Input Stage. V IC(max) V BE1. V CE 5(sat ) V IC(min) = V CC +V BE 3 = V EE. + V CE1(sat )

Size: px
Start display at page:

Download "Input Stage. V IC(max) V BE1. V CE 5(sat ) V IC(min) = V CC +V BE 3 = V EE. + V CE1(sat )"

Transcription

1 BJT OPAMPs

2 Input Stage The input stage is similar to MOS design. Take a pnp input stage (Q1- Q2) with npn current mirror load (Q3- Q4) and a pnp tail current source (Q5). Then, V IC(max) = V CC V BE1 V CE 5(sat ) V IC(min) = V EE +V BE 3 V BE1 + V CE1(sat )

3 Input Stage If it is desired to bring the minimum input common mode voltage to ground, the current mirror can be replaced by resistors. In this case, gain will be low. To improve this situalon, a folded cascode stage can be used.

4 Input Stage VCC Q5 Q6 Q7 Bias1 + Vod - Vin- Q1 Q2 Vin+ Q3 Q4 BiasCM + + -VEE=0

5 Input Stage With this configuralon, v od v id = g m1 ρ 1 R o1 ρ 1 = R 3 R 3 + r e3 R o1 [ r 06 ( 1+ g m6 R 6 )] [ r 03 ( 1+ g m3 R 3 )] The assumplon here is that g m6 R 6 << β pnp and g m3 R 3 << β npn. For rail to rail operalon, add another stage.

6 Input Stage VCC Q8 Q9 Q10 Bias1 Vin- Q1 Q2 Vin+ + Vod - Vin- Q1 Q2 Vin+ Q6 Q7 BiasCM Q VEE=0

7 Input Stage This stage has rail to rail operalon for a supply of 2V or more. However, it suffers from the problem of non- constant gm discussed earlier. This varialon of g m causes a varialon in open- loop gain and frequency response of the OPAMP, compromising its performance when designed to be stable in closed loop configuralon.

8 The NE5234 OPAMP

9 NE5234 Biasing Circuit

10 NE5234 Biasing Circuit Q49, Q60, and R60 form a Widlar Current Mirror. The bases of Q49 and Q60 are driven by a unity gain buffer (Q50- Q53) to follow the collector of Q49. This is simply a beta- helper to reduce the beta error. Here, a complementary emi\er follower is ullized instead of using a single transistor to reduce the supply voltage.

11 NE5234 Biasing Circuit Similarly, Q54- Q57 act to bias the bases of Q47 and Q58. Finally, Q48 and Q59 are just cascode transistors to reduce the dependence of currents on V CC. To concentrate on the core of the circuit, let us remove the beta helpers and cascodes.

12 NE5234 Biasing Circuit

13 NE5234 Biasing Circuit This is just a self- biased current source using thermal voltage as we studied earlier. The emi\er area of Q60 is twice the area of Q49. The current can easily be calculated as I C 47 = I C 49 = I C 58 = I C 60 = V T R 60 ln2 = 6µA

14 NE5234 Biasing Circuit If R60 is constant, these currents are proporlonal to absolute temperature (PTAT). Resistor R57 is used to prevent zero current through the circuit.

15 NE5234 Input Stage

16 NE5234 Input Stage Node Bias1 comes from the previous bias circuit. Thus, I C11 is 6µA, I C12 3µA, and I C13, I C14 6µA. I C12 flows into Q8 and R8, sebng the voltage from the base of Q5 to ground to approx. 0.8V. If the common mode input is much less than 0.8V, the current of Q11 flows through Q3- Q4, turning OFF Q5, Q7, Q6, and thus Q1- Q2.

17 NE5234 Input Stage If the input common mode signal is much larger than 0.8V, the current of Q11 flows through Q5- Q7 and thus Q1- Q2, turning Q3- Q4 OFF. If the input common- mode voltage is around 0.8V, the current of Q11 is split between Q1- Q2 pair and Q3- Q4 pair. Thus, the total transconductance remains the same.

18 NE5234 Input Stage Q9- Q10 and Q13- Q14 operate in the aclve mode with 6µA of current. However, the output of the first stage is very sensilve to matching. Thus, a CM signal is created in the second stage and fed back to the bases of Q9 and Q10.

19 NE5234 Second Stage

20 NE5234 Second Stage Nodes 9 and 10 are coming from the first stage. C21 and C22 are for frequency compensalon. Q21 and Q22 are for buffering so that the second stage does not load the first one. Ignore Q23 and Q24 as they are normally OFF. Transistors Q25- Q28 form a differenlal pair.

21 NE5234 Second Stage I C15 = 3µA, I C16 = I C19 = 4µA, I C17 = I C18 = 21µA, and I C20 = 6.6µA. The current I C15 flows through the Scho\ky diode D1 and creates a voltage drop of 0.4V. Q29, R29, and Q30 form a Widlar Current Mirror. Q29 is 7 Lmes larger than Q30, giving I C29 as 42µA.

22 NE5234 Second Stage Using this value, the current of the differenlal pair is 42µA 3µA = 39µA. Therefore, the individual currents of the four differenlal pair transistors are around 10µA. Define V cmout1 = 1 ( 2 V 9 +V 10 ) For the first stage, V cmout1 is an output and V biascm is an input.

23 NE5234 Second Stage For small values of V biascm, the transistors Q9 and Q10 are off and V cmout1 is approx. V CC For large values of V biascm, V cmout1 drops to about 0.3V. The threshold is around 0.9V. Please see your book for details. For the second stage, V biascm is an output and V cmout1 is an input.

24 NE5234 Second Stage In this case, V biascm = V cmout V The solulon to these two characterislcs is when V biascm = 0.9V and V cmout1 = 0.4V. This structure is also an example of CMFB.

25 NE5234 Output Stage

26 NE5234 Output Stage The NE5234 does not use an emi\er follower configuralon for the output due to the low supply voltage limitalons. Nodes 25 and 26 are the inputs coming from the second stage. Capacitors C25 and C26 as well as resistors R25 and R26 are for frequency compensalon. The output is driven by Q74 and Q75.

27 NE5234 Output Stage The high current drive requirement for the output transistors result in high base currents. The base of Q75 is driven by an emi\er follower Q68. The base of Q74 also has to be driven. However, the β of pnp transistors are lower. Thus, a complementary pair Q64- Q65 is used.

28 NE5234 Output Stage The voltages Bias1 and Bias5 are coming from the bias circuit discussed earlier. They set I C61 to 6µA and I C63 and I C64 to 33µA. Transistors Q70, Q72, and Q73 are normally OFF. All other biasing is set by the output bias circuit. PBASE and NBASE are set by the output stage and are inputs to the output bias circuit. The next slide shows a simplified diagram of the output bias circuit and the output stage together.

29 NE5234 Output Stage

30 NE5234 Output Stage In this diagram, transistors which are normally OFF are omi\ed and some current mirrors are shown as ideal current sources. In classical class AB common collector output stages, the product of currents is a constant. In theory, these transistors never turn off. However, due to voltage drops in the base and emi\er resistances, they do turn off. This causes extra delays, worsening the crossover distorlon even further.

31 NE5234 Output Stage In the NE5234, the transistors can never turn OFF. The collector currents of the output transistors are observed by observing the base- emi\er voltages. These voltages are eventually sent to Q45- Q46 for comparison.

32 NE5234 Output Stage This can be wri\en analylcally as, V B 46 = V BE 75 = V T ln I C 75 V B 45 = V BE 42 + I C 43 R 42 I C 43 = V EB 74 V EB 43 R 43 Assuming R 42 = R 43, I S 75 V B 45 = V BE 42 +V EB 74 V EB 43 = V EB 74 +V T ln I S 43 I S 42

33 NE5234 Output Stage This yields V B 45 = V T ln I C 74 I S 75 if I S 75 = I I S 74 S 42 I S 43 If the difference between V B45 and V B46 exceeds 3V T in either direclon, the transistor with the higher base voltage turns OFF. Then, the emi\er voltage is controlled by the other transistor. This is the input to Q40 of the other differenlal pair.

34 NE5234 Output Stage The other side is a constant voltage created by I REF across the two diode connected transistors Q37 and Q38. This forms a feedback loop. Assume that Q75 conducts a large current to pull the OPAMP output low. Now assume that the voltage at the base of Q40 rises.

35 NE5234 Output Stage Then, I C40 is increased and I C39 is reduced. Then, the node voltage of 25 is increased, thus increasing the voltage on Pbase. This change reduces V B45 and hence V B40. This is opposite to what happened inilally. In normal operalon, V B39 and V B40 are about equal.

36 NE5234 Output Stage Now, let us outline the analylcal calculalon. I C 45 + I C 46 = I C 44 V BE 75 +V EB 46 V EB 45 V B 45 = 0 V BE 75 +V EB 46 V BE 40 I 40 R 40 + I 39 R 39 +V BE 39 V BE 37 V EB 38 = 0 Using the concept of feedback to equalize the base voltages of Q39 and Q40, V BE 40 + I R 40 R 40 = V BE 39 + I R 39 R 39 V BE 75 +V EB 46 V BE 37 V EB 38 = 0 V T ln I C 75 +V I T ln I C 46 V S 75 I T ln I C 37 V S 46 I T ln I C 38 = 0 S 37 I S 38

37 NE5234 Output Stage Sebng I C37 = I C38 = I REF = I C36 - I C35, I C 75 I REF I S37 = I S75 I REF I C 46 I S 46 I S 38 Also, from the previous equalons, V T ln I C 75 +V I T ln I C 46 V S 75 I T ln I C 45 V S 46 I T ln I C 74 S45 I S 75 Assuming Q45 and Q46 are idenlcal, I C 75 I C 74 = I C 45 I C 46 = I C 44 I C 46 I C 46 = 0

38 NE5234 Output Stage Solving for I C46 and subsltulng it to one of the earlier equalons yields, I C 46 = I C 44 I C 74 I C 75 + I C 74 I C 75 I C 74 I C 75 + I C 74 = I REF 2 I C 44 I S 75 I S 37 I S 46 I S 38 In the NE5234, I REF = 7.4µA, I C44 = 6µA, I S75 /I S37 = 10, and I S46 / I S38 = 2.

39 NE5234 Output Stage IC IC

40 NE5234 Output Stage When the load current is zero, both currents are equal at about 360µA. When one current goes to infinity, the other saturates at around 180µA. Now, you can calculate all other currents

41 NE5234 Small Signal Analysis Let us break the circuit into three stages, input stage, second stage, and output stage. β npn = 40, β pnp = 10, V A,npn = 30V, and V A,pnp = 20V. The input stage is a fully differenlal circuit with two pairs and the input resistance depends on which of the two are conduclng. Assume V IC << 0.8V. Q1- Q2 is OFF, Q11 biases the pnp pair Q3- Q4.

42 NE5234 Small Signal Analysis + Q13 Q3 + Vid/2 + Q9 +

43 NE5234 Small Signal Analysis From this figure, R id = 2r π 3 =170kΩ R up1 = ( ) r R g m13r 013 β pnp +1 β pnp 1+ g m13 R 13 g m13 r π13 β pnp +1 r g m13 R 13 β pnp 1+ g m13 R 13 β pnp =18MΩ Similarly, R down1 β npn +1 r g m 9 R 9 β npn 1+ g m 9 R 9 β npn r 09 ( 1+ g m 9 R 9 ) 1+ g m 9 R 9 β npn = 27MΩ

44 NE5234 Small Signal Analysis Then, the overall output impedance is R o1 = R up1 R down1 =11MΩ The transconductance of the input stage is, G m1 = g m 3 ρ 3 ρ 3 R 9 R 9 + r e9 = 0.84 G m1 = 97µS

45 NE5234 Small Signal Analysis The input resistance of the second stage is given by, R i2 = 2 r π 21 + ( β pnp +1) ( r π 25 r π 26 ) [ ] =1.3MΩ To find the output resistance, we again divide the resistance into two parallel branches. ( ) r R g r m β pnp +1 β pnp +1 β pnp r g m17 R 17 β pnp R up2 = 1+ g R m g R = 5.0MΩ m17 17 g m17 r π17 β pnp

46 NE5234 Small Signal Analysis Looking down into the collector of Q25 or Q26, R down2 = r 025 ( 1+ g m 25 R E 25 ) β npn R E 25 = r e26 + β npn +1 β npn R E 25 β npn +1 g m26 g m27 R down2 = 4.0MΩ Combining these, R up 2 R ( in 3(26) ) g m26 r 026 r e 27 r e28 g m28 = 0.85kΩ R o2 = R up 2 R down2 = 2.2MΩ

47 NE5234 Small Signal Analysis Q25 Q26 Q27 Q28 + av21v9 + av22v10

48 NE5234 Small Signal Analysis a v21 and a v22 represent the small- signal gains of the emi\er followers Q21 and Q22. Each emi\er follower drives a load of R L where R L = r π 25 r π 26 = r π 27 r π 28 = r π 25 2 a v21 = a v 22 = 1+ 1 r π 21 ( ) r 021 ( β pnp +1) r π 25 2 [ ] = 0.90 The transconductance of the second stage can be defined as i o G m2 = v 9 v 10 v25 =0

49 NE5234 Small Signal Analysis Instead of using a differenlal voltage v 9 v 10 at the input, assume that v 10 is zero and redefine G m2 as G m2 = i o v 9 v 25 =0 Use superposilon to find i o such that i o1 = g m g m25 R E 25 a v21 v 9

50 NE5234 Small Signal Analysis To find the second component, R E 26 = r e 25 r e27 r e 28 = r e25 3 = 0.85kΩ ( ) = 4.0MΩ R C 26 = r g m 26 R E 26 g i c 26 m 26 R a 1+ g m26 R v21 v C 26 9 E 26 R C 26 + R up 2 R in 3(26) i o2 i c 26 3 g m26 1+ g m 26 R E 26 a v 21 v 9 Combining these two components, i o = i o1 + i o2

51 NE5234 Small Signal Analysis We can find G m2 as, g G m2 a m 25 g v 21 m 26 =170µS 1+ g m25 R E g m26 R E 26 The input resistance of the output stage is, R i3(25) = r π 64 + ( β npn +1)R E 64 [ ] r π 65 + β pnp +1 R E 64 = r 063 ( 1+ g m63 R 63 ) R E 65 = R 65 r π 66 r π 74 = 200Ω R E 64 = 3.5kΩ R i3(25) = 404kΩ ( )R E 65 [ ]

52 NE5234 Small Signal Analysis The output resistance is R o3 = r o74 r o75 =15kΩ The transconductance of the output stage is G m3 = a v 64 a v65 g m 74 1 a v64 = r 1+ π 64 ( β npn +1)R E 64 a v65 = 1+ G m3 = 1 96Ω 1 r π 65 β pnp +1 ( )R E 65 = 0.36 = 0.63

53 NE5234 Small Signal Analysis Now, let us combine all stages and calculate the gain for a load of 2kΩ. R a v1 = G m1 R i2 o1 = 60 2 a v2 = 2G ( m2 R o2 R ) i3(25) =120 a v3 = G ( m 3 R o3 R ) L =18 a v = a v1 a v 2 a v3 =130,000

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

Advanced Current Mirrors and Opamps

Advanced Current Mirrors and Opamps Advanced Current Mirrors and Opamps David Johns and Ken Martin (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) slide 1 of 26 Wide-Swing Current Mirrors I bias I V I in out out = I in V W L bias ------------

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59 Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

More information

Class AB Output Stage

Class AB Output Stage Class AB Output Stage Class AB amplifier Operation Multisim Simulation - VTC Class AB amplifier biasing Widlar current source Multisim Simulation - Biasing 1 Class AB Operation v I V B (set by V B ) Basic

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

Chapter 2 - DC Biasing - BJTs

Chapter 2 - DC Biasing - BJTs Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1 Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

FYSE400 ANALOG ELECTRONICS

FYSE400 ANALOG ELECTRONICS YSE400 ANALOG ELECTONCS LECTUE 3 Bipolar Sub Circuits 1 BPOLA SUB CCUTS Bipolar Current Sinks and -Sources Transistor operates in forwardactive region. < < sat CE CN max CE < < + BN CN BN max CE N N N

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

At point G V = = = = = = RB B B. IN RB f

At point G V = = = = = = RB B B. IN RB f Common Emitter At point G CE RC 0. 4 12 0. 4 116. I C RC 116. R 1k C 116. ma I IC 116. ma β 100 F 116µ A I R ( 116µ A)( 20kΩ) 2. 3 R + 2. 3 + 0. 7 30. IN R f Gain in Constant Current Region I I I C F

More information

Chapter 3 Output stages

Chapter 3 Output stages Chapter 3 utput stages 3.. Goals and properties 3.. Goals and properties deliver power into the load with good efficacy and small power dissipate on the final transistors small output impedance maximum

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION 4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

(e V BC/V T. α F I SE = α R I SC = I S (3)

(e V BC/V T. α F I SE = α R I SC = I S (3) Experiment #8 BJT witching Characteristics Introduction pring 2015 Be sure to print a copy of Experiment #8 and bring it with you to lab. There will not be any experiment copies available in the lab. Also

More information

Chapter 2. - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design (1/3, 1/3, 1/3 Rule) Bias Design Example Small-Signal BJT Models Small-Signal Analysis 1 Emitter Feedback Bias Design R B R C V CC R 1 R

More information

figure shows a pnp transistor biased to operate in the active mode

figure shows a pnp transistor biased to operate in the active mode Lecture 10b EE-215 Electronic Devices and Circuits Asst Prof Muhammad Anis Chaudhary BJT: Device Structure and Physical Operation The pnp Transistor figure shows a pnp transistor biased to operate in the

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Bipolar Junction Transistors. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Bipolar Junction Transistors Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of Precedent Class Explain the Operation of the Zener Diode Explain Applications

More information

Forward-Active Terminal Currents

Forward-Active Terminal Currents Forward-Active Terminal Currents Collector current: (electron diffusion current density) x (emitter area) diff J n AE qd n n po A E V E V th ------------------------------ e W (why minus sign? is by def.

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

VI. Transistor amplifiers: Biasing and Small Signal Model

VI. Transistor amplifiers: Biasing and Small Signal Model VI. Transistor amplifiers: iasing and Small Signal Model 6.1 Introduction Transistor amplifiers utilizing JT or FET are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly.

More information

(Refer Slide Time: 1:49)

(Refer Slide Time: 1:49) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits Final Exam 10Dec08 SOLUTIONS This exam is a closed book exam. Students are allowed to use a

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Section 1: Common Emitter CE Amplifier Design

Section 1: Common Emitter CE Amplifier Design ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open

More information

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1 Lecture 50 Simple BJT Op Amps (/28/04) Page 50 LECTURE 50 SIMPLE BJT OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis

More information

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

More information

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

Lecture 140 Simple Op Amps (2/11/02) Page 140-1 Lecture 40 Simple Op Amps (2//02) Page 40 LECTURE 40 SIMPLE OP AMPS (READING: TextGHLM 425434, 453454, AH 249253) INTRODUCTION The objective of this presentation is:.) Illustrate the analysis of BJT and

More information

The current source. The Active Current Source

The current source. The Active Current Source V ref + - The current source Minimum noise euals: Thevenin Norton = V ref DC current through resistor gives an increase of /f noise (granular structure) Accuracy of source also determined by the accuracy

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

V = = A = ln V

V = = A = ln V Chapter Problem Solutions. a. b. c. γ + γ + BE + C + + γ + ( γ ( γ C γ + BE + BE γ BE and C γ ( γ + or C BE + C ma.5 kω.7 ( ma + 4. kω.5 kω C. (a ln C BE T S (i μ 6 A,.6 ln.588 μa C BE 4 (ii μ 6 A,.6 ln.5987

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #8 Lab Report The Bipolar Junction Transistor: Characteristics and Models Submission Date: 11/6/2017 Instructors: Dr. Minhee Yun John Erickson Yanhao Du Submitted By:

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

SPICE SIMULATIONS OF CURRENT SOURCES BIASING OF LOW VOLTAGE

SPICE SIMULATIONS OF CURRENT SOURCES BIASING OF LOW VOLTAGE SPICE SIMULATIONS OF CURRENT SOURCES BIASING OF LOW VOLTAGE MONICA-ANCA CHITA, MIHAI IONESCU Key words: Bias circuits, Current mirrors, Current sources biasing of low voltage, SPICE simulations. In this

More information

ECEE 352 Analog Electronics. DC Power Supply Winter 2016

ECEE 352 Analog Electronics. DC Power Supply Winter 2016 ECEE 352 Analog Electronics DC Power Supply Winter 2016 This Document Produced By: Leo Filippini lf458@drexel.edu Instructor: Prof. Basavaiah basu@coe.drexel.edu TA: Zhihuan Wang zw78@drexel.edu The goal

More information

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras Lecture No - 42 Fully Differential Single Stage Opamp Hello and welcome

More information

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION ECE-343 Test : Feb 0, 00 6:00-8:00pm, Closed Book Name : SOLUTION C Depl = C J0 + V R /V o ) m C Diff = τ F g m ω T = g m C µ + C π ω T = g m I / D C GD + C or V OV GS b = τ i τ i = R i C i ω H b Z = Z

More information

University of Toronto. Final Exam

University of Toronto. Final Exam University of Toronto Final Exam Date - Dec 16, 013 Duration:.5 hrs ECE331 Electronic Circuits Lecturer - D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last

More information

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE 321 Analog Electronics, Fall 2013 Homework #8 solution EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various

More information

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14 Chapter Text # Inside back cover: Triode region equation should not be squared! i D = K n v GS "V TN " v & DS % ( v DS $ 2 ' Page 49, first exercise, second answer: -1.35 x 10 6 cm/s Page 58, last exercise,

More information

6.012 Electronic Devices and Circuits Spring 2005

6.012 Electronic Devices and Circuits Spring 2005 6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) -OPEN BOOK- Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

(Refer Slide Time: 1:41)

(Refer Slide Time: 1:41) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 13 Module no 01 Midband Analysis of CB and CC Amplifiers We are

More information

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities: Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction

More information

The Common-Emitter Amplifier

The Common-Emitter Amplifier c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The Common-Emitter Amplifier Basic Circuit Fig. shows the circuit diagram

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

More information

BJT Biasing Cont. & Small Signal Model

BJT Biasing Cont. & Small Signal Model BJT Biasing Cont. & Small Signal Model Conservative Bias Design Bias Design Example Small Signal BJT Models Small Signal Analysis 1 Emitter Feedback Bias Design Voltage bias circuit Single power supply

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D)

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D) Most of the content is from the textbook: Electronic devices and circuit theory, Robert

More information

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP) emp. Indep. Biasing (7/14/00) Page 1 4.5 (A4.3) - EMPERAURE INDEPENDEN BIASING (BANDGAP) INRODUCION Objective he objective of this presentation is: 1.) Introduce the concept of a bandgap reference 2.)

More information

5-V Low-Drop Fixed Voltage Regulator TLE 4269

5-V Low-Drop Fixed Voltage Regulator TLE 4269 5-V Low-Drop Fixed Voltage Regulator TLE 4269 Features Output voltage tolerance ±2 % 15 ma current capability Very low current consumption Early warning Reset output low down to V Q = 1 V Overtemperature

More information

Half-circuit incremental analysis techniques

Half-circuit incremental analysis techniques 6.012 Electronic Devices and Circuits Lecture 19 Differential Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Design Problem out tomorrow in recitation Review Singletransistor

More information

(Refer Slide Time: 1:22)

(Refer Slide Time: 1:22) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 19 Module no 01 Problem Session 5 on Frequency Response of Small

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) HW 3 1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp) a) Obtain in Spice the transistor curves given on the course web page except do in separate plots, one for the npn

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen Lecture 5 Followers (1/11/4) Page 51 LECTURE 5 FOLLOWERS (READING: GHLM 344362, AH 221226) Objective The objective of this presentation is: Show how to design stages that 1.) Provide sufficient output

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Feedback Amplifiers CollectionofSolvedProblems A collection of solved

More information

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices EE 330 Lecture 35 Parasitic Capacitances in MOS Devices Exam 2 Wed Oct 24 Exam 3 Friday Nov 16 Review from Last Lecture Cascode Configuration Discuss V CC gm1 gm1 I B VCC V OUT g02 g01 A - β β VXX Q 2

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

Transistor Characteristics and A simple BJT Current Mirror

Transistor Characteristics and A simple BJT Current Mirror Transistor Characteristics and A simple BJT Current Mirror Current-oltage (I-) Characteristics Device Under Test DUT i v T T 1 R X R X T for test Independent variable on horizontal axis Could force current

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor Preliminary Technical Information V CES = 3V 11 = 11A V CE(sat) 3.2V C1 C2 (Electrically Isolated Tab) G1 E1C3 G2 E2C G3 G E3E C1 C2

More information

Chapter 10 Instructor Notes

Chapter 10 Instructor Notes G. izzoni, Principles and Applications of lectrical ngineering Problem solutions, hapter 10 hapter 10 nstructor Notes hapter 10 introduces bipolar junction transistors. The material on transistors has

More information

55:041 Electronic Circuits The University of Iowa Fall Exam 2

55:041 Electronic Circuits The University of Iowa Fall Exam 2 Exam 2 Name: Score /60 Question 1 One point unless indicated otherwise. 1. An engineer measures the (step response) rise time of an amplifier as t r = 0.35 μs. Estimate the 3 db bandwidth of the amplifier.

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of

More information

Electronics II. Midterm #1

Electronics II. Midterm #1 The University of Toledo EECS:3400 Electronics I su3ms_elct7.fm Section Electronics II Midterm # Problems Points. 5. 6 3. 9 Total 0 Was the exam fair? yes no The University of Toledo su3ms_elct7.fm Problem

More information

CHAPTER 7 - CD COMPANION

CHAPTER 7 - CD COMPANION Chapter 7 - CD companion 1 CHAPTER 7 - CD COMPANION CD-7.2 Biasing of Single-Stage Amplifiers This companion section to the text contains detailed treatments of biasing circuits for both bipolar and field-effect

More information

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS ) ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

The BJT Differential Amplifier. Basic Circuit. DC Solution

The BJT Differential Amplifier. Basic Circuit. DC Solution c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit

More information

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson

6.301 Solid-State Circuits Recitation 14: Op-Amps and Assorted Other Topics Prof. Joel L. Dawson First, let s take a moment to further explore device matching for current mirrors: I R I 0 Q 1 Q 2 and ask what happens when Q 1 and Q 2 operate at different temperatures. It turns out that grinding through

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Review - Differential Amplifier Basics Difference- and common-mode signals: v ID

Review - Differential Amplifier Basics Difference- and common-mode signals: v ID 6.012 Microelectronic Devices and Circuits Lecture 20 DiffAmp Anal. I: Metrics, Max. Gain Outline Announcements Announcements D.P.: No Early effect in large signal analysis; just LECs. Lec. 21 foils useful;

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of

More information

SC70, 1.6V, Nanopower, Beyond-the-Rails Comparators With/Without Reference

SC70, 1.6V, Nanopower, Beyond-the-Rails Comparators With/Without Reference 19-1862; Rev 4; 1/7 SC7, 1.6V, Nanopower, Beyond-the-Rails General Description The nanopower comparators in space-saving SC7 packages feature Beyond-the- Rails inputs and are guaranteed to operate down

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information