Dynamical systems method (DSM) for selfadjoint operators

Size: px
Start display at page:

Download "Dynamical systems method (DSM) for selfadjoint operators"

Transcription

1 Dynamical systems method (DSM) for selfadjoint operators A.G. Ramm Mathematics Department, Kansas State University, Manhattan, KS , USA ramm Abstract Let A be a selfadjoint linear operator in a Hilbert space H. The DSM (dynamical systems method) for solving equation Av = f consists of solving the Cauchy problem u = Φ(t, u), u() = u, where Φ is a suitable operator, and proving that i) u(t) t >, ii) u( ), and iii) A(u( )) = f. It is proved that if equation Av = f is solvable and u solves the problem u = i(a + ia)u if, u() = u, where a > is a parameter and u is arbitrary, then lim a lim t u(t, a) = y, where y is the unique minimal-norm solution of the equation Av = f. Stable solution of the equation Av = f is constructed when the data are noisy, i.e., f is given in place of f, f f. The case when a = a(t) >, a(t)dt =, a(t) as t is considered. It is proved that in this case lim t u(t) = y and if f is given in place of f, then lim t u(t ) = y, where t is properly chosen. 1 Introduction Let H be a Hilbert space, A be a linear, not necessarily bounded and injective, selfadjoint operator in H. Assume that equation Av = f (1) is solvable, possibly nonuniquely. By y we denote the unique minimal-norm solution to (1). Let N = {v : Av = } be the null-space of A. Then y N. We do not assume that the range of A is closed, so problem (1) is an ill-posed one. Let us assume that the data f Math subject classification: 35R25, 35R3, 37B55, 47H2, 47J5, 49N45, 65M32, 65R3 key words: dynamical systems method, operator equations, ill-posed problems

2 are not known but the noisy data f are known, f f. Given the data {f,, A} we want to construct a stable approximation to y, i.e., an element u such that lim u y =. (2) In this paper a new method is proposed for stable solution of equation (1). We treat equations (1) with unbounded linear operators, which is a novel point also. In most of the studies the operator in (1) was assumed bounded and often compact. The author hopes that his method can be implemented numerically so that it will be efficient and economical. In the literature several methods are described for stable solution of equation (1): variational regularization [2], [3], [5], iterative regularization [1],[1], method of quasisolutions [3], and the dynamical systems method (DSM) (see [6], [7], [8], and the literature cited there). The DSM for solving equation (2) consists of solving the problem: u = Φ(t, u), u() = u, (3) where u := du, and Φ(t, u) is an operator chosen so that problem (3) has a unique global dt solution which stabilizes at infinity to the solution of equation (2): i) u(t) t >, ii) u( ), iii) A(u( )) = f. (4) The Cauchy problem (3) is a general dynamical system, and by this reason we call the above method for solving equation (1) the dynamical systems method (DSM). This method is justified for every solvable linear equation with densely defined closed operator A, not necessarily selfadjoint, and for very wide class of nonlinear operator equations ([6]). The aim of this paper is to give a version of the DSM for equation (1) with selfadjoint operator, which possibly requires less computational work than the variational regularization and also than the DSM version from [6]. In both methods, just mentioned, one has to compute the elements A Au, where A is the adjoint operator. Even in the finite-dimensional space computation of A Au, where u is a vector, requires many more operations than computation of Au. The variational regularization method for selfadjoint A = A requires computation of A 2 u. This operation has the same operation count as computation of A Au. The method, described below, requires computation of Au rather than A Au. In [4] the operator A A is defined for unbounded, densely defined, closed A. Our idea can be explained informally as follows. Let B be a linear invertible operator for which the operator e Bt is well defined, for example, B is a generator of a C semigroup. Then one has e Bs ds = B 1 (e Bt I). Let us assume that lim t e Bt =. This happens, for example, if RB ci, where c > is a constant and I is the identity operator. Then lim t B 1 (e Bt I) = B 1. 2

3 On the other hand, the operator ebs ds solves the following Cauchy problem: Ẇ = BW + I, W () =. Thus, under the above assumptions on B, one can calculate B 1 by solving the Cauchy problem for W and calculating the limit lim t W (t) = B 1. Solving Cauchy problems for ODE is a branch of numerical analysis which is well developed. Let us describe our method for solving equation (1). Let a > be a parameter. Consider the Cauchy problem: u = i(a + ia)u if, u() = u, (5) where u H is arbitrary. The initial condition in (5) is understood as the strong limit lim t + u(t) u =. Existence of this limit for an arbitrary u H follows from the spectral theorem if A is selfadjoint and a >. One can also refer to the boundedness of the operator e i(a+ia)t provided that a > and A = A. Let us formulate the first result: Theorem 1. Problem (5) has a unique solution for all t and lim lim u(t, a) = y. (6) a t If the noisy data f, f f are given, then one replaces f by f in (5) and finds a and t = t() such that (2) holds with u = u(t, a ). Thus, to solve equation (1) one solves Cauchy problem (5) and calculates the solution y by formula (6). To implement this method numerically, one has to choose a finite interval [, τ] on which the solution to (5) is calculated, and choose a = a(τ) such that lim τ u(τ, a(τ)) = y. One can check (see the proof of Theorem 1 below) that this e relation holds if lim τ a(τ) = and lim τa(τ) τ =. For example, one may take a(τ) a(τ) = τ γ, where γ (, 1) is a constant. If H is a real Hilbert space, then equation (5) is considered in a complex Hilbert space, in the complexification of H. The numerical efficiency of the method of solving equation (1), based on Theorem 1, only the numerical experiments can show. Proofs are given in Section 2. In Section 3 an alternative approach is given and the result is formulated in Theorem 2 and proved. In this alternative approach the parameter a = a(t) is a positive function of time monotonically decaying as t and satisfying some technical assumptions. In [1] and [1] some convergent iterative methods are proposed for solving equation (1). In most of the results in [1] it is assumed that A is a bounded linear operator. In [1], p. 65, there is a remark concerning unbounded, closed, densely defined operators, 3

4 and in [1] a method is proposed for solving equation (1) by an iterative procedure. This method is based on the von Neumann s theorem about selfadjointness of the operator A A provided that A is closed and densely defined. In [9] a regularization method is proposed for a class of unbounded operators, not necessarily linear, but some compactness assumptions are imposed on the stabilizing functional in [9]. The results presented in Theorem 1 and Theorem 2 of our paper give an approach to stable solution of equation (1), which differs from the approaches in the cited literature. 2 Proofs Proof of Theorem 1. The unique solution to (5) is: One has: provided that a >. Also, i Moreover, u = e it(a+ia) u i e i(t s)(a+ia) dsf. (7) e it(a+ia) u e at u as t, (8) e i(t s)(a+ia) dsf = (A + ia) 1 [e it(a+ia) I]f (A + ia) 1 f as t. (9) (A + ia) 1 f y 2 = (A + ia) 1 Ay y 2 = a 2 (A + ia) 1 y 2 a 2 d(e s y, y) = := J, a 2 + s 2 (1) where E s is the resolution of the identity corresponding to the selfadjoint operator A. One has: lim J = P Ny 2 =, (11) a where P N is the orthogonal projection onto N, the null-space of A, and P N y = because y N. Consider now the case of noisy data f. In this case f in (5) and in (7) is replaced by f, estimate (8) holds, and (9) is replaced by i e i(t s)(a+ia) dsf = (A + ia) 1 [e it(a+ia) I]f = (A + ia) 1 f + (A + ia) 1 (f f) (A + ia) 1 e it(a+ia) f := J 1 + J 2 + J 3. (12) One has (A + ia) 1 (f f) a, (13) 4

5 and (A + ia) 1 e it(a+ia) f f e at, (14) a lim J 1 = y (15) a as we have proved above. If one chooses a = a and t = t = t() such that lim a =, lim t() =, lim t()a =, lim =, (16) a then lim u(t(), a ) = y. Theorem 1 is proved. Remark 1. In the above proof we could take u =. We did not do this because we wanted to show that the DSM converges globally with respect to the initial approximation u and also because the choice of u in numerical calculations may be used to increase the rate of convergence: if one knows approximately the location of y, one can choose u in a neighborhood of y. From the proof of Theorem 1 it follows that the error of the method for exact data is bounded from above by const e ta + o(1) as a, see formulas a (9)-(11). Thus, if a = a(τ) then this error tends to zero as τ provided that t = τ, e τa(τ) lim a(τ) =, and lim τ τ a(τ) =. 3 Another approach Consider the problem where a(t) >, u = i[a + ia(t)]u if, u() = u, (17) a(t)dt =, a(t) as t, a + a 2 dt <. (18) Theorem 2. If (18) hold and Ay = f, y N, then problem (17) has a unique solution for all t and lim u(t) y =. (19) t If f is given in place of f, we choose t = t() and a = a so that lim t() =, lim a =, and lim =. Then a(t ) lim u y =, (2) where u = u(t()), and u(t) solves (17) with f in place of f. Proof of Theorem 2. The solution to (17) is u(t) = e iat R t a(s)ds u ie iat R t a(s)ds 5 e ias Ae R s a(p)dp dsy := I 1 + I 2. (21)

6 One has lim t I 1 = due to (18), and an integration by parts yields I 2 = y e ita R t a(s)ds y e ita e isa a(s)e R t s a(p)dp dsy y as t, (22) because the norm of the second term obviously tends to zero and the norm of the third term tends to zero by the dominated convergence theorem if one takes into account that y N and that the function a(s)e R t s a(p)dp is positive, integrable uniformly with respect to t (, ), and pointwise tends to zero as t because of (18). One has sup t a(s)e R t s a(p)dp ds = sup(1 e R t a(p)dp ) = 1. For example, if a(t) = 1, and E 1+t λ is the resolution of the identity corresponding to the selfadjoint operator A, then e isa ya(s)e R t s a(p)dp ds 2 = = d(e λ y, y)(1 + t) 2 t d(e λ y, y) e isλ (1 + s) 1 e R t s (1+p) 1 dp ds 2 e isλ ds 2 1 = O( (1 + t) ) as t 2 provided that λ. This last condition is satisfied if y N. More generally, let us assume (see the last assumption in (18)) that a 2 + a L 1 (, ). We claim that under this assumption the third term on the right-hand side of (22), which we denote by J, tends to zero. Let us give a detailed proof of this claim. Taking into account that A is selfadjoint and using the spectral theorem we get: where J 2 = J 1 (λ) := J 1 := J 1 (λ)d(e λ y, y), e iλ(t p) a(p)e R t p a(q)dq dp 2. Let us prove that lim t J 1 = for every λ. If this is proved, then lim t J =, because (E E )y = since y N. Here E := lim λ, λ< E λ, and, as usual, we assume that E λ+ = E λ. Integrating by parts we get where e iλ(t p) a(p)e R t p a(q)dq dp = a(t) R t iλ + eiλt a(p)dp iλ J 2 := 1 iλ e iλ(t p) [a (p) + a 2 (p)]e R t p a(q)dq dp. + J 2, 6

7 From the assumption a + a 2 L 1 (, ) it follows that lim t J 2 = for any λ. Therefore, from (18) it follows that lim t J = as claimed. If f is given in place of f, and u (t) solves (17) with f in place of f, then u (t) = e iat R t a(s)ds u ie iat R t a(s)ds e ias e R s a(p)dp dsf = I 1 () + I 2 (), and lim t I 1 () =, so if one sets t = t() and lim t() =, then lim I 1 () =. One has I 2 () = I 2 +I 3, where I 2 is defined in (21) and does not depend on f, while I 3 is similar to I 2 (), with f replaced by f f. We have proved in (22) that lim t I 2 = y. One can get the following estimate I 3 a(t) a(s)e R t s a(p)dp ds Let us set t = t, t as, and assume that lim a(t ) a(t). (23) =. (24) If (24) holds, then the conclusion of Theorem 2 follows from the above estimates. Theorem 2 is proved. The above results can be used, for instance, for developing an efficient algorithm for solving ill-conditioned linear algebraic systems and for stable solution of integral equations of the first kind. Added in proofs: The monograph [11] contains a systematic development of the DSM. References [1] A. Bakushinskiĭ, A. Goncharskiĭ, Ill-posed problems: theory and applications, Kluwer, Dordrecht, [2] C. Groetsch, The Theory of the Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, [3] V. Ivanov, V. Vasin, V. Tanana, Theory of linear ill-posed problems, Nauka, Moscow, (In Russian). [4] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, New York, [5] V. Morozov, Methods of solving incorrectly posed problems, Springer-Verlag, New York,

8 [6] A. G. Ramm, Inverse Problems, New York, Springer, 25. [7] A. G. Ramm, Dynamical systems method for solving operator equations. Commun Nonlinear Sci Numer Simul., 9(4), (24), [8] A. G. Ramm, Dynamical systems method (DSM) and nonlinear problems, in the book: Spectral Theory and Nonlinear Analysis, Singapore, World Scientific Publishers, 25, pp (editor J. Lopez-Gomez). [9] A. G. Ramm, Regularization of ill-posed problems with unbounded operators, Jour. Math. Anal. Appl., 271, (22), [1] G. Vainikko, A. Veretennikov, Iterative procedures in ill-posed problems, Nauka, Moscow, [11] A. G. Ramm, Dynamical Systems Method for Solving Operator Equations, Elsevier, Amsterdam, 26. 8

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

ON THE DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR EQUATIONS WITH MONOTONE OPERATORS

ON THE DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR EQUATIONS WITH MONOTONE OPERATORS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume, Number, Pages S -9939(XX- ON THE DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR EQUATIONS WITH MONOTONE OPERATORS N. S. HOANG AND A. G. RAMM (Communicated

More information

Ann. Polon. Math., 95, N1,(2009),

Ann. Polon. Math., 95, N1,(2009), Ann. Polon. Math., 95, N1,(29), 77-93. Email: nguyenhs@math.ksu.edu Corresponding author. Email: ramm@math.ksu.edu 1 Dynamical systems method for solving linear finite-rank operator equations N. S. Hoang

More information

How large is the class of operator equations solvable by a DSM Newton-type method?

How large is the class of operator equations solvable by a DSM Newton-type method? This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. How large

More information

A G Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (2010),

A G Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (2010), A G Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (21), 1916-1921. 1 Implicit Function Theorem via the DSM A G Ramm Department of Mathematics Kansas

More information

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage: Nonlinear Analysis 71 2009 2744 2752 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A nonlinear inequality and applications N.S. Hoang A.G. Ramm

More information

Dynamical Systems Gradient Method for Solving Ill-Conditioned Linear Algebraic Systems

Dynamical Systems Gradient Method for Solving Ill-Conditioned Linear Algebraic Systems Acta Appl Math (21) 111: 189 24 DOI 1.17/s144-9-954-3 Dynamical Systems Gradient Method for Solving Ill-Conditioned Linear Algebraic Systems N.S. Hoang A.G. Ramm Received: 28 September 28 / Accepted: 29

More information

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality M athematical Inequalities & Applications [2407] First Galley Proofs NONLINEAR DIFFERENTIAL INEQUALITY N. S. HOANG AND A. G. RAMM Abstract. A nonlinear differential inequality is formulated in the paper.

More information

444/,/,/,A.G.Ramm, On a new notion of regularizer, J.Phys A, 36, (2003),

444/,/,/,A.G.Ramm, On a new notion of regularizer, J.Phys A, 36, (2003), 444/,/,/,A.G.Ramm, On a new notion of regularizer, J.Phys A, 36, (2003), 2191-2195 1 On a new notion of regularizer A.G. Ramm LMA/CNRS, 31 Chemin Joseph Aiguier, Marseille 13402, France and Mathematics

More information

Dynamical Systems Method for Solving Ill-conditioned Linear Algebraic Systems

Dynamical Systems Method for Solving Ill-conditioned Linear Algebraic Systems Dynamical Systems Method for Solving Ill-conditioned Linear Algebraic Systems Sapto W. Indratno Department of Mathematics Kansas State University, Manhattan, KS 6656-6, USA sapto@math.ksu.edu A G Ramm

More information

THE DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR EQUATIONS WITH MONOTONE OPERATORS

THE DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR EQUATIONS WITH MONOTONE OPERATORS Asian-European Journal of Mathematics Vol. 3, No. 1 (2010) 57 105 c World Scientific Publishing Company THE DYNAMICAL SYSTEMS METHOD FOR SOLVING NONLINEAR EQUATIONS WITH MONOTONE OPERATORS N. S. Hoang

More information

Stability of solutions to abstract evolution equations with delay

Stability of solutions to abstract evolution equations with delay Stability of solutions to abstract evolution equations with delay A.G. Ramm Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA ramm@math.ksu.edu Abstract An equation u = A(t)u+B(t)F

More information

A numerical algorithm for solving 3D inverse scattering problem with non-over-determined data

A numerical algorithm for solving 3D inverse scattering problem with non-over-determined data A numerical algorithm for solving 3D inverse scattering problem with non-over-determined data Alexander Ramm, Cong Van Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA ramm@math.ksu.edu;

More information

arxiv: v1 [math.na] 28 Jan 2009

arxiv: v1 [math.na] 28 Jan 2009 The Dynamical Systems Method for solving nonlinear equations with monotone operators arxiv:0901.4377v1 [math.na] 28 Jan 2009 N. S. Hoang and A. G. Ramm Mathematics Department, Kansas State University,

More information

A nonlinear singular perturbation problem

A nonlinear singular perturbation problem A nonlinear singular perturbation problem arxiv:math-ph/0405001v1 3 May 004 Let A.G. Ramm Mathematics epartment, Kansas State University, Manhattan, KS 66506-60, USA ramm@math.ksu.edu Abstract F(u ε )+ε(u

More information

Dynamical Systems Gradient Method for Solving Nonlinear Equations with Monotone Operators

Dynamical Systems Gradient Method for Solving Nonlinear Equations with Monotone Operators Acta Appl Math (29) 16: 473 499 DOI 1.17/s144-8-938-1 Dynamical Systems Gradient Method for Solving Nonlinear Equations with Monotone Operators N.S. Hoang A.G. Ramm Received: 28 June 28 / Accepted: 26

More information

Dynamical Systems Method for Solving Operator Equations

Dynamical Systems Method for Solving Operator Equations Dynamical Systems Method for Solving Operator Equations Alexander G. Ramm Department of Mathematics Kansas State University Manhattan, KS 6652 email: ramm@math.ksu.edu URL: http://www.math.ksu.edu/ ramm

More information

Comments on the letter of P.Sabatier

Comments on the letter of P.Sabatier Comments on the letter of P.Sabatier ALEXANDER G. RAMM Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA ramm@math.ksu.edu Aug. 22, 2003. Comments on the letter of P.Sabatier,

More information

A Simple Proof of the Fredholm Alternative and a Characterization of the Fredholm Operators

A Simple Proof of the Fredholm Alternative and a Characterization of the Fredholm Operators thus a n+1 = (2n + 1)a n /2(n + 1). We know that a 0 = π, and the remaining part follows by induction. Thus g(x, y) dx dy = 1 2 tanh 2n v cosh v dv Equations (4) and (5) give the desired result. Remarks.

More information

APPROXIMATION OF MOORE-PENROSE INVERSE OF A CLOSED OPERATOR BY A SEQUENCE OF FINITE RANK OUTER INVERSES

APPROXIMATION OF MOORE-PENROSE INVERSE OF A CLOSED OPERATOR BY A SEQUENCE OF FINITE RANK OUTER INVERSES APPROXIMATION OF MOORE-PENROSE INVERSE OF A CLOSED OPERATOR BY A SEQUENCE OF FINITE RANK OUTER INVERSES S. H. KULKARNI AND G. RAMESH Abstract. Let T be a densely defined closed linear operator between

More information

Encyclopedia of Mathematics, Supplemental Vol. 3, Kluwer Acad. Publishers, Dordrecht,

Encyclopedia of Mathematics, Supplemental Vol. 3, Kluwer Acad. Publishers, Dordrecht, Encyclopedia of Mathematics, Supplemental Vol. 3, Kluwer Acad. Publishers, Dordrecht, 2001, 328-329 1 Reproducing kernel Consider an abstract set E and a linear set F of functions f : E C. Assume that

More information

BOUNDARY VALUE PROBLEMS IN KREĬN SPACES. Branko Ćurgus Western Washington University, USA

BOUNDARY VALUE PROBLEMS IN KREĬN SPACES. Branko Ćurgus Western Washington University, USA GLASNIK MATEMATIČKI Vol. 35(55(2000, 45 58 BOUNDARY VALUE PROBLEMS IN KREĬN SPACES Branko Ćurgus Western Washington University, USA Dedicated to the memory of Branko Najman. Abstract. Three abstract boundary

More information

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS OGNJEN MILATOVIC Abstract. We consider H V = M +V, where (M, g) is a Riemannian manifold (not necessarily

More information

ALMOST PERIODIC SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS ON HILBERT SPACES

ALMOST PERIODIC SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS ON HILBERT SPACES Electronic Journal of Differential Equations, Vol. 21(21, No. 72, pp. 1 12. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu ALMOST PERIODIC SOLUTIONS

More information

ON ILL-POSEDNESS OF NONPARAMETRIC INSTRUMENTAL VARIABLE REGRESSION WITH CONVEXITY CONSTRAINTS

ON ILL-POSEDNESS OF NONPARAMETRIC INSTRUMENTAL VARIABLE REGRESSION WITH CONVEXITY CONSTRAINTS ON ILL-POSEDNESS OF NONPARAMETRIC INSTRUMENTAL VARIABLE REGRESSION WITH CONVEXITY CONSTRAINTS Olivier Scaillet a * This draft: July 2016. Abstract This note shows that adding monotonicity or convexity

More information

MAIN ARTICLES. In present paper we consider the Neumann problem for the operator equation

MAIN ARTICLES. In present paper we consider the Neumann problem for the operator equation Volume 14, 2010 1 MAIN ARTICLES THE NEUMANN PROBLEM FOR A DEGENERATE DIFFERENTIAL OPERATOR EQUATION Liparit Tepoyan Yerevan State University, Faculty of mathematics and mechanics Abstract. We consider

More information

M athematical I nequalities & A pplications

M athematical I nequalities & A pplications M athematical I nequalities & A pplications With Compliments of the Author Zagreb, Croatia Volume 4, Number 4, October 20 N. S. Hoang and A. G. Ramm Nonlinear differential inequality MIA-4-82 967 976 MATHEMATICAL

More information

Comm. Nonlin. Sci. and Numer. Simul., 12, (2007),

Comm. Nonlin. Sci. and Numer. Simul., 12, (2007), Comm. Nonlin. Sci. and Numer. Simul., 12, (2007), 1390-1394. 1 A Schrödinger singular perturbation problem A.G. Ramm Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA ramm@math.ksu.edu

More information

Solutions: Problem Set 4 Math 201B, Winter 2007

Solutions: Problem Set 4 Math 201B, Winter 2007 Solutions: Problem Set 4 Math 2B, Winter 27 Problem. (a Define f : by { x /2 if < x

More information

Convergence rates of the continuous regularized Gauss Newton method

Convergence rates of the continuous regularized Gauss Newton method J. Inv. Ill-Posed Problems, Vol. 1, No. 3, pp. 261 28 (22) c VSP 22 Convergence rates of the continuous regularized Gauss Newton method B. KALTENBACHER, A. NEUBAUER, and A. G. RAMM Abstract In this paper

More information

Electromagnetic wave scattering by many small bodies and creating materials with a desired refraction coefficient

Electromagnetic wave scattering by many small bodies and creating materials with a desired refraction coefficient 168 Int. J. Computing Science and Mathematics, Vol. Electromagnetic wave scattering by many small bodies and creating materials with a desired refraction coefficient A.G. Ramm Mathematics epartment, Kansas

More information

5 Compact linear operators

5 Compact linear operators 5 Compact linear operators One of the most important results of Linear Algebra is that for every selfadjoint linear map A on a finite-dimensional space, there exists a basis consisting of eigenvectors.

More information

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS (2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS Svetlana Janković and Miljana Jovanović Faculty of Science, Department of Mathematics, University

More information

Inverse scattering problem with underdetermined data.

Inverse scattering problem with underdetermined data. Math. Methods in Natur. Phenom. (MMNP), 9, N5, (2014), 244-253. Inverse scattering problem with underdetermined data. A. G. Ramm Mathematics epartment, Kansas State University, Manhattan, KS 66506-2602,

More information

A method for creating materials with a desired refraction coefficient

A method for creating materials with a desired refraction coefficient This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. A method

More information

Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on

Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on manifolds. Author: Ognjen Milatovic Department Address: Department

More information

Conservative Control Systems Described by the Schrödinger Equation

Conservative Control Systems Described by the Schrödinger Equation Conservative Control Systems Described by the Schrödinger Equation Salah E. Rebiai Abstract An important subclass of well-posed linear systems is formed by the conservative systems. A conservative system

More information

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY Electronic Journal of Differential Equations, Vol. 2003(2003), No.??, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) SELF-ADJOINTNESS

More information

Homework If the inverse T 1 of a closed linear operator exists, show that T 1 is a closed linear operator.

Homework If the inverse T 1 of a closed linear operator exists, show that T 1 is a closed linear operator. Homework 3 1 If the inverse T 1 of a closed linear operator exists, show that T 1 is a closed linear operator Solution: Assuming that the inverse of T were defined, then we will have to have that D(T 1

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES Electronic Journal of Differential Equations, Vol. 9(9), No. 33, pp. 1 8. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

2 Statement of the problem and assumptions

2 Statement of the problem and assumptions Mathematical Notes, 25, vol. 78, no. 4, pp. 466 48. Existence Theorem for Optimal Control Problems on an Infinite Time Interval A.V. Dmitruk and N.V. Kuz kina We consider an optimal control problem on

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. 1999 83: 139 159 Numerische Mathematik c Springer-Verlag 1999 On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems Jin Qi-nian 1, Hou Zong-yi

More information

An Iteratively Regularized Projection Method with Quadratic Convergence for Nonlinear Ill-posed Problems

An Iteratively Regularized Projection Method with Quadratic Convergence for Nonlinear Ill-posed Problems Int. Journal of Math. Analysis, Vol. 4, 1, no. 45, 11-8 An Iteratively Regularized Projection Method with Quadratic Convergence for Nonlinear Ill-posed Problems Santhosh George Department of Mathematical

More information

On m-accretive Schrödinger operators in L p -spaces on manifolds of bounded geometry

On m-accretive Schrödinger operators in L p -spaces on manifolds of bounded geometry On m-accretive Schrödinger operators in L p -spaces on manifolds of bounded geometry Ognjen Milatovic Department of Mathematics and Statistics University of North Florida Jacksonville, FL 32224 USA. Abstract

More information

A Quasi-Linear Parabolic Partial Differential Equation with Accretive Property

A Quasi-Linear Parabolic Partial Differential Equation with Accretive Property ONLINE ISSN 8-749 : Volume 3, Issue, 433-438 A Quasi-Linear Parabolic Partial Differential Equation with Accretive Property Aminu U. Bawa *, Micheal O. Egwurube and Murtala M. Ahmad 3 Department of Computer

More information

SEMIGROUP APPROACH FOR PARTIAL DIFFERENTIAL EQUATIONS OF EVOLUTION

SEMIGROUP APPROACH FOR PARTIAL DIFFERENTIAL EQUATIONS OF EVOLUTION SEMIGROUP APPROACH FOR PARTIAL DIFFERENTIAL EQUATIONS OF EVOLUTION Istanbul Kemerburgaz University Istanbul Analysis Seminars 24 October 2014 Sabanc University Karaköy Communication Center 1 2 3 4 5 u(x,

More information

A model function method in total least squares

A model function method in total least squares www.oeaw.ac.at A model function method in total least squares S. Lu, S. Pereverzyev, U. Tautenhahn RICAM-Report 2008-18 www.ricam.oeaw.ac.at A MODEL FUNCTION METHOD IN TOTAL LEAST SQUARES SHUAI LU, SERGEI

More information

C.I.BYRNES,D.S.GILLIAM.I.G.LAUK O, V.I. SHUBOV We assume that the input u is given, in feedback form, as the output of a harmonic oscillator with freq

C.I.BYRNES,D.S.GILLIAM.I.G.LAUK O, V.I. SHUBOV We assume that the input u is given, in feedback form, as the output of a harmonic oscillator with freq Journal of Mathematical Systems, Estimation, and Control Vol. 8, No. 2, 1998, pp. 1{12 c 1998 Birkhauser-Boston Harmonic Forcing for Linear Distributed Parameter Systems C.I. Byrnes y D.S. Gilliam y I.G.

More information

Existence Results for Multivalued Semilinear Functional Differential Equations

Existence Results for Multivalued Semilinear Functional Differential Equations E extracta mathematicae Vol. 18, Núm. 1, 1 12 (23) Existence Results for Multivalued Semilinear Functional Differential Equations M. Benchohra, S.K. Ntouyas Department of Mathematics, University of Sidi

More information

TRACE FORMULAS FOR PERTURBATIONS OF OPERATORS WITH HILBERT-SCHMIDT RESOLVENTS. Bishnu Prasad Sedai

TRACE FORMULAS FOR PERTURBATIONS OF OPERATORS WITH HILBERT-SCHMIDT RESOLVENTS. Bishnu Prasad Sedai Opuscula Math. 38, no. 08), 53 60 https://doi.org/0.7494/opmath.08.38..53 Opuscula Mathematica TRACE FORMULAS FOR PERTURBATIONS OF OPERATORS WITH HILBERT-SCHMIDT RESOLVENTS Bishnu Prasad Sedai Communicated

More information

ON CONTINUITY OF MEASURABLE COCYCLES

ON CONTINUITY OF MEASURABLE COCYCLES Journal of Applied Analysis Vol. 6, No. 2 (2000), pp. 295 302 ON CONTINUITY OF MEASURABLE COCYCLES G. GUZIK Received January 18, 2000 and, in revised form, July 27, 2000 Abstract. It is proved that every

More information

On Closed Range Operators in Hilbert Space

On Closed Range Operators in Hilbert Space International Journal of Algebra, Vol. 4, 2010, no. 20, 953-958 On Closed Range Operators in Hilbert Space Mohand Ould-Ali University of Mostaganem Department of Mathematics, 27000, Algeria mohand ouldalidz@yahoo.fr

More information

FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE AND LIMITING TRAJECTORIES

FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE AND LIMITING TRAJECTORIES STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume XLIX, Number 3, September 2004 FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE AND LIMITING TRAJECTORIES Abstract. A feedback differential system is defined as

More information

An Iteratively Regularized Projection Method for Nonlinear Ill-posed Problems

An Iteratively Regularized Projection Method for Nonlinear Ill-posed Problems Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 52, 2547-2565 An Iteratively Regularized Projection Method for Nonlinear Ill-posed Problems Santhosh George Department of Mathematical and Computational

More information

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval Applied Mathematical Sciences, Vol. 1, 216, no. 11, 543-548 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.512743 On a Boundary-Value Problem for Third Order Operator-Differential Equations

More information

On the solvability of an inverse fractional abstract Cauchy problem

On the solvability of an inverse fractional abstract Cauchy problem On the solvability of an inverse fractional abstract Cauchy problem Mahmoud M. El-borai m ml elborai @ yahoo.com Faculty of Science, Alexandria University, Alexandria, Egypt. Abstract This note is devolved

More information

SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS

SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS SPECTRAL PROPERTIES OF THE LAPLACIAN ON BOUNDED DOMAINS TSOGTGEREL GANTUMUR Abstract. After establishing discrete spectra for a large class of elliptic operators, we present some fundamental spectral properties

More information

Classes of Linear Operators Vol. I

Classes of Linear Operators Vol. I Classes of Linear Operators Vol. I Israel Gohberg Seymour Goldberg Marinus A. Kaashoek Birkhäuser Verlag Basel Boston Berlin TABLE OF CONTENTS VOLUME I Preface Table of Contents of Volume I Table of Contents

More information

here, this space is in fact infinite-dimensional, so t σ ess. Exercise Let T B(H) be a self-adjoint operator on an infinitedimensional

here, this space is in fact infinite-dimensional, so t σ ess. Exercise Let T B(H) be a self-adjoint operator on an infinitedimensional 15. Perturbations by compact operators In this chapter, we study the stability (or lack thereof) of various spectral properties under small perturbations. Here s the type of situation we have in mind:

More information

16 1 Basic Facts from Functional Analysis and Banach Lattices

16 1 Basic Facts from Functional Analysis and Banach Lattices 16 1 Basic Facts from Functional Analysis and Banach Lattices 1.2.3 Banach Steinhaus Theorem Another fundamental theorem of functional analysis is the Banach Steinhaus theorem, or the Uniform Boundedness

More information

Mildly degenerate Kirchhoff equations with weak dissipation: global existence and time decay

Mildly degenerate Kirchhoff equations with weak dissipation: global existence and time decay arxiv:93.273v [math.ap] 6 Mar 29 Mildly degenerate Kirchhoff equations with weak dissipation: global existence and time decay Marina Ghisi Università degli Studi di Pisa Dipartimento di Matematica Leonida

More information

A collocation method for solving some integral equations in distributions

A collocation method for solving some integral equations in distributions A collocation method for solving some integral equations in distributions Sapto W. Indratno Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA sapto@math.ksu.edu A G Ramm

More information

SOLVABILITY OF MULTIPOINT DIFFERENTIAL OPERATORS OF FIRST ORDER

SOLVABILITY OF MULTIPOINT DIFFERENTIAL OPERATORS OF FIRST ORDER Electronic Journal of Differential Equations, Vol. 2015 2015, No. 36, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SOLVABILITY OF MULTIPOINT

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Disconjugate operators and related differential equations

Disconjugate operators and related differential equations Disconjugate operators and related differential equations Mariella Cecchi, Zuzana Došlá and Mauro Marini Dedicated to J. Vosmanský on occasion of his 65 th birthday Abstract: There are studied asymptotic

More information

Perturbation Theory for Self-Adjoint Operators in Krein spaces

Perturbation Theory for Self-Adjoint Operators in Krein spaces Perturbation Theory for Self-Adjoint Operators in Krein spaces Carsten Trunk Institut für Mathematik, Technische Universität Ilmenau, Postfach 10 05 65, 98684 Ilmenau, Germany E-mail: carsten.trunk@tu-ilmenau.de

More information

Numerical Methods for the Solution of Ill-Posed Problems

Numerical Methods for the Solution of Ill-Posed Problems Numerical Methods for the Solution of Ill-Posed Problems Mathematics and Its Applications Managing Editor: M.HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume 328

More information

Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control

Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control Chun-Hua Guo Dedicated to Peter Lancaster on the occasion of his 70th birthday We consider iterative methods for finding the

More information

Semigroups and Linear Partial Differential Equations with Delay

Semigroups and Linear Partial Differential Equations with Delay Journal of Mathematical Analysis and Applications 264, 1 2 (21 doi:1.16/jmaa.21.675, available online at http://www.idealibrary.com on Semigroups and Linear Partial Differential Equations with Delay András

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

Functional Analysis F3/F4/NVP (2005) Homework assignment 3

Functional Analysis F3/F4/NVP (2005) Homework assignment 3 Functional Analysis F3/F4/NVP (005 Homework assignment 3 All students should solve the following problems: 1. Section 4.8: Problem 8.. Section 4.9: Problem 4. 3. Let T : l l be the operator defined by

More information

Heat Transfer in a Medium in Which Many Small Particles Are Embedded

Heat Transfer in a Medium in Which Many Small Particles Are Embedded Math. Model. Nat. Phenom. Vol. 8, No., 23, pp. 93 99 DOI:.5/mmnp/2384 Heat Transfer in a Medium in Which Many Small Particles Are Embedded A. G. Ramm Department of Mathematics Kansas State University,

More information

Stability of an abstract wave equation with delay and a Kelvin Voigt damping

Stability of an abstract wave equation with delay and a Kelvin Voigt damping Stability of an abstract wave equation with delay and a Kelvin Voigt damping University of Monastir/UPSAY/LMV-UVSQ Joint work with Serge Nicaise and Cristina Pignotti Outline 1 Problem The idea Stability

More information

ADJOINT FOR OPERATORS IN BANACH SPACES

ADJOINT FOR OPERATORS IN BANACH SPACES ADJOINT FOR OPERATORS IN BANACH SPACES T. L. GILL, S. BASU, W. W. ZACHARY, AND V. STEADMAN Abstract. In this paper we show that a result of Gross and Kuelbs, used to study Gaussian measures on Banach spaces,

More information

COMPUTATIONAL METHODS AND ALGORITHMS Vol. II - Numerical Algorithms for Inverse and Ill-Posed Problems - A.М. Denisov

COMPUTATIONAL METHODS AND ALGORITHMS Vol. II - Numerical Algorithms for Inverse and Ill-Posed Problems - A.М. Denisov NUMERICAL ALGORITHMS FOR INVERSE AND ILL-POSED PROBLEMS Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia Keywords: Direct problem, Inverse problem, Well-posed

More information

Short note on compact operators - Monday 24 th March, Sylvester Eriksson-Bique

Short note on compact operators - Monday 24 th March, Sylvester Eriksson-Bique Short note on compact operators - Monday 24 th March, 2014 Sylvester Eriksson-Bique 1 Introduction In this note I will give a short outline about the structure theory of compact operators. I restrict attention

More information

Phys.Let A. 360, N1, (2006),

Phys.Let A. 360, N1, (2006), Phys.Let A. 360, N1, (006), -5. 1 Completeness of the set of scattering amplitudes A.G. Ramm Mathematics epartment, Kansas State University, Manhattan, KS 66506-60, USA ramm@math.ksu.edu Abstract Let f

More information

New Results for Second Order Discrete Hamiltonian Systems. Huiwen Chen*, Zhimin He, Jianli Li and Zigen Ouyang

New Results for Second Order Discrete Hamiltonian Systems. Huiwen Chen*, Zhimin He, Jianli Li and Zigen Ouyang TAIWANESE JOURNAL OF MATHEMATICS Vol. xx, No. x, pp. 1 26, xx 20xx DOI: 10.11650/tjm/7762 This paper is available online at http://journal.tms.org.tw New Results for Second Order Discrete Hamiltonian Systems

More information

УДК Let L be a linear operator acting from H to G: H L

УДК Let L be a linear operator acting from H to G: H L вычислительные методы и программирование. 2012. Т. 13 247 УДК 519.6 О ВОССТАНОВЛЕНИИ ЗАШУМЛЕННЫХ СИГНАЛОВ МЕТОДОМ РЕГУЛЯРИЗАЦИИ В.А. Морозов 1 Задача восстановления зашумленных сигналов рассматривается

More information

Upper triangular forms for some classes of infinite dimensional operators

Upper triangular forms for some classes of infinite dimensional operators Upper triangular forms for some classes of infinite dimensional operators Ken Dykema, 1 Fedor Sukochev, 2 Dmitriy Zanin 2 1 Department of Mathematics Texas A&M University College Station, TX, USA. 2 School

More information

Review and problem list for Applied Math I

Review and problem list for Applied Math I Review and problem list for Applied Math I (This is a first version of a serious review sheet; it may contain errors and it certainly omits a number of topic which were covered in the course. Let me know

More information

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi Opuscula Math. 37, no. 2 27), 265 28 http://dx.doi.org/.7494/opmath.27.37.2.265 Opuscula Mathematica FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

More information

NOTES ON EXISTENCE AND UNIQUENESS THEOREMS FOR ODES

NOTES ON EXISTENCE AND UNIQUENESS THEOREMS FOR ODES NOTES ON EXISTENCE AND UNIQUENESS THEOREMS FOR ODES JONATHAN LUK These notes discuss theorems on the existence, uniqueness and extension of solutions for ODEs. None of these results are original. The proofs

More information

Strong Convergence Theorem by a Hybrid Extragradient-like Approximation Method for Variational Inequalities and Fixed Point Problems

Strong Convergence Theorem by a Hybrid Extragradient-like Approximation Method for Variational Inequalities and Fixed Point Problems Strong Convergence Theorem by a Hybrid Extragradient-like Approximation Method for Variational Inequalities and Fixed Point Problems Lu-Chuan Ceng 1, Nicolas Hadjisavvas 2 and Ngai-Ching Wong 3 Abstract.

More information

SOME REMARKS ON KRASNOSELSKII S FIXED POINT THEOREM

SOME REMARKS ON KRASNOSELSKII S FIXED POINT THEOREM Fixed Point Theory, Volume 4, No. 1, 2003, 3-13 http://www.math.ubbcluj.ro/ nodeacj/journal.htm SOME REMARKS ON KRASNOSELSKII S FIXED POINT THEOREM CEZAR AVRAMESCU AND CRISTIAN VLADIMIRESCU Department

More information

Normality of adjointable module maps

Normality of adjointable module maps MATHEMATICAL COMMUNICATIONS 187 Math. Commun. 17(2012), 187 193 Normality of adjointable module maps Kamran Sharifi 1, 1 Department of Mathematics, Shahrood University of Technology, P. O. Box 3619995161-316,

More information

POSITIVE SELF ADJOINT EXTENSIONS OF POSITIVE SYMMETRIC OPERATORS TSUYOSHI ANDO AND KATSUYOSHI NISHIO. (Received June 30, 1969)

POSITIVE SELF ADJOINT EXTENSIONS OF POSITIVE SYMMETRIC OPERATORS TSUYOSHI ANDO AND KATSUYOSHI NISHIO. (Received June 30, 1969) Tohoku Math. Journ. 22(1970), 65-75. POSITIVE SELF ADJOINT EXTENSIONS OF POSITIVE SYMMETRIC OPERATORS TSUYOSHI ANDO AND KATSUYOSHI NISHIO (Received June 30, 1969) 1. Introduction. Positive selfadjoint

More information

The Residual Spectrum and the Continuous Spectrum of Upper Triangular Operator Matrices

The Residual Spectrum and the Continuous Spectrum of Upper Triangular Operator Matrices Filomat 28:1 (2014, 65 71 DOI 10.2298/FIL1401065H Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat The Residual Spectrum and the

More information

Linear Algebra Review (Course Notes for Math 308H - Spring 2016)

Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Dr. Michael S. Pilant February 12, 2016 1 Background: We begin with one of the most fundamental notions in R 2, distance. Letting (x 1,

More information

FURTHER STUDIES OF STRONGLY AMENABLE -REPRESENTATIONS OF LAU -ALGEBRAS

FURTHER STUDIES OF STRONGLY AMENABLE -REPRESENTATIONS OF LAU -ALGEBRAS FURTHER STUDIES OF STRONGLY AMENABLE -REPRESENTATIONS OF LAU -ALGEBRAS FATEMEH AKHTARI and RASOUL NASR-ISFAHANI Communicated by Dan Timotin The new notion of strong amenability for a -representation of

More information

Q. Zou and A.G. Ramm. Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA.

Q. Zou and A.G. Ramm. Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA. Computers and Math. with Applic., 21 (1991), 75-80 NUMERICAL SOLUTION OF SOME INVERSE SCATTERING PROBLEMS OF GEOPHYSICS Q. Zou and A.G. Ramm Department of Mathematics, Kansas State University, Manhattan,

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

ABELIAN SELF-COMMUTATORS IN FINITE FACTORS

ABELIAN SELF-COMMUTATORS IN FINITE FACTORS ABELIAN SELF-COMMUTATORS IN FINITE FACTORS GABRIEL NAGY Abstract. An abelian self-commutator in a C*-algebra A is an element of the form A = X X XX, with X A, such that X X and XX commute. It is shown

More information

Scalar Asymptotic Contractivity and Fixed Points for Nonexpansive Mappings on Unbounded Sets

Scalar Asymptotic Contractivity and Fixed Points for Nonexpansive Mappings on Unbounded Sets Scalar Asymptotic Contractivity and Fixed Points for Nonexpansive Mappings on Unbounded Sets George Isac Department of Mathematics Royal Military College of Canada, STN Forces Kingston, Ontario, Canada

More information

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity

Minimal periods of semilinear evolution equations with Lipschitz nonlinearity Minimal periods of semilinear evolution equations with Lipschitz nonlinearity James C. Robinson a Alejandro Vidal-López b a Mathematics Institute, University of Warwick, Coventry, CV4 7AL, U.K. b Departamento

More information

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E,

Riemann integral and volume are generalized to unbounded functions and sets. is an admissible set, and its volume is a Riemann integral, 1l E, Tel Aviv University, 26 Analysis-III 9 9 Improper integral 9a Introduction....................... 9 9b Positive integrands................... 9c Special functions gamma and beta......... 4 9d Change of

More information

AN INVERSE PROBLEM FOR THE WAVE EQUATION WITH A TIME DEPENDENT COEFFICIENT

AN INVERSE PROBLEM FOR THE WAVE EQUATION WITH A TIME DEPENDENT COEFFICIENT AN INVERSE PROBLEM FOR THE WAVE EQUATION WITH A TIME DEPENDENT COEFFICIENT Rakesh Department of Mathematics University of Delaware Newark, DE 19716 A.G.Ramm Department of Mathematics Kansas State University

More information

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems Electronic Journal of Differential Equations, Vol. 200(200), No. 74, pp. 0. ISSN: 072-669. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Sufficient conditions

More information

Math 123 Homework Assignment #2 Due Monday, April 21, 2008

Math 123 Homework Assignment #2 Due Monday, April 21, 2008 Math 123 Homework Assignment #2 Due Monday, April 21, 2008 Part I: 1. Suppose that A is a C -algebra. (a) Suppose that e A satisfies xe = x for all x A. Show that e = e and that e = 1. Conclude that e

More information