Two-Port Networks Introduction

Size: px
Start display at page:

Download "Two-Port Networks Introduction"

Transcription

1 Two-Port Networks ntroduction n general, a network ma have n ports. The current entering one terminal leaves through the other terminal so that the net current entering all ports equals zero. Thus, a two-port network has two terminal pairs acting as access points. The current entering one terminal of a pair leaves the other terminal in the pair. Three-terminal devices such as transistors can be configured into two-port networks. Knowing the parameters of a two-port network enables us to treat it as a black box when embedded within a larger network.

2 ntroduction To characterize a two-port network requires that we relate the terminal quantities V, V,, and, out of which two are independent. The various terms that relate these voltages and currents are called parameters. Our goal is to stud six sets of these parameters. As with op amps, we are onl interested in the terminal behavior of the circuits. Reminder: Onl two of the four variables (V, V,, and ) are independent.

3 mpedance Parameters V= z+ z V = z + z The z terms are called the impedance parameters, or simpl z parameters, and have units of ohms. The values of the parameters can be evaluated b setting = 0 (input port open-circuited) or = 0 (output port open-circuited). Therefore, the z parameters are also called the open-circuit impedance parameters. 3

4 mpedance Parameters Note: The two equations associated with a set of parameters determine how the individual parameters are obtained. V = z + z V = z + z z z V [ ] z [ ] = = = 0 = 0 V [ ] z [ ] = = = 0 = 0 V V Sometimes z and z are called driving-point impedances, while z and z are called transfer impedances. A driving-point impedance is the input impedance of a two-terminal (one-port) device. Thus, z is the input driving-point impedance with the output port open, while z is the output driving-point impedance with the input port open. 4

5 mpedance Parameters Determination of the z parameters When z = z, the two-port network is said to be smmetric. This implies that the network has mirror-like smmetr about some center line; that is, a line can be found that divides the network into two similar halves. When the two-port network is linear and has no dependent sources, the transfer impedances are equal (z = z ), and the two-port is said to be reciprocal. This means that if the points of excitation and response are interchanged, the transfer impedances remain the same. 5

6 mpedance Parameters An two-port that is made entirel of resistors, capacitors, and inductors must be reciprocal. A reciprocal network can be replaced b the T-equivalent circuit. f the network is not reciprocal, a more general equivalent network is obtained. Reciprocal network (z = z ) Non-reciprocal network Note that both equivalent circuits satisf the z-parameter equations. V = z + z, V = z + z 6

7 mpedance Parameters Some two-port networks parameters might not exist. As an example, consider the ideal transformer. t is impossible to express the voltages in terms of the currents. An ideal transformer has no z parameters. However, it does have hbrid parameters (later). 7

8 Example z- Method Determine the z parameters for the following circuit. z z V = = + = 3 = 0 V = = = 0 z z V = = = 0 V = = 4 + = 6 = 0 [ z] é3 ù = ê 6 ú ë û Non-smmetric, reciprocal 8

9 Example z- Method z = = z z - z = z = + z = 3 z - z = 4 z = 4 + z = 6 [ z] é3 ù = ê 6 ú ë û 9

10 Example z- Find and in the following circuit. V = 40 + j0 = 00V 0 V = j =-0 = j 00V 0 00V 0 = j80 + j0 = = A -90 j00 = j = A 0 0

11 Example z-3 Calculate and in the following two-port. z + z = V = V 30 - z + z = V = 0 V 30 = 8 - j4 0 =- j4 + 8 = j0.5 V 30 = 8 + Answer: = ma = 00 0 ma

12 Example z-4 Determine the s domain expressions for the z parameters. z z V 0s + = = + 0 = s s = 0 V = = 0 = 0 z z V = = 0 = 0 V = = + = 0 ( 0.s 0) [ z] é0s + ù 0 = s êë 0 0.s + 0úû Non-smmetric, reciprocal

13 z Example z-5 Find the z parameters for the following circuit. V = = 5 ( 5+ 0) = = 0 0 When = 0, then V = V = 0.8V z V 0.8V = = = 7.5 V = 0 V z = = 0 ( 5+ 5) = 0 = 0 5 When = 0, then V = V = 0.75V 5+ 5 z V 0.75V = = = 7.5 V 0 = 0 [ z] é0 7.5 ù = ê ú ë û Non-smmetric, reciprocal 3

14 Admittance Parameters The terms are known as the admittance parameters (or, simpl, parameters) and have units of Siemens. = V + V = V+ V Since the parameters are obtained b short-circuiting the input or output port, the are also called the short-circuit admittance parameters. [ S] [ S] = = V V V = 0 V= 0 [ S] [ S] = = V V V = 0 V= 0 4

15 Admittance Parameters For a two-port network that is linear and has no dependent sources, the transfer admittances are equal ( = ). A reciprocal network ( = ) can be modeled b a - equivalent circuit. f the network is not reciprocal, a more general equivalent network is obtained. Reciprocal network ( = ) Non-reciprocal network Note: mpedance and admittance parameters are collectivel referred to as immittance parameters. 5

16 Example - Method Obtain the parameters for the network. = = + = 0.5S V 0 5 V = 0 = =- =-0.S V 5 V = 0 = =- =-0.S V 5 V = 0 = = + = 0.67S V 5 5 V = 0 [ ] é 0.5S -0.Sù = ê- 0.S 0.67S ú ë û Non-smmetric, reciprocal 6

17 Example - Method =- =- 0.S = 5 + = = - = 0.5S = = - = 0.67S 5 5 [ ] é 0.5S -0.Sù = ê- 0.S 0.67S ú ë û 7

18 Example - Obtain the parameters for the following T network. = = = 0.73S V (+ 4 6) V = = =- = S V V = 0 V V 4 = =- = S V 4+ 6 V = 0 = = = 0.364S V (6+ 4) V = 0 [ ] é 0.73S Sù = ê S 0.364S ú ë û 8

19 Example -3 Obtain the s domain expressions of the parameters. + slc = = sc+ = V sl sl V = 0 = =- V sl V = 0 = =- V sl V = 0 + slc = = sc+ = V sl sl V = 0 [ ] = é êë + slc - sl sl + - sl sl slc Smmetric, reciprocal ù úû 9

20 Example -4 Determine the parameters for the following two-port. Short circuit Port V -V V V -0V = = o o o V -V V o 0= = V - V + 6V V =-5V o o o o 0

21 -5Vo-Vo = =-0.75S V S V o = = = V -5Vo Example -4 cont d o 0.5S Vo -0V + + = = 0.5 S V -.5S V =-.5S V.5S V o = = =- V -5Vo o o o 0.5S

22 Short circuit Port Example -4 cont d 0V-V V V -V = = o o o Vo Vo Vo- V 0 = =- V + 4V + V -V V =.5V o o o o

23 Example -4 cont d V o = = =- -V.5V 8 o 0.05S V o - V + + = 4 o = = = 0 Vo.5Vo Vo - = - - =-0.65S V V 0.65S V.5V o 0.5S [ ] o é 0.5S -0.05Sù = ê- 0.5S 0.5S ú ë û 3

24 Hbrid Parameters The z and parameters of a two-port network do not alwas exist. So there is a need for developing other sets of parameters. This third set of parameters is based on making V and the dependent variables. V= h+ hv = h + h V The h terms are known as the hbrid parameters (or, simpl, h parameters) because the are a hbrid combination of ratios. The values are: h h V [ ] = h = V V = 0 = 0 = h = V V = 0 = 0 V [ S] 4

25 Hbrid Parameters To be specific, h = short-circuit input impedance h = open-circuit reverse voltage gain h = short-circuit forward current gain h = open-circuit output admittance For reciprocal networks, h = h. V = h + h V = h + h V The h-parameter equivalent network of a two-port network 5

26 Example h-: deal Transformer V = V, =-n n V = h + h V = h + h V [ h] é ù 0 n = - 0 êë n úû 6

27 Example h- Find the hbrid parameters for the following two-port network. V V h h [ ] = h = V V = 0 = 0 = h = V V = 0 = 0 [ S] h h V = = = 4 V = 0 6 = =- =- (3+ 6) 3 V = 0 7

28 Example h- cont d h h V 6 = = = V (3+ 6) 3 = 0 = = = S V (3+ 6) 9 = 0 [ h] = é ù S êë 3 9 úû Note that h = h since the network is reciprocal 8

29 Example h-3 Determine the h parameters for the following circuit. h h V = = 0 5 = 4 V = 0 0 = =- =-0.8 (0+ 5) V = 0 [ h] é ù = ê S ú ë û h h V 0 = = = 0.8 V (5+ 0) = 0 = = =.067S V = 0 ( + ) h = h 9

30 Example h-4 Find the impedance at the input port of the following circuit. = V Z V 50k L () V = h h V h Z () = h h V V Z V hhzl () V= h h Z L L hzl in L h h Z L.667k hzl Z V h 30

31 nverse Hbrid Parameters A set of parameters closel related to the h parameters are the g parameters or inverse hbrid parameters. These are used to describe the terminal currents and voltages as = g V + g V = g V + g The g-parameter model of a two-port network For reciprocal networks, g = g. 3

32 nverse Hbrid Parameters The values of the g parameters are determined as = g V + g V = g V + g g g [ S] = g = V = 0 V= 0 V = g = V = 0 V= 0 V [ ] Thus, the inverse hbrid parameters are specificall called g = open-circuit input admittance g = short-circuit reverse current gain g = open-circuit forward voltage gain g = short-circuit output impedance 3

33 Example g- Find the g parameters as functions of s for the following circuit. V V = g V + g V = g V + g g g = = [S] V s + = 0 V = = V s + = 0 g g = =- s + V = 0 V s s + s+ = = + = [ ] s + s s( s+ ) V = 0 Note that g = g since the network is reciprocal 33

34 Example g- Find the g parameters from measured data: measured (port open): V 50mV, 5μA 00mV measured (port short): V 0mV, μa V 0.5μA g g 5μA = = = V 50mV = 0 V 00 = = = 4 V 50 = 0 0.mS g g = =- = V = 0 V 0mV = = = 0 k 0.5μA V = 0 g = g 34

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42 EE 05 Dr. A. Zidouri Electric Circuits Two-Port Circuits Two-Port Parameters Lecture #4-1 - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o ntroduction to two-port circuits

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

A two-port network is an electrical network with two separate ports

A two-port network is an electrical network with two separate ports 5.1 Introduction A two-port network is an electrical network with two separate ports for input and output. Fig(a) Single Port Network Fig(b) Two Port Network There are several reasons why we should study

More information

Lecture 23 Date: Multi-port networks Impedance and Admittance Matrix Lossless and Reciprocal Networks

Lecture 23 Date: Multi-port networks Impedance and Admittance Matrix Lossless and Reciprocal Networks Lecture 23 Date: 30.0.207 Multi-port networks mpedance and Admittance Matrix Lossless and Reciprocal Networks ntroduction A pair of terminals through which a current may enter or leave a network is known

More information

Two Port Networks. Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output

Two Port Networks. Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output Two Port Networks Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output What is a Port? It is a pair of terminals through which a current

More information

TWO-PORT NETWORKS. Enhancing Your Career. Research is to see what everybody else has seen, and think what nobody has thought.

TWO-PORT NETWORKS. Enhancing Your Career. Research is to see what everybody else has seen, and think what nobody has thought. C H A P T E R TWO-PORT NETWORKS 8 Research is to see what everybody else has seen, and think what nobody has thought. Albert Szent-Gyorgyi Enhancing Your Career Career in Education While two thirds of

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

Two Port Network. Ram Prasad Sarkar

Two Port Network. Ram Prasad Sarkar Two Port Ram Prasad Sarkar 0 Two Post : Post nput port Two Post Fig. Port Output port A network which has two terminals (one port) on the one side and another two terminals on the opposite side forms a

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 1 2. i 2 + i 8 0 3. i 3 + i 20 1 i esolutions Manual - Powered by Cognero Page 1 4. i 100 1 5. i 77 i 6. i 4 + i 12 2 7. i 5 + i 9 2i esolutions Manual - Powered by Cognero Page 2 8.

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 2. i 2 + i 8 3. i 3 + i 20 4. i 100 5. i 77 esolutions Manual - Powered by Cognero Page 1 6. i 4 + i 12 7. i 5 + i 9 8. i 18 Simplify. 9. (3 + 2i) + ( 4 + 6i) 10. (7 4i) + (2 3i) 11.

More information

LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09

LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09 LINEAR CIRCUIT ANALYSIS (EED) U.E.T. TAXILA 09 ENGR. M. MANSOOR ASHRAF INTRODUCTION Thus far our analysis has been restricted for the most part to dc circuits: those circuits excited by constant or time-invariant

More information

LAB MANUAL EXPERIMENT NO. 7

LAB MANUAL EXPERIMENT NO. 7 LAB MANUAL EXPERIMENT NO. 7 Aim of the Experiment: Concept of Generalized N-port scattering parameters, and formulation of these parameters into 2-port reflection and transmission coefficients. Requirement:

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

TWO PORT NETWORKS Introduction: A port is normally referred to a pair of terminals of a network through which we can have access to network either for a source for measuring an output We have already seen

More information

Impedance and Admittance Parameters

Impedance and Admittance Parameters 1/31/011 mpedance and Admittance Parameters lecture 1/ mpedance and Admittance Parameters Say we wish to connect the put of one circuit to the input of another. #1 put port input port # The terms input

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Chapter 18. Direct Current Circuits

Chapter 18. Direct Current Circuits Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras Lecture - 32 Network Function (3) 2-port networks: Symmetry Equivalent networks Examples

More information

Module 13: Network Analysis and Directional Couplers

Module 13: Network Analysis and Directional Couplers Module 13: Network Analysis and Directional Couplers 13.2 Network theory two port networks, S-parameters, Z-parameters, Y-parameters The study of two port networks is important in the field of electrical

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

TWO-PORT. C.T. Pan 1. C.T. Pan

TWO-PORT. C.T. Pan 1. C.T. Pan TWO-PORT CRCUTS C.T. Pan 5. Definition of Two-Port Circuits 5. Classification of Two-Port Parameters 5.3 Finding Two-Port Parameters 5.4 Analysis of the Terminated Two-Port Circuit 5.5 nterconnected Two-Port

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

Experiment 9 Equivalent Circuits

Experiment 9 Equivalent Circuits Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 361-04 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,

More information

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors

Unit 2: Modeling in the Frequency Domain. Unit 2, Part 4: Modeling Electrical Systems. First Example: Via DE. Resistors, Inductors, and Capacitors Unit 2: Modeling in the Frequency Domain Part 4: Modeling Electrical Systems Engineering 582: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 20,

More information

Lab #8 Two Port Networks

Lab #8 Two Port Networks Cir cuit s 212 Lab Lab #8 Two Port Networks Network parameters are used to characterize a device. Given the network parameters of a device, the voltage and current characteristics of the device can be

More information

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 34 Network Theorems (1) Superposition Theorem Substitution Theorem The next

More information

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: CHAPTER16 Two-Port Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for two-port networks. Convert

More information

4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday. I have all the old homework if you need to collect them. 4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and Lecture 6: Impedance (frequency dependent resistance in the s- world), Admittance (frequency dependent conductance in the s- world), and Consequences Thereof. Professor Ray, what s an impedance? Answers:

More information

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

ELEC273 Lecture Notes Set 11 AC Circuit Theorems ELEC273 Lecture Notes Set C Circuit Theorems The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm Final Exam (confirmed): Friday December 5, 207 from 9:00 to 2:00 (confirmed)

More information

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) = 3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in

More information

ECE 1311: Electric Circuits. Chapter 2: Basic laws

ECE 1311: Electric Circuits. Chapter 2: Basic laws ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18 Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

Thevenin equivalent circuits

Thevenin equivalent circuits Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities: Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction

More information

ECE 202 Fall 2013 Final Exam

ECE 202 Fall 2013 Final Exam ECE 202 Fall 2013 Final Exam December 12, 2013 Circle your division: Division 0101: Furgason (8:30 am) Division 0201: Bermel (9:30 am) Name (Last, First) Purdue ID # There are 18 multiple choice problems

More information

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes

EE 434 Lecture 13. Basic Semiconductor Processes Devices in Semiconductor Processes EE 434 Lecture 3 Basic Semiconductor Processes Devices in Semiconductor Processes Quiz 9 The top view of a device fabricated in a bulk CMOS process is shown in the figure below a) Identify the device b)

More information

DC and AC Impedance of Reactive Elements

DC and AC Impedance of Reactive Elements 3/6/20 D and A Impedance of Reactive Elements /6 D and A Impedance of Reactive Elements Now, recall from EES 2 the complex impedances of our basic circuit elements: ZR = R Z = jω ZL = jωl For a D signal

More information

The Impedance Matrix

The Impedance Matrix 0/0/09 The mpedance Matrix.doc /7 The mpedance Matrix Consider the -port microwave device shown below: z ( z ) z z port z z port 0 -port 0 microwave 0 device P z z P z port z P z ( z ) z port 0 ( z ) z

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

ECE Linear Circuit Analysis II

ECE Linear Circuit Analysis II ECE 202 - Linear Circuit Analyi II Final Exam Solution December 9, 2008 Solution Breaking F into partial fraction, F 2 9 9 + + 35 9 ft δt + [ + 35e 9t ]ut A 9 Hence 3 i the correct anwer. Solution 2 ft

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

320-amp-models.tex Page 1 ECE 320. Amplifier Models. ECE Linear Active Circuit Design

320-amp-models.tex Page 1 ECE 320. Amplifier Models. ECE Linear Active Circuit Design 320ampmodels.tex Page 1 ECE 320 Amplifier Models ECE 320 Linear Active Circuit Design 320ampmodels.tex Page 2 2Port Networks A 2port network is any circiut with two pairs of wires connecting to the outside

More information

15.9 TWO-PORTS* . (15.114) R Thout = v 2a

15.9 TWO-PORTS* . (15.114) R Thout = v 2a 15.9 TWOPORTS* It should be obvious by now that circuits with dependent sources can perform much more interesting and useful signal processing than those constructed solely from twoterminal resistive elements.

More information

CIRCUITS AND ELECTRONICS

CIRCUITS AND ELECTRONICS 6.002x CIRCUITS AND EECTRONICS The Impedance Model!!! Reading: Section 3.3 from text Review Sinusoidal Steady State (SSS) Reading 3., 3.2 v I i cost R C v SSS Focus on sinusoids. Focus on steady state,

More information

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR LDR As light level increases, resistance decreases thermistor As temperature increases, resistance decreases capacitor Voltage across capacitor increases with time Potential divider basics: R 1 1. Both

More information

NETWORK ANALYSIS ( ) 2012 pattern

NETWORK ANALYSIS ( ) 2012 pattern PRACTICAL WORK BOOK For Academic Session 0 NETWORK ANALYSIS ( 0347 ) 0 pattern For S.E. (Electrical Engineering) Department of Electrical Engineering (University of Pune) SHREE RAMCHANDRA COLLEGE OF ENGG.

More information

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3

CHEM*3440. Current Convention. Charge. Potential Energy. Chemical Instrumentation. Rudimentary Electronics. Topic 3 urrent onvention HEM*3440 hemical nstrumentation Topic 3 udimentary Electronics ONENTON: Electrical current flows from a region of positive potential energy to a region of more negative (or less positive)

More information

Chapter 10: Sinusoids and Phasors

Chapter 10: Sinusoids and Phasors Chapter 10: Sinusoids and Phasors 1. Motivation 2. Sinusoid Features 3. Phasors 4. Phasor Relationships for Circuit Elements 5. Impedance and Admittance 6. Kirchhoff s Laws in the Frequency Domain 7. Impedance

More information

Chapter 2 Circuit Elements

Chapter 2 Circuit Elements Chapter Circuit Elements Chapter Circuit Elements.... Introduction.... Circuit Element Construction....3 Resistor....4 Inductor...4.5 Capacitor...6.6 Element Basics...8.6. Element Reciprocals...8.6. Reactance...8.6.3

More information

I. Impedance of an R-L circuit.

I. Impedance of an R-L circuit. I. Impedance of an R-L circuit. [For inductor in an AC Circuit, see Chapter 31, pg. 1024] Consider the R-L circuit shown in Figure: 1. A current i(t) = I cos(ωt) is driven across the circuit using an AC

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

EE-202 Exam III April 13, 2006

EE-202 Exam III April 13, 2006 EE-202 Exam III April 13, 2006 Name: (Please print clearly) Student ID: CIRCLE YOUR DIVISION DeCarlo 2:30 MWF Furgason 3:30 MWF INSTRUCTIONS There are 10 multiple choice worth 5 points each and there is

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Electromotive Force An electromotive force device, or emf device, is a source of constant potential. The emf describes the work done per unit charge and has units of

More information

Chapter 2 Voltage-, Current-, and Z-source Converters

Chapter 2 Voltage-, Current-, and Z-source Converters Chapter 2 Voltage-, Current-, and Z-source Converters Some fundamental concepts are to be introduced in this chapter, such as voltage sources, current sources, impedance networks, Z-source, two-port network,

More information

Problem info Geometry model Labelled Objects Results Nonlinear dependencies

Problem info Geometry model Labelled Objects Results Nonlinear dependencies Problem info Problem type: Transient Magnetics (integration time: 9.99999993922529E-09 s.) Geometry model class: Plane-Parallel Problem database file names: Problem: circuit.pbm Geometry: Circuit.mod Material

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

Introduction to Electrical and Computer Engineering. International System of Units (SI)

Introduction to Electrical and Computer Engineering. International System of Units (SI) Introduction to Electrical and Computer Engineering Basic Circuits and Simulation Basic Circuits and Simulation (1 of 22) International System of Units (SI) Length: meter (m) Mass: kilogram (kg) Time:

More information

E40M Review - Part 1

E40M Review - Part 1 E40M Review Part 1 Topics in Part 1 (Today): KCL, KVL, Power Devices: V and I sources, R Nodal Analysis. Superposition Devices: Diodes, C, L Time Domain Diode, C, L Circuits Topics in Part 2 (Wed): MOSFETs,

More information

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

Marwadi University Draft Syllabus for Bachelor of Technology Electronics and Communication. Subject Code: 03EC0302

Marwadi University Draft Syllabus for Bachelor of Technology Electronics and Communication. Subject Code: 03EC0302 Subject Code: 03EC0302 Subject Name: Circuits and Networks B. Tech. Year II (Semester III) Objective: After completion of this course, student will be able to: 1. To introduce electric circuits and its

More information

NETWORK THEORY BEES2211

NETWORK THEORY BEES2211 NETWORK THEORY BEES Prepared by Dr. R.Behera Ms. R.Pradhan Department of Electrical Engineering, I.G.I.T, Sarang, Dhenkanal MODULE NETWORK TOPOLOGY. Introduction: When all the elements in a network are

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

GATE 20 Years. Contents. Chapters Topics Page No.

GATE 20 Years. Contents. Chapters Topics Page No. GATE 0 Years Contents Chapters Topics Page No. Chapter- Chapter- Chapter- Chapter-4 Chapter-5 GATE Syllabus for this Chapter Topic elated to Syllabus Previous 0-Years GATE Questions Previous 0-Years GATE

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

SECTION #1 - The experimental setup

SECTION #1 - The experimental setup Lemon Battery Connected in Series Charging a 2.2 Farad Capacitor SECTION #1 - The experimental setup 1. The goal of this experiment is to see if I can connect 2, 3 or 4 lemons together in a series configuration

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

Tutorial #4: Bias Point Analysis in Multisim

Tutorial #4: Bias Point Analysis in Multisim SCHOOL OF ENGINEERING AND APPLIED SCIENCE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ECE 2115: ENGINEERING ELECTRONICS LABORATORY Tutorial #4: Bias Point Analysis in Multisim INTRODUCTION When BJTs

More information

EE 435. Lecture 3 Spring Design Space Exploration --with applications to single-stage amplifier design

EE 435. Lecture 3 Spring Design Space Exploration --with applications to single-stage amplifier design EE 435 Lecture 3 Spring 2016 Design Space Exploration --with applications to single-stage amplifier design 1 Review from last lecture: Single-ended Op Amp Inverting Amplifier V IN R 1 V 1 R 2 A V V OUT

More information

Examination paper for TFY4185 Measurement Technique/ Måleteknikk

Examination paper for TFY4185 Measurement Technique/ Måleteknikk Page 1 of 14 Department of Physics Examination paper for TFY4185 Measurement Technique/ Måleteknikk Academic contact during examination: Patrick Espy Phone: +47 41 38 65 78 Examination date: 15 August

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

Analog Circuits Part 1 Circuit Theory

Analog Circuits Part 1 Circuit Theory Introductory Medical Device Prototyping Analog Circuits Part 1 Circuit Theory, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Circuit Theory

More information

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09 CLASS 6&7 p-n junction biasing, p-n I-V characteristics, p-n currents 1 p-n junction biasing Unbiased p-n junction: the potential barrier is 0.7 V for Si and 0.3 V for Ge. Nett current across the p-n junction

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R

More information

Network Topology-2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current

More information

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

IXBX50N360HV. = 3600V = 50A V CE(sat) 2.9V. BiMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Frequency. Advance Technical Information

IXBX50N360HV. = 3600V = 50A V CE(sat) 2.9V. BiMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Frequency. Advance Technical Information BiMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Frequency Advance Technical Information S = 3V = A (sat) 2.9V Symbol Test Conditions Maximum Ratings S = 25 C to C 3 V V CGR = 25 C to C,

More information