point 0 Linear Inequalities x < 0 page

More information

b) Write the contrapositive of this given statement: If I finish ALEKS, then I get points.

b) Write the contrapositive of this given statement: If I finish ALEKS, then I get points. Math 141 Name: QUIZ 1A (CHAPTER 0: PRELIMINARY TOPICS) MATH 141 SPRING 2019 KUNIYUKI 90 POINTS TOTAL No notes or books allowed. A scientific calculator is allowed. Simplify as appropriate. Check one: Can

More information

Working with Square Roots. Return to Table of Contents

Working with Square Roots. Return to Table of Contents Working with Square Roots Return to Table of Contents 36 Square Roots Recall... * Teacher Notes 37 Square Roots All of these numbers can be written with a square. Since the square is the inverse of the

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

CALC 3 CONCEPT PACKET Complete

CALC 3 CONCEPT PACKET Complete CALC 3 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

Math 096--Quadratic Formula page 1

Math 096--Quadratic Formula page 1 Math 096--Quadratic Formula page 1 A Quadratic Formula. Use the quadratic formula to solve quadratic equations ax + bx + c = 0 when the equations can t be factored. To use the quadratic formula, the equation

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Overview: 2.2 Polynomial Functions of Higher Degree 2.3 Real Zeros of Polynomial Functions 2.4 Complex Numbers 2.5 The Fundamental Theorem of Algebra 2.6 Rational

More information

Math Lecture 23 Notes

Math Lecture 23 Notes Math 1010 - Lecture 23 Notes Dylan Zwick Fall 2009 In today s lecture we ll expand upon the concept of radicals and radical expressions, and discuss how we can deal with equations involving these radical

More information

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc.

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc. Section 2.1-2.2 September 6, 2017 1 Polynomials Definition. A polynomial is an expression of the form a n x n + a n 1 x n 1 + + a 1 x + a 0 where each a 0, a 1,, a n are real numbers, a n 0, and n is a

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

10.1. Square Roots and Square- Root Functions 2/20/2018. Exponents and Radicals. Radical Expressions and Functions

10.1. Square Roots and Square- Root Functions 2/20/2018. Exponents and Radicals. Radical Expressions and Functions 10 Exponents and Radicals 10.1 Radical Expressions and Functions 10.2 Rational Numbers as Exponents 10.3 Multiplying Radical Expressions 10.4 Dividing Radical Expressions 10.5 Expressions Containing Several

More information

Math 1320, Section 10 Quiz IV Solutions 20 Points

Math 1320, Section 10 Quiz IV Solutions 20 Points Math 1320, Section 10 Quiz IV Solutions 20 Points Please answer each question. To receive full credit you must show all work and give answers in simplest form. Cell phones and graphing calculators are

More information

Using Properties of Exponents

Using Properties of Exponents 6.1 Using Properties of Exponents Goals p Use properties of exponents to evaluate and simplify expressions involving powers. p Use exponents and scientific notation to solve real-life problems. VOCABULARY

More information

Secondary Math 2H Unit 3 Notes: Factoring and Solving Quadratics

Secondary Math 2H Unit 3 Notes: Factoring and Solving Quadratics Secondary Math H Unit 3 Notes: Factoring and Solving Quadratics 3.1 Factoring out the Greatest Common Factor (GCF) Factoring: The reverse of multiplying. It means figuring out what you would multiply together

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Rationalize the denominator and simplify. 1 1) B) C) 1 D) 1 ) Identify the pair of like

More information

Chapter 4 Exponents and Radicals 4.1 Square Roots and Cube Roots 1. a) 81 b) 225 c) 625 d) 4 9

Chapter 4 Exponents and Radicals 4.1 Square Roots and Cube Roots 1. a) 81 b) 225 c) 625 d) 4 9 Chapter Exponents and Radicals.1 Square Roots and Cube Roots 1. a) 1 5 c) 5 d) 9 e) 5 f ) ( 9 ). a) 79 7 c) 1 d) e) 1 f ) 15. a) 5 1 c) d) e) f ) 7 g) 1 h) x i) 7a 1b. a) c) 1 d) 0 e) f ) 5 g) 7 h) 5y

More information