Course Secretary: Christine Berber O3.095, phone x-6351,

Size: px
Start display at page:

Download "Course Secretary: Christine Berber O3.095, phone x-6351,"

Transcription

1 IMPRS: Ultrafast Source Technologies Franz X. Kärtner (Umit Demirbas) & Thorsten Uphues, Bldg. 99, O3.097 & Room 6/3 & phone: Course Secretary: Christine Berber O3.095, phone x-6351, Class website: 1

2 General Information Prerequisites: Basic course in electrodynamics Text: Class notes will be distributed in class. Grade: None Recommended Texts: Fundamentals of Photonics, B.E.A. Saleh and M.C. Teich, Wiley, Ultrafast Optics, A. M. Weiner, Hoboken, NJ, Wiley 009. Ultrashort Laser Pulse Phenomena, Diels and Rudolph, Elsevier/Academic Press, 006 Optics, Hecht and Zajac, Addison and Wesley Publishing Co., Principles of Lasers, O. Svelto, Plenum Press, NY, Waves and Fields in Optoelectronics, H. A. Haus, Prentice Hall, NJ, Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron Radiation Sources, W. B. Peatman, Gordon and Breach Science Publishers, Soft X-ray and Extreme Ultraviolet Radiation, David Attwood, Cambridge University Press, 1999

3 Schedule Lecturer Topic Time Location Kärtner (Demirbas) Uphues Kärtner (Demirbas) Uphues Uphues Uphues Classical Optics Basic Technologies Ultrafast Lasers Ultrafast Electron Sources High Order Harmonic Gen. Synchrotron sources Tuesday Feb. 14, 9:30-11:30 am Thursday Feb. 16 Tuesday Feb. 1 Thursday Feb. 3 Tuesday Feb. 8 Thursday March Bldg. 99 Room IV, 1.OG Bldg. 99 Room IV, 1.OG Bldg. 99 Room IV, 1.OG Bldg. 99 Room IV, 1.OG Bldg. 99 Room IV, 1.OG Bldg. 99 Room IV, 1.OG 3

4 Classical Optics Classical Optics.1 Maxwell s Equations and Helmholtz Equation.1.1 Helmholtz Equation.1. Plane-Wave Solutions (TEM-Waves) and Complex Notation.1.3 Poynting Vectors, Energy Density and Intensity. Paraxial Wave Equation.3 Gaussian Beams.4 Ray Propagation.5 Gaussian Beam Propagation.6 Optical Resonators 4

5 . Classical Optics.1 Maxwell s Equations of Isotropic Media Maxwell s Equations: Differential Form Ampere s Law Current due to free charges Faraday s Law Gauss s Law No magnetic charge Free charge density Material Equations: Bring Life into Maxwell s Equations Polarization Magnetization 5

6 Classical Optics Vector Identity: Vacuum speed of light: 6

7 Classical Optics No free charges, No currents from free charges, Nonmagnetic Every field can be written as the sum of tansverse and longitudinal fields: Only free charges create a longitudinal electric field: Pure radiation field Simplified wave equation: Wave in vacuum Source term 7

8 .1.1 Helmholtz Equation Linear, local medium dielectric susceptibility Medium speed of light: with Refractive Index 8

9 .1. Plane-Wave Solutions (TEM-Waves) and Compl. Notation Real field: Artificial, complex field: Into wave equation (.16): Dispersion relation: Wavelength 9

10 TEM-Waves 10

11 What about the magnetic field? TEM-Waves Faraday s Law: 11

12 Characteristic Impedance Vacuum Impedance: εr = 1 + χω ( ) Example: EM-Wave polarized along x-axis and propagation along z-direction: 1

13 Backwards Traveling Wave Backwards 13

14 .1.3 Poynting Vector, Energy Density and Intensity relative permittivity: εr = 1+ χ Example: Plane Wave: 14

15 A plane wave is described by: ~ E( x, y, z). Paraxial Wave Equation ~ = e E exp x 0 kx + k y kz 0 k + [ jk x jk y jk z] x = free space wavenumber y z Although a plane wave is a useful model, strictly speaking it cannot be realized in practice, because it fills whole space and carries infinite energy. Maxwell s equations are linear, so a sum of solutions is also a solution. An arbitrary beam can be can be formed as a superposition of multiple plane waves: ~ E( x, y, z) + + ~ = E exp 0 [ jk ] xx jk y y jkz z dkxdk y there is no integral over k z because once k x and k y are fixed, k z is constrained by dispersion relation 0 = kx + k y kz k + 15

16 Paraxial Beam Consider a beam which consists of plane waves propagating at small angles with z axis such a beam y is called a paraxial beam x k k x << k z k << y k z z Figure.: Construction of paraxial beam by superimposing many plane waves with a dominant k-component in z-direction k z can be approximated as (paraxial approximation) 16

17 Paraxial Diffraction Integral The beam ~ E( x, y, z) + + ~ = E ( k, k ) exp 0 x y [ jk ] xx jk y y jkzz dkxdk y can then be expressed as ~ jk 0 z E( x, y, z) = e + + ~ E 0 ( k x, k y )exp kx + k j k0 y z jk x x jk y y dk x dk y quickly varying carrier wave slowly varying envelope (changing slowly along z) Allows to find field distribution at any point in space. The beam profile is changing as it propagates in free space. This is called diffraction. 17

18 Paraxial Diffraction Integral Finding Field at Arbitrary z Given the field at some plane (e.g. z=0), how to find the field at any z? From the previous slide ~ jk 0 z E( x, y, z) At z=0 = e ~ E( x, + + ~ E 0 ( k x, k y )exp x kx + k j k0 + + ~ y, z = 0) = E ( k, k ) exp 0 y y z jk x x jk y y dk [ jk ] xx jk y y dkxdk y x dk y This is Fourier integral. Using Fourier transforms: ~ E 0 ( k x, k y ) ~ = E( x, y, z = 0) exp[ jkxx + jk y y]dxdy (π ) ~ ~ ~ Knowing E( x, y, z = 0) can find E ( k x, k ) and then E( x, y, z) at any z. 0 y 18

19 .3 Gaussian Beam Choose transverse Gaussian distribution of plane wave amplitudes: (Via Fourier transforms, this is equivalent to choosing Gaussian transversal field distribution at z=0) Substitution into paraxial diffraction integral gives with called Rayleigh range. Performing the integration (i.e. taking Fourier transforms of a Gaussian) 19

20 Gaussian Beam The quantity 1/( z + jzr ) 1 z + jz 1 R = z R ( z) z + z z z R can be expressed as + jz z R R 1 R( z) j λ π w where R(z) and w(z) are introduced according to The pre-factor j z + jz We get R j /( z + jzr ) exp( jζ ( z)) = z + z ~ E R ( r, z) = ~ ( z) λ z π w + R ( z) z zr can be expressed as λ π z R 1 exp( jζ ( z)) w( z) with 1 r r exp jk0 + jζ ( ) w( z) w ( z) R( z) 0 z tan ζ ( z ) = z / zr 0

21 1 Finally, the field is normalized, giving + = ) ( ) ( ) ( exp ) ( 1 4 ), ( ~ z j z R r jk z w r z w P Z z r E F ζ π Field of a Gaussian beam Normalization means that the total power carried by the beam is P: Final Expression for Gaussian Beam Field

22 Gaussian Beams: Spot Size and Rayleigh Range We derived ~ 4Z F 0P 1 r r E ( r, z) = exp jk0 + jζ ( π w( z) w ( z) R( z) 0 z ) Field of a Gaussian beam We have Defines transversal intensity distribution λ z π w + R ( z) z zr I r r, z) ~ exp w ( z) λ w ( z) = zr 1 + π ( z z R w(z) spot size Spot size at z=0 is min w λ ( 0) = z w π z R = R π w 0 λ 0 Rayleigh range w ( ) 0 1 z z = w + z R spot size as a function of z

23 We derived Gaussian Beams: Phase Distribution ~ 4Z F 0P 1 r r E ( r, z) = exp jk0 + jζ ( π w( z) w ( z) R( z) 0 z ) Field of a Gaussian beam We have 1 ( z R z) z + z R R( z) = z 1 + defines phase distribution z z R Radius of wavefront curvature Phase fronts (surfaces of constant phase) are parabolic, can be approximated as spherical for small r. R(z) turns out to be the radius of the sphere. ζ ( z ) = arctan / ( z ) z R Guoy phase shift Defines extra phase shift as compared to plane wave 3

24 Gaussian Beams: All Equations in One Slide ~ 4Z F 0P 1 r r E ( r, z) = exp jk0 + jζ ( π w( z) w ( z) R( z) 0 z ) Gaussian Beam Field w ( z ) 0 1 z = w + z R R( z) = z 1 + z z R Spot size w 0 min spot size (z=0) Radius of wavefront curvature (.54) (.55) ζ ( z) = arctan z z R Guoy phase shift (.65) z R = π w 0 λ Rayleigh range (.56) 4

25 Intensity Distribution z=0 z=z R z=z R Figure.3: The normalized beam intensity I/I₀ as a function of the radial distance r at different axial distances: (a) z=0, (b) z=z R (c) z=z R. 5

26 Spot Size as a Function of z Spot size w ( ) 0 1 z z = w + z R Waist: minimum radius At z = z R Rayleigh range : distance from the waist at which the spot area doubles 4 4 waist w( z) w( z) w0 0 0 w(z) w 0 w z zr 0z z z 3z 3 R 3z R R z.r R R 6

27 Divergence Angle and Confocal Parameter For large z z z w( z) = w0 1+ w0 z R z R Divergence angle θ ( ) w w z 0 z zr Beam Divergence: Smaller spot size larger divergence Confocal parameter and depth of focus: Figure.5: Gaussian beam and its characteristics 7

28 Axial Intensity Distribution r=0 Intensity distribution along Z axis (r=0) Figure.4: Normalized beam intensity I(r=0)/I₀ on the beam axis as a function of propagation distance z. 8

29 Power Confinement Which fraction of the total power is confined within radius r 0 from the axis? Dependence is exponential 99% of the power is within radius of 1.5 w(z) from the axis 9

30 Wavefront Wavefronts, i.e. surfaces of constant phase, are parabolic constant Figure.8: Wavefronts of Gaussian beam 30

31 Wavefront and Radius of Curvature Wavefront radius of curvature: R( z) = z 1 + z z R Figure.7: Radius of curvature R(z) 31

32 Comparison to Plane and Spherical Waves Figure.9: Wave fronts of (a) a uniform plane wave, (b) a spherical wave; (c) a Gaussian beam. 3

33 Guoy Phase Shift Phase delay of Gaussian Beam, Guoy-Phase Shift: Figure.6: Phase delay of Gaussian beam, Guoy-Phase-Shift 33

34 Gaussian Beams: Summary Solution of wave equation in paraxial approximation Wave confined in space and with finite amount of power Intensity distribution in any cross-section has the same shape (Gaussian), only size and magnitude is scaled At the waist, the spot size is minimum and wave fronts are flat Lasers are usually built to generate Gaussian beams Planes of const. Phase Beam Waist z/z R 34

35 .4 Ray Propagation 1 r 1 Optical r 1 System r r Z Figure.10: Description of optical ray propagation by its distance and inclination from the optical axis. 35

36 Ray Matrix: Transition medium 1 to 1 n 1 n r 1 θ 1 r 1 r r θ Figure.11: Snell s law for paraxial rays. Z 36

37 Ray Matrix: Propagation over Distance L 1 r r 1 r r 1 L Z Figure.1: Free space propagation 37

38 Prop. in Medium with Index n over Distance L 1 r r 1 r r 1 L Z Figure.13: Ray propagation through a medium with refractive index n. 38

39 Thin Plano-convex Lens r 1 α r 1 r r α 0 R Z for n 1 n Figure.14: Derivation of ABCD-matrix of a thin plano-convex lens. 39

40 Biconvex Lens and Focussing Biconvex Lens r 1 f z Figure.15: Imaging of parallel rays through a lens with focal length f 40

41 Concave Mirror with ROC R r α r 1 -R α r 1 r 1 r 0 Z Figure.16: Derivation of Ray matrix for concave mirror with Radius R. 41

42 Table of Ray Matrices 4

43 Application: Gauss Lens Formula I II r 1 f r z d 1 d Figure.17: Gauss lens formula. 43

44 An Image is formed? 44

45 Gaussian Beam Propagation Figure.18: Gaussian beam transformation by ABCD law. 45

46 Telescope d 1 d z R1 z R Figure.19: Focussing of a Gaussian beam by a lens. 46

47 Gaussian Beam Optics: Physical Optics Ray Optics: B = 0 Gauss lens formula: Physical Optics: Real part of Eq. (.90) = 0 47

48 .6 Optical Resonators w 0 L R 1 R z 1 z Figure.0: Fabry-Perot Resonator with finite beam size. 48

49 Curved - Flat Mirror Resonator with Figure.1: Curved-Flat Mirror Resonator 49

50 Curved - Flat Mirror Resonator For given R 1 Figure.: Beam waists of the curved-flat mirror resonator as a function of L/R 1. 50

51 Two Curved Mirror Resonator w 0 L R 1 R z 1 z Figure.0: Fabry-Perot Resonator with finite beam size. 51

52 Two Curved Mirror Resonator by symmetry: and: Or: 5

53 Figure.3: Two curved mirror resonator. 53

54 Resonator Stability L 0 R 1 R R 1 +R Figure.75: Stable regions (black) for the two-mirror resonator Or introduce cavity parameters: 54

55 Geometrical Interpretation Figure.4: Stability Criterion 55

56 Stable Unstable R 1 R R1 R R R R 1 R 1 R R Figure.6: Stable and unstable resonators 56

57 Hermite Gaussian Beams Other solutions to the paraxial wave equation: Hermite Polynomials: 57

58 Hermite Gaussian Beams Figure.7: Hermite Gaussians G l (u) 58

59 Axial Mode Structure: Roundtrip Phase = p π: Resonance Frequencies: Special Case: Confocal Resonator: L = R π ζ( z) ζ( z1) = 59

60 Hermite Gaussian Beams Figure.8: Intensity profile of TEM lm -beams. by ABCD law. 60

61 Resonance Frequencies d=l Figure.9: Resonance frequencies of the confocal Fabry-Perot resonator, 61

IMPRS: Ultrafast Source Technologies

IMPRS: Ultrafast Source Technologies IMPRS: Ultrafast Source Technologies Fran X. Kärtner & Thorsten Uphues, Bldg. 99, O3.097 & Room 6/3 Email & phone: fran.kaertner@cfel.de, 040 8998 6350 Thorsten.Uphues@cfel.de, 040 8998 706 Lectures: Tuesday

More information

S. Blair September 27,

S. Blair September 27, S. Blair September 7, 010 54 4.3. Optical Resonators With Spherical Mirrors Laser resonators have the same characteristics as Fabry-Perot etalons. A laser resonator supports longitudinal modes of a discrete

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

3.1 The Plane Mirror Resonator 3.2 The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator Quantum Electronics Laser Physics Chapter 3 The Optical Resonator 3.1 The Plane Mirror Resonator 3. The Spherical Mirror Resonator 3.3 Gaussian modes and resonance frequencies 3.4 The Unstable Resonator

More information

21. Propagation of Gaussian beams

21. Propagation of Gaussian beams 1. Propagation of Gaussian beams How to propagate a Gaussian beam Rayleigh range and confocal parameter Transmission through a circular aperture Focusing a Gaussian beam Depth of field Gaussian beams and

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

24. Advanced Topic: Laser resonators

24. Advanced Topic: Laser resonators 4. Advanced Topic: Laser resonators Stability of laser resonators Ray matrix approach Gaussian beam approach g parameters Some typical resonators Criteria for steady-state laser operation 1. The amplitude

More information

Optics for Engineers Chapter 9

Optics for Engineers Chapter 9 Optics for Engineers Chapter 9 Charles A. DiMarzio Northeastern University Nov. 202 Gaussian Beams Applications Many Laser Beams Minimum Uncertainty Simple Equations Good Approximation Extensible (e.g.

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

1 ESO's Compact Laser Guide Star Unit Ottobeuren, Germany Beam optics!

1 ESO's Compact Laser Guide Star Unit Ottobeuren, Germany   Beam optics! 1 ESO's Compact Laser Guide Star Unit Ottobeuren, Germany www.eso.org Introduction Characteristics Beam optics! ABCD matrices 2 Background! A paraxial wave has wavefronts whose normals are paraxial rays.!!

More information

Fundamentals of modern optics (2017/2018 WS)

Fundamentals of modern optics (2017/2018 WS) FoMO17_info_2017-10-10.docx 1 Fundamentals of modern optics (2017/2018 WS) by Prof. Thomas PERTSCH at Abbe School of Photonics, Friedrich-Schiller-Universität Jena in winter term 2017/2018 LECTURES: Monday,

More information

Optics for Engineers Chapter 9

Optics for Engineers Chapter 9 Optics for Engineers Chapter 9 Charles A. DiMarzio Northeastern University Mar. 204 Gaussian Beams Applications Many Laser Beams Minimum Uncertainty Simple Equations Good Approximation Extensible (e.g.

More information

Lecture 5 Op+cal resonators *

Lecture 5 Op+cal resonators * Lecture 5 Op+cal resonators * Min Yan Op+cs and Photonics, KTH 12/04/15 1 * Some figures and texts belong to: O. Svelto, Principles of Lasers, 5th Ed., Springer. Reading Principles of Lasers (5th Ed.):

More information

EE485 Introduction to Photonics

EE485 Introduction to Photonics Pattern formed by fluorescence of quantum dots EE485 Introduction to Photonics Photon and Laser Basics 1. Photon properties 2. Laser basics 3. Characteristics of laser beams Reading: Pedrotti 3, Sec. 1.2,

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Gaussian Beam Optics, Ray Tracing, and Cavities

Gaussian Beam Optics, Ray Tracing, and Cavities Gaussian Beam Optics, Ray Tracing, and Cavities Revised: /4/14 1:01 PM /4/14 014, Henry Zmuda Set 1 Gaussian Beams and Optical Cavities 1 I. Gaussian Beams (Text Chapter 3) /4/14 014, Henry Zmuda Set 1

More information

Fundamentals of Modern Optics

Fundamentals of Modern Optics Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 1 Fundamentals of Modern Optics Winter Term 2014/2015 Prof. Thomas Pertsch Abbe School of Photonics Friedrich-Schiller-Universität

More information

PHYS 408, Optics. Problem Set 4 - Spring Posted: Fri, March 4, 2016 Due: 5pm Thu, March 17, 2016

PHYS 408, Optics. Problem Set 4 - Spring Posted: Fri, March 4, 2016 Due: 5pm Thu, March 17, 2016 PHYS 408, Optics Problem Set 4 - Spring 06 Posted: Fri, March 4, 06 Due: 5pm Thu, March 7, 06. Refraction at a Spherical Boundary. Derive the M matrix of.4-6 in the textbook. You may use Snell s Law directly..

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

EE485 Introduction to Photonics. Introduction

EE485 Introduction to Photonics. Introduction EE485 Introduction to Photonics Introduction Nature of Light They could but make the best of it and went around with woebegone faces, sadly complaining that on Mondays, Wednesdays, and Fridays, they must

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Physics of Light and Optics

Physics of Light and Optics Physics of Light and Optics Justin Peatross and Harold Stokes Brigham Young University Department of Physics and Astronomy All Publication Rights Reserved (2001) Revised April 2002 This project is supported

More information

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS

3.5 Cavities Cavity modes and ABCD-matrix analysis 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS 206 CHAPTER 3. ULTRASHORT SOURCES I - FUNDAMENTALS which is a special case of Eq. (3.30. Note that this treatment of dispersion is equivalent to solving the differential equation (1.94 for an incremental

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Accumulated Gouy phase shift in Gaussian beam propagation through first-order optical systems

Accumulated Gouy phase shift in Gaussian beam propagation through first-order optical systems 90 J. Opt. Soc. Am. A/Vol. 4, No. 9/September 997 M. F. Erden and H. M. Ozaktas Accumulated Gouy phase shift Gaussian beam propagation through first-order optical systems M. Fatih Erden and Haldun M. Ozaktas

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

MICROSCOPY COURSE 2012

MICROSCOPY COURSE 2012 MICROSCOPY COURSE 2012 INTRODUCTION TO BASIC LIGHT MICROSCOPY AIM OF THE COURSE Teach basic principles of light microscopy Theoretical background Practical aspects Faced towards applications of light microscopy

More information

Describe the forces and torques exerted on an electric dipole in a field.

Describe the forces and torques exerted on an electric dipole in a field. Learning Outcomes - PHYS 2015 Electric charges and forces: Describe the electrical nature of matter; Explain how an object can be charged; Distinguish between electrical conductors and insulators and the

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

Course Syllabus. OSE6211 Imaging & Optical Systems, 3 Cr. Instructor: Bahaa Saleh Term: Fall 2017

Course Syllabus. OSE6211 Imaging & Optical Systems, 3 Cr. Instructor: Bahaa Saleh Term: Fall 2017 Course Syllabus OSE6211 Imaging & Optical Systems, 3 Cr Instructor: Bahaa Saleh Term: Fall 2017 Email: besaleh@creol.ucf.edu Class Meeting Days: Tuesday, Thursday Phone: 407 882-3326 Class Meeting Time:

More information

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy)

Light matter interaction. Ground state spherical electron cloud. Excited state : 4 quantum numbers n principal (energy) Light matter interaction Hydrogen atom Ground state spherical electron cloud Excited state : 4 quantum numbers n principal (energy) L angular momentum, 2,3... L L z projection of angular momentum S z projection

More information

Computational Physics Approaches to Model Solid-State Laser Resonators

Computational Physics Approaches to Model Solid-State Laser Resonators LASer Cavity Analysis & Design Computational Physics Approaches to Model Solid-State Laser Resonators Konrad Altmann LAS-CAD GmbH, Germany www.las-cad.com I will talk about four Approaches: Gaussian Mode

More information

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19

OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 OPTI 511R, Spring 2018 Problem Set 10 Prof. R.J. Jones Due Thursday, April 19 1. (a) Suppose you want to use a lens focus a Gaussian laser beam of wavelength λ in order to obtain a beam waist radius w

More information

Electromagnetic Wave Propagation Lecture 13: Oblique incidence II

Electromagnetic Wave Propagation Lecture 13: Oblique incidence II Electromagnetic Wave Propagation Lecture 13: Oblique incidence II Daniel Sjöberg Department of Electrical and Information Technology October 15, 2013 Outline 1 Surface plasmons 2 Snel s law in negative-index

More information

Module Labworks Optics Abbe School of Photonics Contact person Supervisors

Module Labworks Optics Abbe School of Photonics Contact person Supervisors Module Labworks Optics Abbe School of Photonics, Friedrich-Schiller-Universität, Physikalisch-Astronomische-Fakultät, Max-Wien-Platz 1, 07743 Jena, Germany Phone: +49 3641 947 960 Fax: +49 3641 947 962

More information

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10

Optics and Optical Design. Chapter 5: Electromagnetic Optics. Lectures 9 & 10 Optics and Optical Design Chapter 5: Electromagnetic Optics Lectures 9 & 1 Cord Arnold / Anne L Huillier Electromagnetic waves in dielectric media EM optics compared to simpler theories Electromagnetic

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Tuesday and Thursday, 9:30-10:45 P&A Room 184. Textbook: Laser Electronics (3rd Edition) by Joseph T. Verdeyen.

More information

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 2: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes

More information

THE PARAXIAL WAVE EQUATION GAUSSIAN BEAMS IN UNIFORM MEDIA:

THE PARAXIAL WAVE EQUATION GAUSSIAN BEAMS IN UNIFORM MEDIA: THE PARAXIAL WAVE EQUATION GAUSSIAN BEAMS IN UNIFORM MEDIA: In point-to-point communication, we may think of the electromagnetic field as propagating in a kind of "searchlight" mode -- i.e. a beam of finite

More information

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Harmonic oscillation: Experiment Experiment to find a mathematical description of harmonic oscillation Kapitel 14 Harmonisk oscillator 1 2 Harmonic oscillation: Experiment Harmonic

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

Homework 1. Property LASER Incandescent Bulb

Homework 1. Property LASER Incandescent Bulb Homework 1 Solution: a) LASER light is spectrally pure, single wavelength, and they are coherent, i.e. all the photons are in phase. As a result, the beam of a laser light tends to stay as beam, and not

More information

Chapter 2 Basic Optics

Chapter 2 Basic Optics Chapter Basic Optics.1 Introduction In this chapter we will discuss the basic concepts associated with polarization, diffraction, and interference of a light wave. The concepts developed in this chapter

More information

Focal shift in vector beams

Focal shift in vector beams Focal shift in vector beams Pamela L. Greene The Institute of Optics, University of Rochester, Rochester, New York 1467-186 pgreene@optics.rochester.edu Dennis G. Hall The Institute of Optics and The Rochester

More information

arxiv: v1 [math-ph] 3 Nov 2011

arxiv: v1 [math-ph] 3 Nov 2011 Formalism of operators for Laguerre-Gauss modes A. L. F. da Silva (α), A. T. B. Celeste (β), M. Pazetti (γ), C. E. F. Lopes (δ) (α,β) Instituto Federal do Sertão Pernambucano, Petrolina - PE, Brazil (γ)

More information

Tutorial: Ray matrices, gaussian beams, and ABCD.app

Tutorial: Ray matrices, gaussian beams, and ABCD.app Tutorial: Ray matrices, gaussian beams, and ABCD.app Prof. Daniel Côté Daniel.Cote@crulrg.ulaval.ca April 30, 2013 1 Introduc on This document is a companion guide to ABCD.app and serves as a refresher

More information

Lecture 4: Optics / C2: Quantum Information and Laser Science

Lecture 4: Optics / C2: Quantum Information and Laser Science Lecture 4: ptics / C2: Quantum Information and Laser Science November 4, 2008 Gaussian Beam An important class of propagation problem concerns well-collimated, spatiall localized beams, such as those emanating

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

Offset Spheroidal Mirrors for Gaussian Beam Optics in ZEMAX

Offset Spheroidal Mirrors for Gaussian Beam Optics in ZEMAX Offset Spheroidal Mirrors for Gaussian Beam Optics in ZEMAX Antony A. Stark and Urs Graf Smithsonian Astrophysical Observatory, University of Cologne aas@cfa.harvard.edu 1 October 2013 This memorandum

More information

Phys 531 Lecture 27 6 December 2005

Phys 531 Lecture 27 6 December 2005 Phys 531 Lecture 27 6 December 2005 Final Review Last time: introduction to quantum field theory Like QM, but field is quantum variable rather than x, p for particle Understand photons, noise, weird quantum

More information

Electromagnetic optics!

Electromagnetic optics! 1 EM theory Electromagnetic optics! EM waves Monochromatic light 2 Electromagnetic optics! Electromagnetic theory of light Electromagnetic waves in dielectric media Monochromatic light References: Fundamentals

More information

EM waves and interference. Review of EM wave equation and plane waves Energy and intensity in EM waves Interference

EM waves and interference. Review of EM wave equation and plane waves Energy and intensity in EM waves Interference EM waves and interference Review of EM wave equation and plane waves Energy and intensity in EM waves Interference Maxwell's Equations to wave eqn The induced polarization, P, contains the effect of the

More information

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz

The laser oscillator. Atoms and light. Fabry-Perot interferometer. Quiz toms and light Introduction toms Semi-classical physics: Bohr atom Quantum-mechanics: H-atom Many-body physics: BEC, atom laser Light Optics: rays Electro-magnetic fields: Maxwell eq. s Quantized fields:

More information

Q2 (Michelson) - solution here

Q2 (Michelson) - solution here The TA is still preparing the solutions for PS#4 and they should be ready on Sunday or early Monday. Meanwhile here are some materials and comments from me. -RSM Q (Michelson) - solution here some notes/comments

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Vector diffraction theory of refraction of light by a spherical surface

Vector diffraction theory of refraction of light by a spherical surface S. Guha and G. D. Gillen Vol. 4, No. 1/January 007/J. Opt. Soc. Am. B 1 Vector diffraction theory of refraction of light by a spherical surface Shekhar Guha and Glen D. Gillen* Materials and Manufacturing

More information

Plane electromagnetic waves and Gaussian beams (Lecture 17)

Plane electromagnetic waves and Gaussian beams (Lecture 17) Plane electromagnetic waves and Gaussian beams (Lecture 17) February 2, 2016 305/441 Lecture outline In this lecture we will study electromagnetic field propagating in space free of charges and currents.

More information

Group Velocity and Phase Velocity

Group Velocity and Phase Velocity Group Velocity and Phase Velocity Tuesday, 10/31/2006 Physics 158 Peter Beyersdorf Document info 14. 1 Class Outline Meanings of wave velocity Group Velocity Phase Velocity Fourier Analysis Spectral density

More information

Physics 20 Work Plan

Physics 20 Work Plan Units/Topics Time Frame Major Learning Outcomes Unit Major Resource(s) Assessment methods Unit 2 Wave Motion A. Properties of waves 1. Wave terminology 2. Universal wave equation 3. Principle of Superposition

More information

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. 2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text. Chapter 21 Electric Charge 21-1 What Is Physics? 21-2

More information

Modeling Focused Beam Propagation in a Scattering Medium. Janaka Ranasinghesagara

Modeling Focused Beam Propagation in a Scattering Medium. Janaka Ranasinghesagara Modeling Focused Beam Propagation in a Scattering Medium Janaka Ranasinghesagara Lecture Outline Introduction Maxwell s equations and wave equation Plane wave and focused beam propagation in free space

More information

Electromagnetic Wave Propagation Lecture 13: Oblique incidence II

Electromagnetic Wave Propagation Lecture 13: Oblique incidence II Electromagnetic Wave Propagation Lecture 13: Oblique incidence II Daniel Sjöberg Department of Electrical and Information Technology October 2016 Outline 1 Surface plasmons 2 Snel s law in negative-index

More information

all dimensions are mm the minus means meniscus lens f 2

all dimensions are mm the minus means meniscus lens f 2 TEM Gauss-beam described with ray-optics. F.A. van Goor, University of Twente, Enschede The Netherlands. fred@uttnqe.utwente.nl December 8, 994 as significantly modified by C. Nelson - 26 Example of an

More information

Nonlinear Optics (WiSe 2015/16)

Nonlinear Optics (WiSe 2015/16) Nonlinear Optics (WiSe 2015/16) Franz X. Kärtner & Oliver Mücke, Bldg. 99, Room O3.097 & O3.115 Email & phone: franz.kaertner@cfel.de, 040 8998 6350 oliver.muecke@cfel.de, 040 8998 6355 Office hour: Tuesday,

More information

nds = n 1 d 1 sec θ 1 + n 2 d 2 sec θ 2 δopl =0

nds = n 1 d 1 sec θ 1 + n 2 d 2 sec θ 2 δopl =0 1 Exercise 1.1-1 The optical path length is given by OPL = Z C which for an optical ray, must be stationary nds = n 1 d 1 sec θ 1 + n d sec θ δopl =0 so the first derivative of the optical path length

More information

Lecture Notes on Wave Optics (03/05/14) 2.71/2.710 Introduction to Optics Nick Fang

Lecture Notes on Wave Optics (03/05/14) 2.71/2.710 Introduction to Optics Nick Fang Outline: A. Electromagnetism B. Frequency Domain (Fourier transform) C. EM waves in Cartesian coordinates D. Energy Flow and Poynting Vector E. Connection to geometrical optics F. Eikonal Equations: Path

More information

Fields, wave and electromagne3c pulses. fields, waves <- > par0cles pulse <- > bunch (finite in 0me),

Fields, wave and electromagne3c pulses. fields, waves <- > par0cles pulse <- > bunch (finite in 0me), Fields, wave and electromagne3c pulses fields, waves par0cles pulse bunch (finite in 0me), 1 Op3cs ray or geometric op0cs: ABCD matrix, wave op0cs (used e.m. field to describe the op0cal field):

More information

Optical Sciences Center, Rm 704 University of Arizona Tucson, AZ Office Hours: Call for appointment or see after class

Optical Sciences Center, Rm 704 University of Arizona Tucson, AZ Office Hours: Call for appointment or see after class Term: Spring 2000 Course #: OPTI 505 Course Title: Diffraction and Interferometry Instructor: James C. Wyant Optical Sciences Center, Rm 704 University of Arizona Tucson, AZ 85721 Phone: 520-621-2448 E-Mail:

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Monday and Wednesday, 5:30-6:45 pm P&A Room 184. Textbook: Many good ones (see webpage) Lectures follow order

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Nonlinear Optics (WiSe 2018/19)

Nonlinear Optics (WiSe 2018/19) Nonlinear Optics (WiSe 2018/19) Franz X. Kärtner & Oliver D. Mücke, Bldg. 99, Room 03.097 & 03.115 Email & phone: franz.kaertner@cfel.de, 040-8998-6350 oliver.muecke@cfel.de, 040-8998-6355 Office hour:

More information

ROINN NA FISICE Department of Physics

ROINN NA FISICE Department of Physics ROINN NA FISICE Department of 1.1 Astrophysics Telescopes Profs Gabuzda & Callanan 1.2 Astrophysics Faraday Rotation Prof. Gabuzda 1.3 Laser Spectroscopy Cavity Enhanced Absorption Spectroscopy Prof. Ruth

More information

gives rise to multitude of four-wave-mixing phenomena which are of great

gives rise to multitude of four-wave-mixing phenomena which are of great Module 4 : Third order nonlinear optical processes Lecture 26 : Third-order nonlinearity measurement techniques: Z-Scan Objectives In this lecture you will learn the following Theory of Z-scan technique

More information

ELECTROMAGNETISM SUMMARY

ELECTROMAGNETISM SUMMARY Review of E and B ELECTROMAGNETISM SUMMARY (Rees Chapters 2 and 3) The electric field E is a vector function. E q o q If we place a second test charged q o in the electric field of the charge q, the two

More information

Lecture notes 5: Diffraction

Lecture notes 5: Diffraction Lecture notes 5: Diffraction Let us now consider how light reacts to being confined to a given aperture. The resolution of an aperture is restricted due to the wave nature of light: as light passes through

More information

Saint Lucie County Science Scope and Sequence

Saint Lucie County Science Scope and Sequence Course: Physics 1 Course Code: 2003380 SEMESTER 2 QUARTER 3 UNIT 7 TOPIC of STUDY: Thermal Energy STANDARDS: 8:Matter, 10: Energy, 12: Motion KEY LEARNING: ~Mathematically relate heat, phase change, energy,

More information

Preliminary Topics in EM

Preliminary Topics in EM ECE 53 1 st Century Electromagnetics Instructor: Office: Phone: E Mail: Dr. Raymond C. Rumpf A 337 (915) 747 6958 rcrumpf@utep.edu Lecture #1 Preliminary Topics in EM Lecture 1 1 Lecture Outline Maxwell

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 32 Electromagnetic Waves PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 32 To learn why a light

More information

An alternative method to specify the degree of resonator stability

An alternative method to specify the degree of resonator stability PRAMANA c Indian Academy of Sciences Vol. 68, No. 4 journal of April 2007 physics pp. 571 580 An alternative method to specify the degree of resonator stability JOGY GEORGE, K RANGANATHAN and T P S NATHAN

More information

Modeling microlenses by use of vectorial field rays and diffraction integrals

Modeling microlenses by use of vectorial field rays and diffraction integrals Modeling microlenses by use of vectorial field rays and diffraction integrals Miguel A. Alvarez-Cabanillas, Fang Xu, and Yeshaiahu Fainman A nonparaxial vector-field method is used to describe the behavior

More information

Electromagnetic Waves & Polarization

Electromagnetic Waves & Polarization Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3a Electromagnetic Waves & Polarization Electromagnetic These

More information

UNIT-5 EM WAVES UNIT-6 RAY OPTICS

UNIT-5 EM WAVES UNIT-6 RAY OPTICS UNIT-5 EM WAVES 2 Marks Question 1. To which regions of electromagnetic spectrum do the following wavelengths belong: (a) 250 nm (b) 1500 nm 2. State any one property which is common to all electromagnetic

More information

Nature of diffraction. Diffraction

Nature of diffraction. Diffraction Nature of diffraction Diffraction From Grimaldi to Maxwell Definition of diffraction diffractio, Francesco Grimaldi (1665) The effect is a general characteristics of wave phenomena occurring whenever a

More information

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities 646 J. Opt. Soc. Am. B/ Vol. 17, No. 4/ April 2000 Paschotta et al. Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities R. Paschotta, J. Aus

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

Chapter 6 SCALAR DIFFRACTION THEORY

Chapter 6 SCALAR DIFFRACTION THEORY Chapter 6 SCALAR DIFFRACTION THEORY [Reading assignment: Hect 0..4-0..6,0..8,.3.3] Scalar Electromagnetic theory: monochromatic wave P : position t : time : optical frequency u(p, t) represents the E or

More information

Physics 102: Lecture 16 Introduction to Mirrors

Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16, Slide 1 Physics 102 recent lectures Light as a wave Lecture 14 EM waves Lecture 15 Polarization Lecture 20 & 21 Interference & diffraction

More information

Diffractive Optics. Professor 송석호, Physics Department (Room #36-401) , ,

Diffractive Optics. Professor 송석호, Physics Department (Room #36-401) , , Diffractive Optics Professor 송석호, Physics Department (Room #36-401) 2220-0923, 010-4546-1923, shsong@hanyang.ac.kr Office Hours Mondays 10:00-12:00, Wednesdays 10:00-12:00 TA 윤재웅 (Ph.D. student, Room #36-415)

More information

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University Introduction to electron and photon beam physics Zhirong Huang SLAC and Stanford University August 03, 2015 Lecture Plan Electron beams (1.5 hrs) Photon or radiation beams (1 hr) References: 1. J. D. Jackson,

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Tuesday, November, 016 Lecture Number 0 Fall 016 Jeffrey H. Shapiro

More information

Heating Beam Pattern Optical Design CO2 Laser Thermal Compensation Bench

Heating Beam Pattern Optical Design CO2 Laser Thermal Compensation Bench LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY LIGO Laboratory / LIGO Scientific Collaboration LIGO 4//4 Heating Beam Pattern Optical Design CO Laser Thermal Compensation Bench Michael Smith, David

More information

Plane waves and spatial frequency. A plane wave

Plane waves and spatial frequency. A plane wave Plane waves and spatial frequency A plane wave Complex representation E(,) z t = E cos( ωt kz) = E cos( ωt kz) o Ezt (,) = Ee = Ee j( ωt kz) j( ωt kz) o = 1 2 A B t + + + [ cos(2 ω α β ) cos( α β )] {

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Outline of College Physics OpenStax Book

Outline of College Physics OpenStax Book Outline of College Physics OpenStax Book Taken from the online version of the book Dec. 27, 2017 18. Electric Charge and Electric Field 18.1. Static Electricity and Charge: Conservation of Charge Define

More information