Deterministic Constant Demand Models

Size: px
Start display at page:

Download "Deterministic Constant Demand Models"

Transcription

1 Determstc Costat Demad Models George Lberopoulos Ecoomc Order uatty (EO): basc model 3 4 vetory λ λ Parts to customers wth costat rate λ λ λ

2 EO: basc model Assumptos/otato Costat demad rate: λ (parts per ut tme) Shortages ot permtted Ifte producto/repleshmet rate (stataeous repleshmet) Zero lead tme Varable ut producto/order cost: c ( per part) Fxed setup producto/order cost: K ( per producto ru/order) Iterest rate: I ( per vested per ut tme) Computato Ivetory holdg cost rate: h = Ic ( per part per ut tme) Decso Reorder quatty: (parts per producto ru/order) Referece Harrs, F. W. 990 (reprt from 93). How may parts to make at oce. Operatos Research 38 (6) EO: basc model vetory λ tme Computato Reorder perod (cycle legth): = /λ (tme per cycle) Reorder frequecy: N = / = λ/ (orders/cycles per ut tme) 4

3 EO: basc model Ma ssue radeoff betwee fxed setup cost ad vetory holdg cost vetory tme 5 EO: basc model (Ucostraed) optmzato problem Mmze ( ) G K c h av. varable order cost total average cost G() av. fxed order cost av. vetory holdg cost K λ/ h / cλ 6 3

4 Soluto Solve optmalty codto EO: basc model dg( ) K h : 0 0 d K K h h G G K h c ( ) Isght: K, h 7 EO: basc model Sestvty G '( ) K h G'( ) Kh partal average cost Suppose a arbtrary order quatty s chose G'( ) G'( ) Example: G'( ).5 G'( ) I words: 00% error choosg 5% crease cost Cocluso: Performace s ot very sestve to errors the decso varable 8 4

5 EO: basc model Costraed optmzato problem Suppose that m max max m,, G() G() costr max m G() m max m max m max Alteratvely, suppose that m max m max costr max m, max, m 9 Homework problem: EO: basc model A bakery bakes pes a ove that holds 0 pes. It sells the pes at a almost costat rate of 50 per moth. he pes cost each to make. Before each bakg ru, the ove must be cleaed out at a cost of 0. Ivetory costs are based o 8 percet aual terest rate. he pes have a maxmum shelf lfe of 3 moths.. How may pes should the bakery bake at each producto ru? What s the aual setup ad holdg cost for the pes?. he ower of the bakery s thkg of buyg a ew ove that has half the cleag cost ad twce the capacty of the exstg ove. What s the optmal feasble umber of pes to be baked each tme the ew ove? 3. he buyg cost of the ew ove s 50. How may years would t take for the ew ove to pay for tself? 0 5

6 EO: basc model No-zero order lead tme τ Same as EO wth zero lead tme except that order s placed whe vetory reaches reorder pot R, where, f R ( mod ), f vetory vetory τ mod R λ τ R λ τ Order placed tme Order placed tme EO: model wth backorders Assumptos/otato Same as basc EO, except that: Shortages are permtted Backorder cost rate: b ( per part short per ut tme) Decso Reorder quatty: (parts per producto ru/order) Fll rate (percetage of demad covered from stock) F 6

7 EO: model wth backorders Ivetory / backorders F ( F) λ tme Ucostraed optmzato problem F ( F) Mmze GF (, ) K c h Fb ( F) F, :0F Oly costrat: 0 F K c h b F ( F) 3 Soluto EO: model wth backorders GF (, ) K hf b( F) 0 0, F : GF (, ) 0 hf b( F) 0 F b K h b K h b F h b h b h b max vetory level: F max backorder level: ( F ) b K h b h b G G(, F ) Kh c h b h K h b b 4 7

8 EO: model wth backorders Lmtg cases F b h b lm lm b b K h b K h b h lm lm EO formula! b b F b h b lm lm 0 h h K h b K b h h b b lm lm EO formula ( stead of )! b h 5 EO: model wth backorders ad perturbed demad Assumptos Same as EO wth backorders, except that: Backorder cost rate s ot cosdered drectly Demad rate depeds o fll rate: λ(f) Reward rate: r ( per part sold) Maxmum demad rate a cycle f there are o stockouts: λ 0 (parts per ut tme) Number of parts that a customer who faces a stockout wll ot buy each of a (possbly fte) umber of future perods: R (parts ot bought per part mssg) Referece Swartz, B.L A ew approach to stockout pealtes. Maagemet Scece () B538-B

9 EO: model wth backorders ad perturbed demad Dervato of λ(f) otal demad rate a cycle should equal to 0 ( F) R0 ( F) R ( F) 0 0 ( F) R ( F) ( F) ( FR ) 7 EO: model wth backorders ad perturbed demad Optmzato problem ( F) F Maxmze P, :0 ( ) r( F) K c( F) h F F total average proft 0 0 F ( rc) K h ( FR ) ( FR ) Soluto r 0 R hk F 0 R r 0 R K0 hk F R h Referece Lberopoulos, G., I. sks, S. Delkouras. 00. Backorder pealty cost coeffcet "b": What could t be? Iteratoal Joural of Producto Ecoomcs 3 ()

10 EO: model wth lost sales Assumptos/otato Same as EO wth backorders, except that: Customer that ecouter shortages are lost Lost sales cost: l ( per part short) Decso Reorder quatty: (parts per producto ru/order) Fll rate (percetage of demad covered from stock): F 9 Ivetory EO: model wth lost sales ( F) λ F F=/λ = /λf N = / = λf/ tme Ucostraed optmzato problem F Mmze GF (, ) K cfh Fl( F) F, :0F Homework Problem: ry to solve for ad F 0 0

11 EO: model quatty dscouts Case: Same dscout for all uts otal cost for buyg uts, C() = c, where C() c0 for b0 b cc for b b where c c c c for b 0 c c c 0 b 0 b b EO: model quatty dscouts otal average cost fucto for dscout level j Gj( ) K cj Icj, j 0,, Costraed optmzato problem G0( ) for b0 b Mmze G ( ) G( ) for b b total average cost G( ) for b G() G 0 () hj G () G () b 0 b b

12 EO: model quatty dscouts Soluto K Ucostraed EO for dscout level j: j, j 0,, Ic j Costraed optmal order quatty: j,costr max m j, bj, b j, j 0,, Note: b 3 = j arg m G ( ) G G( ) G ( ) j j,costr j j,costr j j,costr G() G 0 () G () G () b 0 b b 3 EO: model quatty dscouts Case: Icremetal quatty dscouts otal cost for buyg uts, C(), where c 0 for b0 b C( ) c0bc( b) ( c0 c) bc Cc for bb cb c( b b) c( b) ( c c) b( c c) b cc c for b 0 0 j Cj c c b where, for smplfcato, we have used the otato: ( ). Note: C0 0 C() c C c C c 0 b 0 b b 4

13 EO: model quatty dscouts otal average cost per part whe orderg uts, C()/, where c0 for b0 b C C ( ) ( c0 c) b C c c for b b C ( c0 c) b( cc) b C c c for b otal average cost per ut tme C ( ) C ( ) G ( ) K I equvalet to c equvalet to c 5 EO: model quatty dscouts G() G 0 () G () G () b 0 b b Cj Cj Gj( ) K cji cj IC j ( K Cj) cj Icj ( K C ) j j Ic j 6 3

14 EO: model quatty dscouts Fal soluto j arg m G ( ) : b b j j j j j j G G( ) G ( ) j j j 7 EO: Resource-costraed multproduct systems Assumptos products λ, K, c, h : parameters for product Budget or space or other costrat Average cost per ut tme for product G ( ) K c h,,,, K h otal average cost per ut tme G (,,, ) G ( ) 8 4

15 EO: Resource-costraed multproduct systems Costraed mmzato problem Mmze G (,,, ) subject to c C,,, E.g. C s budget/space cap (upper lmt) Soluto c C,costr c C case ) If costrat s ot actve case ) If costrat s actve ot feasble I ths case, we kow that the costrat s bdg at the optmal soluto Problem to solve Mmze G (,,, ) subject to c C,,, 9 EO: Resource-costraed multple product systems Soluto for case Itroduce Lagrage multpler θ K h Mmze G (,,,, ) c C,,,, Necessary codtos for optmalty G K h K 0, c 0,,,, () h c,costr G 0 c,costr C () Solve umercally: ry dfferet values of θ utl optmalty codtos () ad () hold 30 5

16 EO: Resource-costraed multple product systems Specal Case: c c c c h h h h I ths case: K K () h c h c/ h c/ h (),costr,costr m,,,, where m c/ h C c,costr C c mc m c 3 Ecoomc Producto Lot (EPL): EO wth fte producto rate P P P vetory λ λ λ Parts to customers wth costat rate λ λ λ 3 6

17 I EPL Assumptos/otato Same as basc EO, except that: Fte producto/repleshmet rate P (parts per ut tme) wth P > λ Setup tme to produce a ew producto lot s max vetory P λ λ /P =/λ tme Maxmum vetory: I max = (P λ)/p = ( λ/p) = ( ρ), where ρ = λ/p utlzato factor, ρ fracto of tme mache s ot producg s 33 EPL Ucostraed optmzato problem Lmtg case: Mmze G ( ) K c h dg( ) K h( ) : 0 0 d K K h h ( ) ( ) G G K h c K K lm lm EO! P P h h P 34 7

18 EPL What about the setup tme s? Cycle tme must be large eough to accommodate s s s s s P setup tme P P cycle tme producto tme costr max(, ) m Alteratvely s s s P P s s max(, ) m costr m m 35 EPL What f there s a maxmum storage capacty I max? m I max /( ρ) max max m,, costr max m Sestvty aalyss Same as EO model: Cost ot very sestve to errors G'( ) G'( ) G'( ) G'( ) 36 8

19 EPL Power-of- heurstc for choosg Suppose that perod (cycle) legth s restrcted to be a power-of- multple of the base tme ut,.e., H = k, for some k = 0,,, k k k Whch k to choose? Rule: k: H k k k k How bad s the cost crease? Worst case: k k k G'( ) H If, 06 k k G'( ) k k k G'( ) H If, 06 k k G'( ) Cocluso: Usg the best H wll result a crease G of at most 6% wth respect to usg! k 37 H Ecoomc Lot Schedulg Problem (ELSP) 3 P P λ λ 3 λ λ λ λ 3 λ λ 3 λ Parts to customers wth costat rate λ 38 9

20 Ecoomc Lot Schedulg Problem (ELSP) Assumptos Same as EPL, except that products λ, K, c, h, s : parameters for product Cyclc schedulg: All products must be produced by the same mache a cyclc fasho Smple cycle: Each product s produced oly oce each cycle Cycle patter: ( ) Computato Utlzato factor for product : ρ = λ /P 39 ELSP vetory tme Strog depedecy amog products: hey all have the same cycle tme Oce s determed the the producto lot szes ca be computed: 40 0

21 ELSP Average cost per ut tme for product otal average cost per ut tme G (,,, ) G( ) Problem,,, G( ) K c h Soluto Replace by λ, ad formulate a mmzato problem wth respect to Mmze G (,,, ) subject to,,,, 4 ELSP New otal average cost per ut tme Mmze G( ) G ( ) K c h Optmal soluto K h c A B C (same form as EO model) K,,,, h 4

22 ELSP What about setup tmes s? Commo cycle tme must be large eough to accommodate all s s s s s P P s m max(, ) costr m,costr costr 43 ELSP More complcated cycles Assumpto Each product s produced m tmes each cycle m m Same approach as wth smple cycle Replace by λ /m, ad formulate a mmzato problem wth respect to 44

23 Average cost per ut tme Optmal soluto ELSP m Mmze G ( ) G( ) K c h m m m K h c m K,,,, m h m 45 ELSP What about setup tmes s? Commo cycle tme must be large eough to accommodate all s s s s s m m m m P m P m m s m max(, ) costr m,costr costr 46 3

24 ELSP How to choose good values for m k Use powers-of- method,.e. set m for some k {0,,,3, } for =,,, Algorthm for computg k Step : Compute ucostraed optmal cycle tme of each product solato ad fd the mmum of these tmes K,,,, h m m Step : Compute relatve producto frequecy of each product solato N,,,, m 47 ELSP Step 3: Roud N to the earest power-of-" usg the rule k roud k k N N Example: 0 roud 0 k 0 : N.44 N 0 roud k :.43 N.88 N roud k :.88 N N 4 roud Step 4: Fd the largest rouded frequecy ad call t N max roud Nmax Step 5: Compute multple m : m N roud Step 6: Compute wth these multples. roud wll be N max m Step 7: Compute max(, ) costr m 48 4

25 roud N ELSP Note: o compute step 3, thk as follows: roud k k N, where k s the smallest teger k such that N he above equalty ca be wrtte as: k k k N k N k ln l N N l N l l l l l k where x floor of xlargest teger x e.g., 4.9 4, 4. 4, roud N ELSP Note: o compute step 3, thk as follows: roud k k N, where k s the smallest teger k such that N he above equalty ca be wrtte as: k k k N k N k ln l N N l N l l l l l k where x floor of xlargest teger x e.g., 4.9 4, 4. 4,

26 Seral EO systems Assumpto: fte producto rate (stataeous repleshmet) Defto: Nested polcy: Producto (repleshmet) does ot occur at stage uless t also occurs at all successor stages,,,, Result: For a -stage seral system, t s optmal to follow a ested polcy Sketch of proof stage vetory stage tme vetory tme However, t s possble that (e.g., ),.e., t may be optmal to order at stage but ot order a prevous stage + Referece: Muckstadt, J. A., R.O. Roudy Aalyss of Multstage Producto Systems. S.C. et al., Eds. Hadbooks OR ad MS, Vol. 4: Logstcs of Producto ad Ivetory. Elsever, Amsterdam, he Netherlads λ 5 I I Seral EO systems: -stage I I I + Coveet to use echelo stock ad echelo vetory holdg cost I o had vetory stage I "echelo" stock for stage I I,,, k k I I I I I λ h covetoal vetory holdg cost stage (assumpto: h h ) (measures total value added up to ad cludg stage ) h "echelo" vetory holdg cost stage (measures cremetal value added oly at stage ) h hh,,, ; h h 5 6

27 Seral EO systems: -stage I I I λ A ote o echelo vetory : Suppose that = I I I Cost h 4 4 I I I I Cost h / / I I Cost h 4 I I / / I Cost h 4 O-had vetory vs. tme Echelo vetory vs. tme 53 Seral EO systems: -stage I I I λ Icremetal echelo vetory holdg costs, h ad h : h h; h hh o-had vetory cost echelo vetory cost stage h h stage h h 4 otal av. o-had v. cost ( hh ) h ( hh) h h h 4 otal av. echelo v. cost h h h h otal cost are the same! I 54 7

28 Seral EO systems: -stage A reorder terval NLIP problem I K Mmze k, k I I λ K h h subject to, k {0,,, } ( ) k k L k k, {0,,, } ( L ) k 0 Cosder ts relaxato, R-NLIP K K Mmze h h, subject to 0 I 55 Seral EO systems: -stage. Suppose Soluto: ( K K) (-) ( h h). Partto the system to two subproblems G ad G, ad solve them separately, gorg the costrat G Soluto: G K K (), () h h Optmal soluto of problem s: K K () () costrat ot actve (), () h h K K () () costrat actve (-) (bdg) h h G

29 Seral EO systems: -stage Optmal soluto of the orgal NLIP problem: Soluto: roud k k, where k s the smallest teger k such that k l l Note: () () roud roud 57 Seral EO systems: -stage λ A reorder terval NLIP problem Mmze k,, k Cosder ts relaxato, R-NLIP K h k k subject to ( ),,, 0,,, k {0,,, },,, L K Mmze h,, k k subject to 0,,, 58 9

30 Seral EO systems: -stage G 7-8 G 5-6 G he above partto of the stages to clusters ad the correspodg reorder commo tervals (-4), (5-6), (7-8) provde a optmal soluto to the correspodg R-NLIP problem f ad oly f: ( K7 K8) ( K5 K6) ( KK K3 K4) ( ) (7-8), (5-6), (-4) ( h h ) ( h h ) ( h h h h ) ( ) (7-8) (5-6) (-4) ( ) Each cluster caot be futher parttoed to smaller clusters e.g., For cluster -4, ths meas that: (4) (-3) ( ) ( ) (3-4) (-) ( ) ( ) ( ) ( ) K4 h4 KK K3 hh h3 K3 K4 h3 h4 KK hh (-4) () ( K K3 K4) ( h h3 h4) K h 59 Seral EO systems: -stage Algorthm for fdg optmal partto C {}, (),,,, S {,,, } j C C C j ( j) NO S S \{ ( j)} j ( j) ( C ) ( C ) ( j) ( ( j)) YES j j NO ( j) 0 YES j YES NO l Redex clusters { C : S} so that S {,,, N} ad f jc, kc, j k l 60 30

31 Seral EO systems: -stage Fd soluto to problem R-NLIP k For each cluster C, k S, set ( ) ( ) ( ) ( ) k k C kk kh C C k For each C, set ( k) Fd soluto to problem NLIP roud roud k k k For each C, set ( L ), k where k s the smallest teger k such that ( k) k k l ( ) l 6 Example: Seral EO systems: -stage Fd the optmal power-of-two reorder tervals for each stage of a 5- stage seral EO system wth demad rate /ad the followg cost parameters:

32 Seral EO systems: -stage Soluto:. Fd optmal partto,,3,4,5 ; ; Iterato????? NO, ; \,3,4,5 ; 0;? 0 NO 3;?5 YES GOO NEX IERAION; Seral EO systems: -stage Iterato?? 3?,?? YES 4;?5YES GOO NEX IERAION; Iterato 3?? 4? 3?? YES 5;?5YES GOO NEX IERAION; 64 3

33 Seral EO systems: -stage Iterato 4?? 5? 4?? NO 4,5 ; \ 5,3,5 ; ; 5?0 YES?? 4,5? 3?? NO 3,4,5 ; \ 5,5 ; ; 5?0 YES?? 3,4,5?,? 6;?5NO EXI; Redex Clusters:,,3;,; 3,4,5;? YES 65 Seral EO systems: -stage. Fd soluto to problem R-NLIP 40 4,47 8 4, , Fd soluto to problem NLIP 4 4,47, ,0945 5,5 0,693,498 0,693,66 ;,07 3; 66 33

34 Dstrbuto EO systems: cetral warehouse, retalers I 0 0 I 0 I I I I I I I0 I I I I I,,, h 0 0 h hh,,, h 0 g h Wthout loss of geeralty, assume: K K K g g g 67 Dstrbuto EO systems: cetral warehouse, retalers A reorder terval NLIP problem Mmze k0,, k 0 k k subject to ( ), 0,, Cosder ts relaxato, R-NLIP 0,,, 0 k {0,,, },,, K g L K Mmze g,, k k 0 subject to 0,,,

35 Dstrbuto EO systems: cetral warehouse, retalers Form of optmal soluto of R-NLIP Retalers are dvded to categores:. Retalers the st category share a commo reorder terval wth the cetral warehouse.. Retalers the d category follow ther atural ucostraed reorder tervals. 69 Dstrbuto EO systems: cetral warehouse, retalers Optmal soluto of R-NLIP If, the all retalers belog to the d category ad, 0,,,. Else (f ), let be the smallest dex of retaler that belogs to st category,.e., retalers,,, share commo reorder terval wth cetral warehouse. argm,,,,,,0,,, 70 35

36 Dstrbuto EO systems: cetral warehouse, retalers Optmal soluto of NLIP l l l,,,,,0 l,,,, 7 Seral EO systems: -stage Bullwhp effect: he varace of orders may be larger tha that of sales, ad the dstorto teds to crease as oe moves upstream a pheomeo termed bullwhp effect. hs dstorto may be due to: Demad forecastg Lead tme Batch Orderg (lot szg) Prce fluctuato Referece Lee, H.L., V. Padmaabha, S. Whag Iformato dstorto a supply cha: he bullwhp effect. Maagemet Scece 43 (4)

37 Seral EO systems: -stage uatfcato of the Bullwhp effect due to lot-szg: D demad at stage ED [ ], ED [ ] Var[ D ] E[ D ] E[ D ] 0 he varace of the customer demad see by stage s zero. ( ) ED [ ], ED [ ] Var[ D] E[ D] E[ D] he varace of the demad see by stage s proportoal to ad to. Var[ D ] ( ) ( ) D ( ) (because ) Var[ ] ( ) ( ) he varace of the demad creases as oe moves upstream the supply cha

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions.

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions. It. Joural of Math. Aalyss, Vol. 8, 204, o. 4, 87-93 HIKARI Ltd, www.m-hkar.com http://dx.do.org/0.2988/jma.204.30252 Mult Objectve Fuzzy Ivetory Model wth Demad Depedet Ut Cost ad Lead Tme Costrats A

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

International Journal of

International Journal of Iter. J. Fuzzy Mathematcal Archve Vol. 3, 203, 36-4 ISSN: 2320 3242 (P), 2320 3250 (ole) Publshed o 7 December 203 www.researchmathsc.org Iteratoal Joural of Mult Objectve Fuzzy Ivetory Model Wth Demad

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Likewise, properties of the optimal policy for equipment replacement & maintenance problems can be used to reduce the computation.

Likewise, properties of the optimal policy for equipment replacement & maintenance problems can be used to reduce the computation. Whe solvg a vetory repleshmet problem usg a MDP model, kowg that the optmal polcy s of the form (s,s) ca reduce the computatoal burde. That s, f t s optmal to replesh the vetory whe the vetory level s,

More information

ECE 421/599 Electric Energy Systems 7 Optimal Dispatch of Generation. Instructor: Kai Sun Fall 2014

ECE 421/599 Electric Energy Systems 7 Optimal Dispatch of Generation. Instructor: Kai Sun Fall 2014 ECE 4/599 Electrc Eergy Systems 7 Optmal Dspatch of Geerato Istructor: Ka Su Fall 04 Backgroud I a practcal power system, the costs of geeratg ad delverg electrcty from power plats are dfferet (due to

More information

Simulation Output Analysis

Simulation Output Analysis Smulato Output Aalyss Summary Examples Parameter Estmato Sample Mea ad Varace Pot ad Iterval Estmato ermatg ad o-ermatg Smulato Mea Square Errors Example: Sgle Server Queueg System x(t) S 4 S 4 S 3 S 5

More information

7.0 Equality Contraints: Lagrange Multipliers

7.0 Equality Contraints: Lagrange Multipliers Systes Optzato 7.0 Equalty Cotrats: Lagrage Multplers Cosder the zato of a o-lear fucto subject to equalty costrats: g f() R ( ) 0 ( ) (7.) where the g ( ) are possbly also olear fuctos, ad < otherwse

More information

ESS Line Fitting

ESS Line Fitting ESS 5 014 17. Le Fttg A very commo problem data aalyss s lookg for relatoshpetwee dfferet parameters ad fttg les or surfaces to data. The smplest example s fttg a straght le ad we wll dscuss that here

More information

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades

Multiple Regression. More than 2 variables! Grade on Final. Multiple Regression 11/21/2012. Exam 2 Grades. Exam 2 Re-grades STAT 101 Dr. Kar Lock Morga 11/20/12 Exam 2 Grades Multple Regresso SECTIONS 9.2, 10.1, 10.2 Multple explaatory varables (10.1) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (10.2) Trasformatos

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen. .5 x 54.5 a. x 7. 786 7 b. The raked observatos are: 7.4, 7.5, 7.7, 7.8, 7.9, 8.0, 8.. Sce the sample sze 7 s odd, the meda s the (+)/ 4 th raked observato, or meda 7.8 c. The cosumer would more lkely

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

Kernel-based Methods and Support Vector Machines

Kernel-based Methods and Support Vector Machines Kerel-based Methods ad Support Vector Maches Larr Holder CptS 570 Mache Learg School of Electrcal Egeerg ad Computer Scece Washgto State Uverst Refereces Muller et al. A Itroducto to Kerel-Based Learg

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Multi-Objective Inventory Model of Deteriorating Items with Shortages in Fuzzy Environment Omprakash Jadhav 1, V.H. Bajaj 2

Multi-Objective Inventory Model of Deteriorating Items with Shortages in Fuzzy Environment Omprakash Jadhav 1, V.H. Bajaj 2 Iteratoal Joural of Statstka ad Mathematka, ISSN: 2277 279 EISSN: 2249865, Volume 6, Issue 1, 21 pp 45 MultObjectve Ivetory Model of Deteroratg Items wth Shortages uzzy Evromet Omprakash Jadhav 1, V.H.

More information

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek Partally Codtoal Radom Permutato Model 7- vestgato of Partally Codtoal RP Model wth Respose Error TRODUCTO Ed Staek We explore the predctor that wll result a smple radom sample wth respose error whe a

More information

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD Jural Karya Asl Loreka Ahl Matematk Vol 8 o 205 Page 084-088 Jural Karya Asl Loreka Ahl Matematk LIEARLY COSTRAIED MIIMIZATIO BY USIG EWTO S METHOD Yosza B Dasrl, a Ismal B Moh 2 Faculty Electrocs a Computer

More information

ENGI 3423 Simple Linear Regression Page 12-01

ENGI 3423 Simple Linear Regression Page 12-01 ENGI 343 mple Lear Regresso Page - mple Lear Regresso ometmes a expermet s set up where the expermeter has cotrol over the values of oe or more varables X ad measures the resultg values of aother varable

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

Optimal Strategy Analysis of an N-policy M/E k /1 Queueing System with Server Breakdowns and Multiple Vacations

Optimal Strategy Analysis of an N-policy M/E k /1 Queueing System with Server Breakdowns and Multiple Vacations Iteratoal Joural of Scetfc ad Research ublcatos, Volume 3, Issue, ovember 3 ISS 5-353 Optmal Strategy Aalyss of a -polcy M/E / Queueg System wth Server Breadows ad Multple Vacatos.Jayachtra*, Dr.A.James

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems Char for Network Archtectures ad Servces Prof. Carle Departmet of Computer Scece U Müche Aalyss of System Performace IN2072 Chapter 5 Aalyss of No Markov Systems Dr. Alexader Kle Prof. Dr.-Ig. Georg Carle

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Chapter 8. Inferences about More Than Two Population Central Values

Chapter 8. Inferences about More Than Two Population Central Values Chapter 8. Ifereces about More Tha Two Populato Cetral Values Case tudy: Effect of Tmg of the Treatmet of Port-We tas wth Lasers ) To vestgate whether treatmet at a youg age would yeld better results tha

More information

Objectives of Multiple Regression

Objectives of Multiple Regression Obectves of Multple Regresso Establsh the lear equato that best predcts values of a depedet varable Y usg more tha oe eplaator varable from a large set of potetal predctors {,,... k }. Fd that subset of

More information

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best

best estimate (mean) for X uncertainty or error in the measurement (systematic, random or statistical) best Error Aalyss Preamble Wheever a measuremet s made, the result followg from that measuremet s always subject to ucertaty The ucertaty ca be reduced by makg several measuremets of the same quatty or by mprovg

More information

Mean is only appropriate for interval or ratio scales, not ordinal or nominal.

Mean is only appropriate for interval or ratio scales, not ordinal or nominal. Mea Same as ordary average Sum all the data values ad dvde by the sample sze. x = ( x + x +... + x Usg summato otato, we wrte ths as x = x = x = = ) x Mea s oly approprate for terval or rato scales, ot

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

Uncertain Supply Chain Management

Uncertain Supply Chain Management Ucerta Supply Cha Maagemet 3 (5) 47 58 Cotets lsts avalable at GrowgScece Ucerta Supply Cha Maagemet homepage: www.growgscece.com/uscm Modelg of a vetory system wth mult varate demad uder volume flexblty

More information

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018 Chrs Pech Fal Practce CS09 Dec 5, 08 Practce Fal Examato Solutos. Aswer: 4/5 8/7. There are multle ways to obta ths aswer; here are two: The frst commo method s to sum over all ossbltes for the rak of

More information

Masoud Rabbani 1*, Leila Aliabadi 1

Masoud Rabbani 1*, Leila Aliabadi 1 Joural of Idustral ad Systems Egeerg Vol. 11, No.2, pp. 207-227 Sprg (Aprl) 2018 Mult-tem vetory model wth probablstc demad fucto uder permssble delay paymet ad fuzzy-stochastc budget costrat: A sgomal

More information

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers.

1. A real number x is represented approximately by , and we are told that the relative error is 0.1 %. What is x? Note: There are two answers. PROBLEMS A real umber s represeted appromately by 63, ad we are told that the relatve error s % What s? Note: There are two aswers Ht : Recall that % relatve error s What s the relatve error volved roudg

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

Lecture 8: Linear Regression

Lecture 8: Linear Regression Lecture 8: Lear egresso May 4, GENOME 56, Sprg Goals Develop basc cocepts of lear regresso from a probablstc framework Estmatg parameters ad hypothess testg wth lear models Lear regresso Su I Lee, CSE

More information

MEASURES OF DISPERSION

MEASURES OF DISPERSION MEASURES OF DISPERSION Measure of Cetral Tedecy: Measures of Cetral Tedecy ad Dsperso ) Mathematcal Average: a) Arthmetc mea (A.M.) b) Geometrc mea (G.M.) c) Harmoc mea (H.M.) ) Averages of Posto: a) Meda

More information

A Multi Item Integrated Inventory Model with Reparability and Manufacturing of Fresh Products

A Multi Item Integrated Inventory Model with Reparability and Manufacturing of Fresh Products Moder Appled Scece; Vol. 1, No. 7; 216 ISSN 1913-1844 E-ISSN 1913-1852 Publshed by Caada Ceter of Scece ad Educato A Mult Item Itegrated Ivetory Model wth Reparablty ad Maufacturg of Fresh Products Pky

More information

Analysis of Variance with Weibull Data

Analysis of Variance with Weibull Data Aalyss of Varace wth Webull Data Lahaa Watthaacheewaul Abstract I statstcal data aalyss by aalyss of varace, the usual basc assumptos are that the model s addtve ad the errors are radomly, depedetly, ad

More information

Statistics: Unlocking the Power of Data Lock 5

Statistics: Unlocking the Power of Data Lock 5 STAT 0 Dr. Kar Lock Morga Exam 2 Grades: I- Class Multple Regresso SECTIONS 9.2, 0., 0.2 Multple explaatory varables (0.) Parttog varablty R 2, ANOVA (9.2) Codtos resdual plot (0.2) Exam 2 Re- grades Re-

More information

Multi-Item Multi-Objective Inventory Model with Fuzzy Estimated Price dependent Demand, Fuzzy Deterioration and Possible Constraints

Multi-Item Multi-Objective Inventory Model with Fuzzy Estimated Price dependent Demand, Fuzzy Deterioration and Possible Constraints Advaces Fuzzy Mathematcs. ISSN 0973-533XVolume 11, Number (016), pp. 157-170 Research Ida Publcatos http://www.rpublcato.com Mult-Item Mult-Objectve Ivetory Model wth Fuzzy Estmated Prce depedet Demad,

More information

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses Johs Hopks Uverst Departmet of Bostatstcs Math Revew for Itroductor Courses Ratoale Bostatstcs courses wll rel o some fudametal mathematcal relatoshps, fuctos ad otato. The purpose of ths Math Revew s

More information

Chapter 11 Systematic Sampling

Chapter 11 Systematic Sampling Chapter stematc amplg The sstematc samplg techue s operatoall more coveet tha the smple radom samplg. It also esures at the same tme that each ut has eual probablt of cluso the sample. I ths method of

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information

Waiting Time Distribution of Demand Requiring Multiple Items under a Base Stock Policy

Waiting Time Distribution of Demand Requiring Multiple Items under a Base Stock Policy Joural of Servce Scece ad Maagemet 23 6 266-272 http://d.do.org/.4236/jssm.23.643 Publshed Ole October 23 (http://www.scrp.org/joural/jssm) Watg Tme Dstrbuto of Demad Requrg Multple Items uder a Base Stoc

More information

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever. 9.4 Sequeces ad Seres Pre Calculus 9.4 SEQUENCES AND SERIES Learg Targets:. Wrte the terms of a explctly defed sequece.. Wrte the terms of a recursvely defed sequece. 3. Determe whether a sequece s arthmetc,

More information

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model

ECON 482 / WH Hong The Simple Regression Model 1. Definition of the Simple Regression Model ECON 48 / WH Hog The Smple Regresso Model. Defto of the Smple Regresso Model Smple Regresso Model Expla varable y terms of varable x y = β + β x+ u y : depedet varable, explaed varable, respose varable,

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

QR Factorization and Singular Value Decomposition COS 323

QR Factorization and Singular Value Decomposition COS 323 QR Factorzato ad Sgular Value Decomposto COS 33 Why Yet Aother Method? How do we solve least-squares wthout currg codto-squarg effect of ormal equatos (A T A A T b) whe A s sgular, fat, or otherwse poorly-specfed?

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Considering greenhouse gas emissions in a single vendormultiple buyer coordinated supply chain

Considering greenhouse gas emissions in a single vendormultiple buyer coordinated supply chain XXII Summer School Fracesco Turco Idustral Systems Egeerg Cosderg greehouse gas emssos a sgle vedormultple buyer coordated supply cha Castellao D Gallo M Satllo L C Dpartmeto d Igegera Chmca de Materal

More information

Lecture 2 - What are component and system reliability and how it can be improved?

Lecture 2 - What are component and system reliability and how it can be improved? Lecture 2 - What are compoet ad system relablty ad how t ca be mproved? Relablty s a measure of the qualty of the product over the log ru. The cocept of relablty s a exteded tme perod over whch the expected

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Department of Agricultural Economics. PhD Qualifier Examination. August 2011 Departmet of Agrcultural Ecoomcs PhD Qualfer Examato August 0 Istructos: The exam cossts of sx questos You must aswer all questos If you eed a assumpto to complete a questo, state the assumpto clearly

More information

L5 Polynomial / Spline Curves

L5 Polynomial / Spline Curves L5 Polyomal / Sple Curves Cotets Coc sectos Polyomal Curves Hermte Curves Bezer Curves B-Sples No-Uform Ratoal B-Sples (NURBS) Mapulato ad Represetato of Curves Types of Curve Equatos Implct: Descrbe a

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions. Ordary Least Squares egresso. Smple egresso. Algebra ad Assumptos. I ths part of the course we are gog to study a techque for aalysg the lear relatoshp betwee two varables Y ad X. We have pars of observatos

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

Chapter 13 Student Lecture Notes 13-1

Chapter 13 Student Lecture Notes 13-1 Chapter 3 Studet Lecture Notes 3- Basc Busess Statstcs (9 th Edto) Chapter 3 Smple Lear Regresso 4 Pretce-Hall, Ic. Chap 3- Chapter Topcs Types of Regresso Models Determg the Smple Lear Regresso Equato

More information

Bayes (Naïve or not) Classifiers: Generative Approach

Bayes (Naïve or not) Classifiers: Generative Approach Logstc regresso Bayes (Naïve or ot) Classfers: Geeratve Approach What do we mea by Geeratve approach: Lear p(y), p(x y) ad the apply bayes rule to compute p(y x) for makg predctos Ths s essetally makg

More information

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy Bouds o the expected etropy ad KL-dvergece of sampled multomal dstrbutos Brado C. Roy bcroy@meda.mt.edu Orgal: May 18, 2011 Revsed: Jue 6, 2011 Abstract Iformato theoretc quattes calculated from a sampled

More information

Multiple Choice Test. Chapter Adequacy of Models for Regression

Multiple Choice Test. Chapter Adequacy of Models for Regression Multple Choce Test Chapter 06.0 Adequac of Models for Regresso. For a lear regresso model to be cosdered adequate, the percetage of scaled resduals that eed to be the rage [-,] s greater tha or equal to

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Binary classification: Support Vector Machines

Binary classification: Support Vector Machines CS 57 Itroducto to AI Lecture 6 Bar classfcato: Support Vector Maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 57 Itro to AI Supervsed learg Data: D { D, D,.., D} a set of eamples D, (,,,,,

More information

Analysis of Lagrange Interpolation Formula

Analysis of Lagrange Interpolation Formula P IJISET - Iteratoal Joural of Iovatve Scece, Egeerg & Techology, Vol. Issue, December 4. www.jset.com ISS 348 7968 Aalyss of Lagrage Iterpolato Formula Vjay Dahya PDepartmet of MathematcsMaharaja Surajmal

More information

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic Covergece of the Desrozers scheme ad ts relato to the lag ovato dagostc chard Méard Evromet Caada, Ar Qualty esearch Dvso World Weather Ope Scece Coferece Motreal, August 9, 04 o t t O x x x y x y Oservato

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

STA 105-M BASIC STATISTICS (This is a multiple choice paper.)

STA 105-M BASIC STATISTICS (This is a multiple choice paper.) DCDM BUSINESS SCHOOL September Mock Eamatos STA 0-M BASIC STATISTICS (Ths s a multple choce paper.) Tme: hours 0 mutes INSTRUCTIONS TO CANDIDATES Do ot ope ths questo paper utl you have bee told to do

More information

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s).

f f... f 1 n n (ii) Median : It is the value of the middle-most observation(s). CHAPTER STATISTICS Pots to Remember :. Facts or fgures, collected wth a defte pupose, are called Data.. Statstcs s the area of study dealg wth the collecto, presetato, aalyss ad terpretato of data.. The

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

Simple Linear Regression

Simple Linear Regression Statstcal Methods I (EST 75) Page 139 Smple Lear Regresso Smple regresso applcatos are used to ft a model descrbg a lear relatoshp betwee two varables. The aspects of least squares regresso ad correlato

More information

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues

Likelihood Ratio, Wald, and Lagrange Multiplier (Score) Tests. Soccer Goals in European Premier Leagues Lkelhood Rato, Wald, ad Lagrage Multpler (Score) Tests Soccer Goals Europea Premer Leagues - 4 Statstcal Testg Prcples Goal: Test a Hpothess cocerg parameter value(s) a larger populato (or ature), based

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

The Necessarily Efficient Point Method for Interval Molp Problems

The Necessarily Efficient Point Method for Interval Molp Problems ISS 6-69 Eglad K Joural of Iformato ad omputg Scece Vol. o. 9 pp. - The ecessarly Effcet Pot Method for Iterval Molp Problems Hassa Mshmast eh ad Marzeh Alezhad + Mathematcs Departmet versty of Ssta ad

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Regression and the LMS Algorithm

Regression and the LMS Algorithm CSE 556: Itroducto to Neural Netorks Regresso ad the LMS Algorthm CSE 556: Regresso 1 Problem statemet CSE 556: Regresso Lear regresso th oe varable Gve a set of N pars of data {, d }, appromate d b a

More information

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Numercal Computg -I UNIT SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS Structure Page Nos..0 Itroducto 6. Objectves 7. Ital Approxmato to a Root 7. Bsecto Method 8.. Error Aalyss 9.4 Regula Fals Method

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

CHAPTER 2. = y ˆ β x (.1022) So we can write

CHAPTER 2. = y ˆ β x (.1022) So we can write CHAPTER SOLUTIONS TO PROBLEMS. () Let y = GPA, x = ACT, ad = 8. The x = 5.875, y = 3.5, (x x )(y y ) = 5.85, ad (x x ) = 56.875. From equato (.9), we obta the slope as ˆβ = = 5.85/56.875., rouded to four

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Runtime analysis RLS on OneMax. Heuristic Optimization

Runtime analysis RLS on OneMax. Heuristic Optimization Lecture 6 Rutme aalyss RLS o OeMax trals of {,, },, l ( + ɛ) l ( ɛ)( ) l Algorthm Egeerg Group Hasso Platter Isttute, Uversty of Potsdam 9 May T, We wat to rgorously uderstad ths behavor 9 May / Rutme

More information

CSE 5526: Introduction to Neural Networks Linear Regression

CSE 5526: Introduction to Neural Networks Linear Regression CSE 556: Itroducto to Neural Netorks Lear Regresso Part II 1 Problem statemet Part II Problem statemet Part II 3 Lear regresso th oe varable Gve a set of N pars of data , appromate d by a lear fucto

More information