1 Quasi-definite matrix

Size: px
Start display at page:

Download "1 Quasi-definite matrix"

Transcription

1 1 Quasi-definite matrix The matrix H is a quasi-definite matrix, if there exists a permutation matrix P such that H qd P T H11 H HP = 1 H1, 1) H where H 11 and H + H1H 11 H 1 are positive definite. This allow us the following decomposition: I H11 H qd = H1H 11 I We are going to use the following notations H 1/ Γ = H1H 11, G = H + H 1H 11 H 1 ) H + H 1H 11 H 1 ) 1/ 11 I H 11 H 1 I, J =. ) I. 3) I The main result of this section will be the upper bound for the norm any unitary invariant norm) of J-unitary matrix F = F + F which simultaneously diagonalize the pair G I + Γ) I + Γ)G, J), that is F + F G I + Γ) Λ+ F I + Γ)G F+ F =, + Λ F J I F + F = I 4) Theorem 1.1. Let H qd be a quasi-definite matrix defined by 1)and let F be J-unitary matrix which simultaneously diagonalize the pair G I +Γ) I +Γ)G, J) as in 4). Then the following upper bound for F holds: F H 1H11 H H ) 11, 5) η η where λ i Λ, λ j Λ + λ i λ j λ i η = min j, 6) and where stands for any unitary invariant norm. 1

2 Rotation of eigensubspace for indefinite Hermitian pairs Finally in this section we will present perturbation bound for the Hermitian pair H, M), where H is quasi-definite matrix defined by 1) and M is positive definite, perturbed such that H, M) is again Hermitian indefinite pair, with H quasi-definite matrix and M positive definite. Let the quasi-definite matrix H and H be decomposed as H = GJG := I + Γ)G JG I + Γ), H = GJ G := I + Γ) G J G I + Γ), where Γ = H1H 11, G = and Γ = H 1 H 1/, G = H 11 Then we have the following theorem: H + H 1H 11 H 1 ) 1/ 11 1/ H 11 H + H 1, J = H 11 H 1 ) 1/ I. I Theorem.1. Let H, M) be a Hermitian pair and let H, M) be the perturbed pair. Let X = X 1 X and X = X1 X, be non-singular matrices which simultaneously diagonalize the pairs H, M) and H, M). Let H F = min 1H11 H H ) 11, F = min H 1 H 11 + H ) H 11, If then. H 1 H H1 H ) η η H H 1 + H ) H η G := G δg < 1, η M := M / δmm / < 1, sin Θ M RanX 1 ), Ran X 1 )) F F F RelGap Φ H η G RGap Φ M 1 ηm, 7)

3 where sin Θ M RanX 1 ), Ran X 1 )) is diagonal matrix with sines of canonical angles between RanX 1 ) and Ran X 1 ) on its diagonal given in the weighted M-inner product space, defined by??). Further, in 7) Φ M = M / δmm / F and Φ H = G δhg F and RelGap and RGap are defined by??) and??), respectively. Proof. The proof is similar to the proof of the Theorem??. 3 Numerical examples 3.1 Example Let H qd be quasi-definite matrix of the form H11 b H qd = b H 11, 8) where H 11 = diag1 : n), n = 1 is real symmetric positive definite matrix and b = b onesn), b R. We will considered the eigenvalue problem H qd x = λx. 9) Similarly as in previous example, problem 9) is equivalent to the problem where H11 bh 11 b + H 11 ) y = λ y = I H 11 b I I bh11 bh11 x. H11 b bh 11 Note that now we have eigenvector problem of the definite pair H, M) where H11 H = ) I H bh11 b 11 b and M = + H 11 bh11 bh11 ) + I y, 1) bh 11 ) + I. In next two experiments we will estimate the bound 7) for the eigenvector problems 9) and 1). As in previous example, we estimate the perturbation of an invariant subspace which corresponds to the first four smallest eigenvalues of the matrix H qd,and also for the matrix pair H, M). Experiment 3.1. We consider random perturbations δh qd, which satisfy δh) ij η H ij, 3

4 where η = 1 9. The exact perturbations gives sin ΘRanX 1 ), Ran X 1 ) F The quantities η G G δg and Φ H G δhg F are bounded by η G , Φ H Also,??) gives RelGap.4. The bound 5) for J-unitary matrices F and F gives F 1.974, F Now using the above, bound 7) yields sin ΘRanX 1 ), Ran X 1 ) F Experiment 3.. We consider random perturbations δh and δm, which satisfy δh) ij η H ij, δm) ij η M ij, where η = 1 9. The exact perturbations gives sin Θ M RanX 1 ), Ran X 1 ) F The quantities η G G δg and η M M / δmm / are bounded by η G , η M , and Φ H G δhg F, Φ M M / δmm / F are bounded by Φ H , Φ M Also,??) and??) gives RelGap.4, RGap.4. For J-unitary matrices F and F holds F = 1, F = 1. Now using the above, bound 7) yields sin Θ M RanY 1 ), RanỸ1) F

5 Acknowledgement L. G. was supported by the grant: Spectral decompositions numerical methods and applications, Grant Nr of the Croatian MZOS, N. T. was supported by the grant: Passive control of mechanical models, Grant Nr of the Croatian MZOS. References 1 J. Barlow and J. Demmel. Computing accurate eigensystems of scaled diagonally dominant matrices. SIAM J. Numer. Anal., 73):76 791, 199. A. Ben Amor and J. F. Brasche. Sharp estimates for large coupling convergence with applications to Dirichlet operators. J. Funct. Anal., 54): , 8. 3 M. Benzi, G.H. Golub and J. Liesent. Numerical solution of the saddle point problems. Acta Numerica, 5. 4 J. Brasche and M. Demuth. Dynkin s formula and large coupling convergence. J. Funct. Anal., 191):34 69, 5. 5 C. Davis and W. M. Kahan. The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal., 7:1 46, M. Demuth and J. A. van Casteren. Stochastic spectral theory for selfadjoint Feller operators. Probability and its Applications. Birkhäuser Verlag, Basel,. A functional integration approach. 7 L. Grubišić. Relative convergence estimates for the spectral asymptotic in the large coupling limit. Integral Equations and Operator Theory, 651):51 81, 9. 8 L. Grubišić and J. Ovall. On estimators for eigenvalue/eigenvector approximations. Math. Comp., 7866):739 77, 9. 9 L. Grubišić and K. Veselić. On weakly formulated sylvester equation and applications. Integral Equations and Operator Theory, 58):175 4, 7. 1 L. Grubišić, N. Truhar and K. Veselić. The Rotation of Eigenspaces of Perturbed Matrix Pairs. Preprint, A. Kirsch, B. Metzger and P. Muller. Random blocks operators. J.Stat Phys, 143: , 11. 5

6 1 A. V. Knyazev and M. E. Argentati. Principal angles between subspaces in an A- based scalar product: Algorithms and perturbation estimates. SIAM J. Sci. Comput., 36):9 41,. 13 R.-C. Li. A bound on the solution to a structured Sylvester equation with an application to relative perturbation theory. SIAM J. Matrix Anal. Appl., 1): electronic), R.-C. Li. Relative perturbation theory. II. Eigenspace and singular subspace variations. SIAM J. Matrix Anal. Appl., ): electronic), Matrix Market. BCSSTRUC1 collection R. Onn, A. O. Steinhardt and A. Bojanczyk, Hyperbolic singular value decompositions and applications, IEEE Trans. on Acoustics, Speech, and Signal Processing, ). 17 G. W. Stewart and J. G. Sun. Matrix perturbation theory. Computer Science and Scientific Computing. Academic Press Inc., Boston, MA, N. Truhar and R. C. Li, A sin Θ theorem for graded indefinite Hermitian matrices, Linear Algebra Appl., , K.Veselić, A Jacobi eigenreduction algorithm for definite matrix pairs, Numer. Math., 64: ). K. Veselić, Perturbation theory for the eigenvalues of factorised symmetric matrices, Linear Algebra Appl ). 1 T. Warburton and M. Embree. The role of the penalty in the local discontinuous Galerkin method for Maxwell s eigenvalue problem. Comput. Methods Appl. Mech. Engrg., ):35 33, 6. H. Zha, A note on the existence of the hyperbolic singular value decomposition, Linear Algebra Appl., 4: ). 6

or H = UU = nx i=1 i u i u i ; where H is a non-singular Hermitian matrix of order n, = diag( i ) is a diagonal matrix whose diagonal elements are the

or H = UU = nx i=1 i u i u i ; where H is a non-singular Hermitian matrix of order n, = diag( i ) is a diagonal matrix whose diagonal elements are the Relative Perturbation Bound for Invariant Subspaces of Graded Indenite Hermitian Matrices Ninoslav Truhar 1 University Josip Juraj Strossmayer, Faculty of Civil Engineering, Drinska 16 a, 31000 Osijek,

More information

Iterative Algorithm for Computing the Eigenvalues

Iterative Algorithm for Computing the Eigenvalues Iterative Algorithm for Computing the Eigenvalues LILJANA FERBAR Faculty of Economics University of Ljubljana Kardeljeva pl. 17, 1000 Ljubljana SLOVENIA Abstract: - We consider the eigenvalue problem Hx

More information

Majorization for Changes in Ritz Values and Canonical Angles Between Subspaces (Part I and Part II)

Majorization for Changes in Ritz Values and Canonical Angles Between Subspaces (Part I and Part II) 1 Majorization for Changes in Ritz Values and Canonical Angles Between Subspaces (Part I and Part II) Merico Argentati (speaker), Andrew Knyazev, Ilya Lashuk and Abram Jujunashvili Department of Mathematics

More information

ON ANGLES BETWEEN SUBSPACES OF INNER PRODUCT SPACES

ON ANGLES BETWEEN SUBSPACES OF INNER PRODUCT SPACES ON ANGLES BETWEEN SUBSPACES OF INNER PRODUCT SPACES HENDRA GUNAWAN AND OKI NESWAN Abstract. We discuss the notion of angles between two subspaces of an inner product space, as introduced by Risteski and

More information

Principal Angles Between Subspaces and Their Tangents

Principal Angles Between Subspaces and Their Tangents MITSUBISI ELECTRIC RESEARC LABORATORIES http://wwwmerlcom Principal Angles Between Subspaces and Their Tangents Knyazev, AV; Zhu, P TR2012-058 September 2012 Abstract Principal angles between subspaces

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY

RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY RITZ VALUE BOUNDS THAT EXPLOIT QUASI-SPARSITY ILSE C.F. IPSEN Abstract. Absolute and relative perturbation bounds for Ritz values of complex square matrices are presented. The bounds exploit quasi-sparsity

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

deviation of D and D from similarity (Theorem 6.). The bound is tight when the perturbation is a similarity transformation D = D? or when ^ = 0. From

deviation of D and D from similarity (Theorem 6.). The bound is tight when the perturbation is a similarity transformation D = D? or when ^ = 0. From RELATIVE PERTURBATION RESULTS FOR EIGENVALUES AND EIGENVECTORS OF DIAGONALISABLE MATRICES STANLEY C. EISENSTAT AND ILSE C. F. IPSEN y Abstract. Let ^ and ^x be a perturbed eigenpair of a diagonalisable

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

S.F. Xu (Department of Mathematics, Peking University, Beijing)

S.F. Xu (Department of Mathematics, Peking University, Beijing) Journal of Computational Mathematics, Vol.14, No.1, 1996, 23 31. A SMALLEST SINGULAR VALUE METHOD FOR SOLVING INVERSE EIGENVALUE PROBLEMS 1) S.F. Xu (Department of Mathematics, Peking University, Beijing)

More information

Yimin Wei a,b,,1, Xiezhang Li c,2, Fanbin Bu d, Fuzhen Zhang e. Abstract

Yimin Wei a,b,,1, Xiezhang Li c,2, Fanbin Bu d, Fuzhen Zhang e. Abstract Linear Algebra and its Applications 49 (006) 765 77 wwwelseviercom/locate/laa Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices Application of perturbation theory

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 1, pp. 1-11, 8. Copyright 8,. ISSN 168-961. MAJORIZATION BOUNDS FOR RITZ VALUES OF HERMITIAN MATRICES CHRISTOPHER C. PAIGE AND IVO PANAYOTOV Abstract.

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

An SVD-Like Matrix Decomposition and Its Applications

An SVD-Like Matrix Decomposition and Its Applications An SVD-Like Matrix Decomposition and Its Applications Hongguo Xu Abstract [ A matrix S C m m is symplectic if SJS = J, where J = I m I m. Symplectic matrices play an important role in the analysis and

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

Linear Algebra using Dirac Notation: Pt. 2

Linear Algebra using Dirac Notation: Pt. 2 Linear Algebra using Dirac Notation: Pt. 2 PHYS 476Q - Southern Illinois University February 6, 2018 PHYS 476Q - Southern Illinois University Linear Algebra using Dirac Notation: Pt. 2 February 6, 2018

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

Accuracy and Stability in Numerical Linear Algebra

Accuracy and Stability in Numerical Linear Algebra Proceedings of the 1. Conference on Applied Mathematics and Computation Dubrovnik, Croatia, September 13 18, 1999 pp. 105 112 Accuracy and Stability in Numerical Linear Algebra Zlatko Drmač Abstract. We

More information

On the Modification of an Eigenvalue Problem that Preserves an Eigenspace

On the Modification of an Eigenvalue Problem that Preserves an Eigenspace Purdue University Purdue e-pubs Department of Computer Science Technical Reports Department of Computer Science 2009 On the Modification of an Eigenvalue Problem that Preserves an Eigenspace Maxim Maumov

More information

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY KLAUS NEYMEYR ABSTRACT. Multigrid techniques can successfully be applied to mesh eigenvalue problems for elliptic differential operators. They allow

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

UMIACS-TR July CS-TR 2721 Revised March Perturbation Theory for. Rectangular Matrix Pencils. G. W. Stewart.

UMIACS-TR July CS-TR 2721 Revised March Perturbation Theory for. Rectangular Matrix Pencils. G. W. Stewart. UMIAS-TR-9-5 July 99 S-TR 272 Revised March 993 Perturbation Theory for Rectangular Matrix Pencils G. W. Stewart abstract The theory of eigenvalues and eigenvectors of rectangular matrix pencils is complicated

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna

The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method. V. Simoncini. Dipartimento di Matematica, Università di Bologna The Nullspace free eigenvalue problem and the inexact Shift and invert Lanczos method V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The

More information

Characterization of half-radial matrices

Characterization of half-radial matrices Characterization of half-radial matrices Iveta Hnětynková, Petr Tichý Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 8, Czech Republic Abstract Numerical radius r(a) is the

More information

Review of similarity transformation and Singular Value Decomposition

Review of similarity transformation and Singular Value Decomposition Review of similarity transformation and Singular Value Decomposition Nasser M Abbasi Applied Mathematics Department, California State University, Fullerton July 8 7 page compiled on June 9, 5 at 9:5pm

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Key words. multiplicative perturbation, relative perturbation theory, relative distance, eigenvalue, singular value, graded matrix

Key words. multiplicative perturbation, relative perturbation theory, relative distance, eigenvalue, singular value, graded matrix SIAM J MATRIX ANAL APPL c 1998 Society for Industrial and Applied Mathematics Vol 19, No 4, pp 956 98, October 1998 009 RELATIVE PERTURBATION THEORY: I EIGENVALUE AND SINGULAR VALUE VARIATIONS REN-CANG

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

Complex symmetric operators

Complex symmetric operators Complex symmetric operators Stephan Ramon Garcia 1 Complex symmetric operators This section is a brief introduction to complex symmetric operators, a certain class of Hilbert space operators which arise

More information

Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations

Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations Eigenvalue perturbation theory of classes of structured matrices under generic structured rank one perturbations, VU Amsterdam and North West University, South Africa joint work with: Leonard Batzke, Christian

More information

ACCURATE SYMMETRIC EIGENREDUCTION BY A JACOBI METHOD

ACCURATE SYMMETRIC EIGENREDUCTION BY A JACOBI METHOD æ ACCURATE SYMMETRIC EIGENREDUCTION BY A JACOBI METHOD DISSERTATION zur Erlangung des Grades Dr. rer. nat. des Fachbereichs Mathematik der Fernuniversität Gesamthochschule Hagen vorgelegt von IVAN SLAPNIČAR

More information

the Unitary Polar Factor æ Ren-Cang Li P.O. Box 2008, Bldg 6012

the Unitary Polar Factor æ Ren-Cang Li P.O. Box 2008, Bldg 6012 Relative Perturbation Bounds for the Unitary Polar actor Ren-Cang Li Mathematical Science Section Oak Ridge National Laboratory P.O. Box 2008, Bldg 602 Oak Ridge, TN 3783-6367 èli@msr.epm.ornl.govè LAPACK

More information

Classes of Linear Operators Vol. I

Classes of Linear Operators Vol. I Classes of Linear Operators Vol. I Israel Gohberg Seymour Goldberg Marinus A. Kaashoek Birkhäuser Verlag Basel Boston Berlin TABLE OF CONTENTS VOLUME I Preface Table of Contents of Volume I Table of Contents

More information

Perturbation theory for eigenvalues of Hermitian pencils. Christian Mehl Institut für Mathematik TU Berlin, Germany. 9th Elgersburg Workshop

Perturbation theory for eigenvalues of Hermitian pencils. Christian Mehl Institut für Mathematik TU Berlin, Germany. 9th Elgersburg Workshop Perturbation theory for eigenvalues of Hermitian pencils Christian Mehl Institut für Mathematik TU Berlin, Germany 9th Elgersburg Workshop Elgersburg, March 3, 2014 joint work with Shreemayee Bora, Michael

More information

A. Gheondea 1 LIST OF PUBLICATIONS

A. Gheondea 1 LIST OF PUBLICATIONS A. Gheondea 1 Preprints LIST OF PUBLICATIONS [1] P. Cojuhari, A. Gheondea: Closed embeddings, operator ranges, and Dirac operators, Complex Analysis Operator Theory (to appear). Articles in Refereed Journals

More information

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation

The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation The Solvability Conditions for the Inverse Eigenvalue Problem of Hermitian and Generalized Skew-Hamiltonian Matrices and Its Approximation Zheng-jian Bai Abstract In this paper, we first consider the inverse

More information

J-Orthogonal Matrices: Properties and Generation

J-Orthogonal Matrices: Properties and Generation SIAM REVIEW Vol. 45,No. 3,pp. 504 519 c 2003 Society for Industrial and Applied Mathematics J-Orthogonal Matrices: Properties and Generation Nicholas J. Higham Abstract. A real, square matrix Q is J-orthogonal

More information

A Note on Eigenvalues of Perturbed Hermitian Matrices

A Note on Eigenvalues of Perturbed Hermitian Matrices A Note on Eigenvalues of Perturbed Hermitian Matrices Chi-Kwong Li Ren-Cang Li July 2004 Let ( H1 E A = E H 2 Abstract and à = ( H1 H 2 be Hermitian matrices with eigenvalues λ 1 λ k and λ 1 λ k, respectively.

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 435 (2011) 480 493 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Bounding the spectrum

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 437 (2012) 202 213 Contents lists available at SciVerse ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Perturbation

More information

Off-diagonal perturbation, first-order approximation and quadratic residual bounds for matrix eigenvalue problems

Off-diagonal perturbation, first-order approximation and quadratic residual bounds for matrix eigenvalue problems Off-diagonal perturbation, first-order approximation and quadratic residual bounds for matrix eigenvalue problems Yuji Nakatsukasa Abstract When a symmetric block diagonal matrix [ A 1 A2 ] undergoes an

More information

Exponentials of Symmetric Matrices through Tridiagonal Reductions

Exponentials of Symmetric Matrices through Tridiagonal Reductions Exponentials of Symmetric Matrices through Tridiagonal Reductions Ya Yan Lu Department of Mathematics City University of Hong Kong Kowloon, Hong Kong Abstract A simple and efficient numerical algorithm

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

Positive Definite Matrix

Positive Definite Matrix 1/29 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Positive Definite, Negative Definite, Indefinite 2/29 Pure Quadratic Function

More information

PERTURBATION ANALYSIS OF THE EIGENVECTOR MATRIX AND SINGULAR VECTOR MATRICES. Xiao Shan Chen, Wen Li and Wei Wei Xu 1. INTRODUCTION A = UΛU H,

PERTURBATION ANALYSIS OF THE EIGENVECTOR MATRIX AND SINGULAR VECTOR MATRICES. Xiao Shan Chen, Wen Li and Wei Wei Xu 1. INTRODUCTION A = UΛU H, TAIWAESE JOURAL O MATHEMATICS Vol. 6, o., pp. 79-94, ebruary 0 This paper is available online at http://tjm.math.ntu.edu.tw PERTURBATIO AALYSIS O THE EIGEVECTOR MATRIX AD SIGULAR VECTOR MATRICES Xiao Shan

More information

Generalized Shifted Inverse Iterations on Grassmann Manifolds 1

Generalized Shifted Inverse Iterations on Grassmann Manifolds 1 Proceedings of the Sixteenth International Symposium on Mathematical Networks and Systems (MTNS 2004), Leuven, Belgium Generalized Shifted Inverse Iterations on Grassmann Manifolds 1 J. Jordan α, P.-A.

More information

Block companion matrices, discrete-time block diagonal stability and polynomial matrices

Block companion matrices, discrete-time block diagonal stability and polynomial matrices Block companion matrices, discrete-time block diagonal stability and polynomial matrices Harald K. Wimmer Mathematisches Institut Universität Würzburg D-97074 Würzburg Germany October 25, 2008 Abstract

More information

ISOLATED SEMIDEFINITE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION

ISOLATED SEMIDEFINITE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION ISOLATED SEMIDEFINITE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION Harald K. Wimmer 1 The set of all negative-semidefinite solutions of the CARE A X + XA + XBB X C C = 0 is homeomorphic

More information

Bounding the Spectrum of Large Hermitian Matrices

Bounding the Spectrum of Large Hermitian Matrices Bounding the Spectrum of Large Hermitian Matrices Ren-Cang Li Yunkai Zhou Technical Report 2009-07 http://www.uta.edu/math/preprint/ Bounding the Spectrum of Large Hermitian Matrices Ren-Cang Li and Yunkai

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

Permutation transformations of tensors with an application

Permutation transformations of tensors with an application DOI 10.1186/s40064-016-3720-1 RESEARCH Open Access Permutation transformations of tensors with an application Yao Tang Li *, Zheng Bo Li, Qi Long Liu and Qiong Liu *Correspondence: liyaotang@ynu.edu.cn

More information

Detailed Assessment Report MATH Outcomes, with Any Associations and Related Measures, Targets, Findings, and Action Plans

Detailed Assessment Report MATH Outcomes, with Any Associations and Related Measures, Targets, Findings, and Action Plans Detailed Assessment Report 2015-2016 MATH 3401 As of: 8/15/2016 10:01 AM EDT (Includes those Action Plans with Budget Amounts marked One-Time, Recurring, No Request.) Course Description Theory and applications

More information

First, we review some important facts on the location of eigenvalues of matrices.

First, we review some important facts on the location of eigenvalues of matrices. BLOCK NORMAL MATRICES AND GERSHGORIN-TYPE DISCS JAKUB KIERZKOWSKI AND ALICJA SMOKTUNOWICZ Abstract The block analogues of the theorems on inclusion regions for the eigenvalues of normal matrices are given

More information

Error estimates for the ESPRIT algorithm

Error estimates for the ESPRIT algorithm Error estimates for the ESPRIT algorithm Daniel Potts Manfred Tasche Let z j := e f j j = 1,..., M) with f j [ ϕ, 0] + i [ π, π) and small ϕ 0 be distinct nodes. With complex coefficients c j 0, we consider

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

2 and bound the error in the ith eigenvector in terms of the relative gap, min j6=i j i? jj j i j j 1=2 : In general, this theory usually restricts H

2 and bound the error in the ith eigenvector in terms of the relative gap, min j6=i j i? jj j i j j 1=2 : In general, this theory usually restricts H Optimal Perturbation Bounds for the Hermitian Eigenvalue Problem Jesse L. Barlow Department of Computer Science and Engineering The Pennsylvania State University University Park, PA 1682-616 e-mail: barlow@cse.psu.edu

More information

Multiplicative Perturbation Analysis for QR Factorizations

Multiplicative Perturbation Analysis for QR Factorizations Multiplicative Perturbation Analysis for QR Factorizations Xiao-Wen Chang Ren-Cang Li Technical Report 011-01 http://www.uta.edu/math/preprint/ Multiplicative Perturbation Analysis for QR Factorizations

More information

Linear Algebra and Dirac Notation, Pt. 2

Linear Algebra and Dirac Notation, Pt. 2 Linear Algebra and Dirac Notation, Pt. 2 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 2 February 1, 2017 1 / 14

More information

Total least squares. Gérard MEURANT. October, 2008

Total least squares. Gérard MEURANT. October, 2008 Total least squares Gérard MEURANT October, 2008 1 Introduction to total least squares 2 Approximation of the TLS secular equation 3 Numerical experiments Introduction to total least squares In least squares

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

ANGLES BETWEEN SUBSPACES AND THE RAYLEIGH-RITZ METHOD. Peizhen Zhu. M.S., University of Colorado Denver, A thesis submitted to the

ANGLES BETWEEN SUBSPACES AND THE RAYLEIGH-RITZ METHOD. Peizhen Zhu. M.S., University of Colorado Denver, A thesis submitted to the ANGLES BETWEEN SUBSPACES AND THE RAYLEIGH-RITZ METHOD by Peizhen Zhu M.S., University of Colorado Denver, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data

Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data Sensitivity of Gauss-Christoffel quadrature and sensitivity of Jacobi matrices to small changes of spectral data Zdeněk Strakoš Academy of Sciences and Charles University, Prague http://www.cs.cas.cz/

More information

An error estimate for matrix equations

An error estimate for matrix equations Applied Numerical Mathematics 50 (2004) 395 407 www.elsevier.com/locate/apnum An error estimate for matrix equations Yang Cao, Linda Petzold 1 Department of Computer Science, University of California,

More information

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ. Linear Algebra 1 M.T.Nair Department of Mathematics, IIT Madras 1 Eigenvalues and Eigenvectors 1.1 Definition and Examples Definition 1.1. Let V be a vector space (over a field F) and T : V V be a linear

More information

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra

Definite versus Indefinite Linear Algebra. Christian Mehl Institut für Mathematik TU Berlin Germany. 10th SIAM Conference on Applied Linear Algebra Definite versus Indefinite Linear Algebra Christian Mehl Institut für Mathematik TU Berlin Germany 10th SIAM Conference on Applied Linear Algebra Monterey Bay Seaside, October 26-29, 2009 Indefinite Linear

More information

Math 307 Learning Goals. March 23, 2010

Math 307 Learning Goals. March 23, 2010 Math 307 Learning Goals March 23, 2010 Course Description The course presents core concepts of linear algebra by focusing on applications in Science and Engineering. Examples of applications from recent

More information

Finite dimensional indefinite inner product spaces and applications in Numerical Analysis

Finite dimensional indefinite inner product spaces and applications in Numerical Analysis Finite dimensional indefinite inner product spaces and applications in Numerical Analysis Christian Mehl Technische Universität Berlin, Institut für Mathematik, MA 4-5, 10623 Berlin, Germany, Email: mehl@math.tu-berlin.de

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 36, pp. 39-53, 009-010. Copyright 009,. ISSN 1068-9613. ETNA P-REGULAR SPLITTING ITERATIVE METHODS FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

MATRIX AND LINEAR ALGEBR A Aided with MATLAB

MATRIX AND LINEAR ALGEBR A Aided with MATLAB Second Edition (Revised) MATRIX AND LINEAR ALGEBR A Aided with MATLAB Kanti Bhushan Datta Matrix and Linear Algebra Aided with MATLAB Second Edition KANTI BHUSHAN DATTA Former Professor Department of Electrical

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated.

Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated. Math 504, Homework 5 Computation of eigenvalues and singular values Recall that your solutions to these questions will not be collected or evaluated 1 Find the eigenvalues and the associated eigenspaces

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

SPECTRAL PROPERTIES OF JACOBI MATRICES OF CERTAIN BIRTH AND DEATH PROCESSES

SPECTRAL PROPERTIES OF JACOBI MATRICES OF CERTAIN BIRTH AND DEATH PROCESSES J. OPERATOR THEORY 56:2(2006), 377 390 Copyright by THETA, 2006 SPECTRAL PROPERTIES OF JACOBI MATRICES OF CERTAIN BIRTH AND DEATH PROCESSES JAOUAD SAHBANI Communicated by Şerban Strătilă ABSTRACT. We show

More information

An angle metric through the notion of Grassmann representative

An angle metric through the notion of Grassmann representative Electronic Journal of Linear Algebra Volume 18 Volume 18 (009 Article 10 009 An angle metric through the notion of Grassmann representative Grigoris I. Kalogeropoulos gkaloger@math.uoa.gr Athanasios D.

More information

Efficient and Accurate Rectangular Window Subspace Tracking

Efficient and Accurate Rectangular Window Subspace Tracking Efficient and Accurate Rectangular Window Subspace Tracking Timothy M. Toolan and Donald W. Tufts Dept. of Electrical Engineering, University of Rhode Island, Kingston, RI 88 USA toolan@ele.uri.edu, tufts@ele.uri.edu

More information

Generic rank-k perturbations of structured matrices

Generic rank-k perturbations of structured matrices Generic rank-k perturbations of structured matrices Leonhard Batzke, Christian Mehl, André C. M. Ran and Leiba Rodman Abstract. This paper deals with the effect of generic but structured low rank perturbations

More information

Diagonal matrix solutions of a discrete-time Lyapunov inequality

Diagonal matrix solutions of a discrete-time Lyapunov inequality Diagonal matrix solutions of a discrete-time Lyapunov inequality Harald K. Wimmer Mathematisches Institut Universität Würzburg D-97074 Würzburg, Germany February 3, 1997 Abstract Diagonal solutions of

More information

Perturbation Theory for Self-Adjoint Operators in Krein spaces

Perturbation Theory for Self-Adjoint Operators in Krein spaces Perturbation Theory for Self-Adjoint Operators in Krein spaces Carsten Trunk Institut für Mathematik, Technische Universität Ilmenau, Postfach 10 05 65, 98684 Ilmenau, Germany E-mail: carsten.trunk@tu-ilmenau.de

More information

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR

THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR THE PERTURBATION BOUND FOR THE SPECTRAL RADIUS OF A NON-NEGATIVE TENSOR WEN LI AND MICHAEL K. NG Abstract. In this paper, we study the perturbation bound for the spectral radius of an m th - order n-dimensional

More information

A Note on Simple Nonzero Finite Generalized Singular Values

A Note on Simple Nonzero Finite Generalized Singular Values A Note on Simple Nonzero Finite Generalized Singular Values Wei Ma Zheng-Jian Bai December 21 212 Abstract In this paper we study the sensitivity and second order perturbation expansions of simple nonzero

More information

Control Systems. Linear Algebra topics. L. Lanari

Control Systems. Linear Algebra topics. L. Lanari Control Systems Linear Algebra topics L Lanari outline basic facts about matrices eigenvalues - eigenvectors - characteristic polynomial - algebraic multiplicity eigenvalues invariance under similarity

More information

MATH 350: Introduction to Computational Mathematics

MATH 350: Introduction to Computational Mathematics MATH 350: Introduction to Computational Mathematics Chapter V: Least Squares Problems Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2011 fasshauer@iit.edu MATH

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION. In Ho Jeon and B. P. Duggal. 1. Introduction

ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION. In Ho Jeon and B. P. Duggal. 1. Introduction J. Korean Math. Soc. 41 (2004), No. 4, pp. 617 627 ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION In Ho Jeon and B. P. Duggal Abstract. Let A denote the class of bounded linear Hilbert space operators with

More information

On the Eigenstructure of Hermitian Toeplitz Matrices with Prescribed Eigenpairs

On the Eigenstructure of Hermitian Toeplitz Matrices with Prescribed Eigenpairs The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp 298 305 On the Eigenstructure of Hermitian

More information

Exercise Set 7.2. Skills

Exercise Set 7.2. Skills Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

More information

QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE. Denitizable operators in Krein spaces have spectral properties similar to those

QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE. Denitizable operators in Krein spaces have spectral properties similar to those QUASI-UNIFORMLY POSITIVE OPERATORS IN KREIN SPACE BRANKO CURGUS and BRANKO NAJMAN Denitizable operators in Krein spaces have spectral properties similar to those of selfadjoint operators in Hilbert spaces.

More information

Chapter 2 Canonical Correlation Analysis

Chapter 2 Canonical Correlation Analysis Chapter 2 Canonical Correlation Analysis Canonical correlation analysis CCA, which is a multivariate analysis method, tries to quantify the amount of linear relationships etween two sets of random variales,

More information

Benchmark Results for Testing Adaptive Finite Element Eigenvalue Procedures II (Cluster Robust Eigenvector and Eigenvalue Estimates)

Benchmark Results for Testing Adaptive Finite Element Eigenvalue Procedures II (Cluster Robust Eigenvector and Eigenvalue Estimates) Portland State University PDXScholar Mathematics and Statistics Faculty Publications and Presentations Fariborz Maseeh Department of Mathematics and Statistics 2012 Benchmark Results for Testing Adaptive

More information