R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Size: px
Start display at page:

Download "R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder"

Transcription

1 R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

2 1.. Averaged switch modeling with the simple approximation i 1 (t) i (t) i (t) v g (t) v 1 (t) v (t) C R v(t) Switch network Averaged terminal waveforms, CCM: v (t) Ts = d(t) v 1 (t) Ts The simple approximation: i (t) Ts (t) Ts i 1 (t) Ts = d(t) i (t) Ts Fundamentals of Power Electronics 33 Chapter 1: Current Programmed Control

3 CPM averaged switch equations v (t) Ts = d(t) v 1 (t) Ts i (t) Ts (t) Ts i 1 (t) Ts = d(t) i (t) Ts Eliminate duty cycle: i 1 (t) Ts = d(t) (t) Ts = v (t) Ts v 1 (t) Ts (t) Ts i 1 (t) Ts v 1 (t) Ts = (t) Ts v (t) Ts = p(t) Ts So: Output port is a current source Input port is a dependent power sink Fundamentals of Power Electronics 34 Chapter 1: Current Programmed Control

4 CPM averaged switch model i 1 i i p v g v 1 v C R v Averaged switch network Fundamentals of Power Electronics 35 Chapter 1: Current Programmed Control

5 Results for other converters Boost i v g p C R v Averaged switch network Averaged switch network Buck-boost p v g C R v i Fundamentals of Power Electronics 36 Chapter 1: Current Programmed Control

6 Perturbation and linearization to construct small-signal model et v 1 (t) Ts = V 1 v 1 (t) i 1 (t) Ts = I 1 i 1 (t) v (t) Ts = V v (t) i (t) Ts = I i (t) (t) Ts = I c (t) Resulting input port equation: V 1 v 1 (t) I 1 i 1 (t) = I c (t) V v (t) Small-signal result: i 1 (t)= (t) V V 1 v (t) I c V 1 v 1 (t) I 1 V 1 Output port equation: î = î c Fundamentals of Power Electronics 37 Chapter 1: Current Programmed Control

7 Resulting small-signal model Buck example i 1 i v v V g i C R V I 1 1 c v c i v V c v 1 V 1 I 1 Switch network small-signal ac model i 1 (t)= (t) V V 1 v (t) I c V 1 v 1 (t) I 1 V 1 Fundamentals of Power Electronics 38 Chapter 1: Current Programmed Control

8 Origin of input port negative incremental resistance i 1 Power source characteristic v 1 i 1 = p Quiescent operating point I 1 1 r 1 = I 1 V 1 V 1 v 1 Fundamentals of Power Electronics 39 Chapter 1: Current Programmed Control

9 Expressing the equivalent circuit in terms of the converter input and output voltages i g i v g D 1 s R D R D v R C R v i 1 (s)=d 1s R (s) D R v(s)d R v g(s) Fundamentals of Power Electronics 40 Chapter 1: Current Programmed Control

10 Predicted transfer functions of the CPM buck converter i g i v g D 1 s R D R D v R C R v G vc (s)= v(s) (s) vg =0 = R 1 sc G vg (s)= v(s) v g (s) ic =0 =0 Fundamentals of Power Electronics 41 Chapter 1: Current Programmed Control

11 imitations of the simple model i g i v g D 1 s R R D D R v C R v Model of the current-programmed buck converter This model predicts that G vg = 0 The simple model is very useful, but it doesn t predict some things that we often need to know: ine-to-output transfer function of buck converter High-frequency (inductor) dynamics Effects of large ripple and artificial ramp ECEN 5807, Spring 015 1

12 1.3 A More Accurate Model l l l l l l The simple models of the previous section yield insight into the lowfrequency behavior of CPM converters Unfortunately, they do not always predict everything that we need to know: ine-to-output transfer function of the buck converter Dynamics at frequencies approaching f s More accurate model accounts for nonideal operation of current mode controller built-in feedback loop Converter duty-cycle-controlled model, plus block diagram that accurately models equations of current mode controller Simulation of current mode control Comparison of performance: duty-cycle control vs. current-mode control Fundamentals of Power Electronics 4 Chapter 1: Current Programmed Control

13 Current-programmed controller model Compute the average inductor current using the definition: hi (t)i Ts = 1 T s Z tts / t T s / i ( )d, i (t) m a i pk m i i 1 i (dt s ) Ts i 4 m i 1 3 i (t) Ts (d 0.5)T s (d 0.5)T s 0 dt s T s t T s ECEN 5807, Spring 015

14 Sampling at t = dt s The current-mode controller samples and determines the duty cycle at time t = dt s. Hence we need to compute the average inductor current at this sampling instant: i (t) hi i Ts = i (dt s )i Ts = 1 T s Z (d0.5)ts (d 0.5)T s i ( )d. m a i pk m i i 1 i (dt s ) Ts i 4 m i 1 3 i (t) Ts (d 0.5)T s (d 0.5)T s 0 dt s T s T s t Sketched for the case d < 0.5 ECEN 5807, Spring 015 3

15 Computation i (t) m a i pk i 4 m i 1 3 (d 0.5)T s (d 0.5)T s 0 dt s T s m i i 1 i (dt s ) Ts i (dt s )i Ts = (0.5 d)i 3 di 1 d 0 i (0.5 d)i 4, i (dt s )i Ts = di 1 d 0 i (0.5 d)(i 4 i 3 ). Z T s t i (t) Ts Simplification: Time between interval midpoints i 3 and i 4 is T s Time between interval midpoints i 1 and i is T s / Slope between midpoint values is the same, shown by dotted line: i 4 i 3 = (i i 1 ). With this result, the expression for the average current becomes: hi i Ts = di 1 d 0 i (0.5 d)(i i 1 ) = d 0 i 1 di. ECEN 5807, Spring 015 4

16 Computation, slide i (t) m a i pk m i i 1 i (dt s ) Ts i 4 m i 1 3 i (t) Ts The midpoint currents are: i 1 = i pk m 1 dt s, i = i pk m d0 T s (d 0.5)T s (d 0.5)T s 0 dt s T s T s t i pk = m a dt s. Substitute into result from previous slide, to find the relationship between the average current and : hi i Ts = m a dt s m 1 m dd 0 T s. ECEN 5807, Spring 015 5

17 Small-signal model Now perturb and linearize hi i Ts = I î (t) h i Ts = ==I c î c (t) d(t) = D ˆd(t) m 1 = M 1 ˆm 1 (t) m = M ˆm (t) Buck converter ˆm 1 = ˆv g ˆv ˆm = ˆv Boost converter ˆm 1 = ˆv g ˆm = ˆv ˆv g Buck-boost converter ˆm 1 = ˆv g ˆm = ˆv inearization leads to: î (t) = î c (t) î (t) = î c (t) M a M 1 M M a M 1 M (1 D) T s ˆd(t) T s ˆd(t) 0 DD 0 T s Equilibrium relationship: DD 0 T s ˆm 1 (t) (ˆm 1 (t) ˆm (t)) DD 0 T s ˆm (t) DM 1 = D 0 M, ECEN 5807, Spring 015 6

18 Current mode controller small-signal block diagram î (t) = î c "(t) Solve for duty cycle: ˆd(t) = Which is of the form: M a M 1 M T s ˆd(t) 1 M a M 1 M T s " î c (t) î (t) ˆd(t) = F m hîc (t) î (t) F gˆv g (t) F vˆv(t) i DD 0 T s DD 0 T s ˆm 1 (t) ˆm 1 (t) DD 0 T s DD 0 T s ˆm (t) # ˆm (t) F m d 1 F m = M a M 1 M. T s F and F, for the basic buck, boost, and b v g F g "" " F v i v ECEN 5807, Spring 015 7

19 Summary of result: small-signal block diagram ˆd(t) = F m hîc (t) î (t) F gˆv g (t) F vˆv(t) i d F m 1 F m = M a M 1 M. T s F and F, for the basic buck, boost, and b v g F g "" F v v Table 17. Current programmed controller gains for basic converters " i Converter F g F v Buck DD 0 T s 0 Boost 0 DD 0 T s Buck-boost DD 0 T s DD 0 T s ECEN 5807, Spring 015 8

20 Block diagram of the current programmed controller d(t)=f m (t)i (t)f g v g (t)f v v(t) v g F m F g F v v d i Describes the duty cycle chosen by the CPM controller Append this block diagram to the duty cycle controlled converter model, to obtain a complete CPM system model Fundamentals of Power Electronics 47 Chapter 1: Current Programmed Control

21 CPM buck converter model 1 : D V g d(t) i (t) v g (t) Id(t) C v(t) R d F m T v v g F g F v v T i i Fundamentals of Power Electronics 48 Chapter 1: Current Programmed Control

22 CPM boost converter model Vd(t) D' : 1 i (t) v g (t) Id(t) C v(t) R d F m T v v g F g F v v T i i Fundamentals of Power Electronics 49 Chapter 1: Current Programmed Control

23 CPM buck-boost converter model V g V d(t) 1 : D D' : 1 i (t) v g (t) Id(t) Id(t) C v(t) R d F m T v v g F g F v v T i i Fundamentals of Power Electronics 50 Chapter 1: Current Programmed Control

24 1.3. Solution of the CPM transfer functions In the models of the previous slides, the output voltage v can be expressed via superposition as a function of d and v g, through the duty-cycle controlled transfer functions G vd (s) and G vg (s): v(s)=g vd (s)d(s)g vg (s)v g (s) In a similar manner, the inductor current i can be expressed via superposition as a function of d and v g, by defining the transfer functions G id (s) and G ig (s): i (s)=g id (s)d(s)g ig (s)v g (s) with G id (s)= i (s) d(s) vg (s)=0 G ig (s)= i (s) v g (s) d(s)=0 Fundamentals of Power Electronics 51 Chapter 1: Current Programmed Control

25 System block diagram CPM controller model F v F m d Converter transfer functions G vd (s) G id (s) v F g v g G vg (s) G ig (s) i Fundamentals of Power Electronics 5 Chapter 1: Current Programmed Control

26 Solution of block diagram Solve block diagram for d: d = F m 1F m G id G ig F g v g F v v Substitute into expression for v: v = F m G vd 1F m G id G ig F g v g F v v G vg v g Solve for v: v = F m G vd 1F m G id F v G vd G vg F m F g G vd F m G vg G id G ig G vd 1F m G id F v G vd v g Fundamentals of Power Electronics 53 Chapter 1: Current Programmed Control

27 Results Transfer functions with current-mode control Control-to-output transfer function: G vc (s)= v(s) (s) v g (s)=0 = F m G vd 1F m G id F v G vd ine-to-output transfer function: G vg-cpm (s)= v(s) v g (s) (s)=0 = G vg F m F g G vd F m G vg G id G ig G vd 1F m G id F v G vd Fundamentals of Power Electronics 54 Chapter 1: Current Programmed Control

28 1.3.3 Discussion The more accurate controller model accounts for the differences between i and that arise by two mechanisms: Inductor current ripple Artificial ramp d F m F g and F v blocks model smallsignal effects of inductor current ripple: how the difference between i and varies with applied voltages. For operation deep in CCM, ripple is small F g and F v blocks can then be ignored. v g F g F v v i Fundamentals of Power Electronics 55 Chapter 1: Current Programmed Control

29 Effect of artificial ramp Artificial ramp also causes inductor current to differ from d F m block models effect of artificial ramp. F m varies inversely with M a, and becomes infinite with zero M a With zero M a, the input to the F m block tends to zero. The controller block diagram then predicts that d F m =0= i F g v g F v v v g F m F g F v v i With negligible inductor current ripple, F g and F v blocks go to zero. The model then predicts 0= i which coincides with the ideal model of Section 1. Fundamentals of Power Electronics 56 Chapter 1: Current Programmed Control

30 Ideal limiting case General expression for controlto-output transfer function: G vc (s)= v(s) (s) v g (s)=0 = F m G vd 1F m G id F v G vd In the limit when F m 0, F g 0, F v 0, then the control-to-output transfer function reduces to the following: lim F m F g 0 F v 0 G vc (s)= G vd G id and the line-to-output transfer function reduces to: lim F m F g 0 F v 0 G vg-cpm (s)= G vgg id G ig G vd G id These expressions coincide with the transfer functions predicted by the ideal model of Section 1.. Fundamentals of Power Electronics 57 Chapter 1: Current Programmed Control

31 arge artificial ramp Duty-cycle control In the extreme case of a very large artificial ramp, the controller degenerates to duty-cycle control. For large M a (small F m ) and for F g 0 and F v 0, the control-to-output transfer function reduces to lim small F m F v 0 F g 0 G vc (s)=f m G vd (s) (current-mode controller becomes pulsewidth modulator having gain F m, and dutycycle controller gain G vd (s) is obtained) For large M a (small F m ) and for F g 0 and F v 0, the line-to-output transfer function reduces to lim F m F g 0 F v 0 G vg-cpm (s)=g vg (the duty-cycle controller gain G vg (s) is obtained) Fundamentals of Power Electronics 58 Chapter 1: Current Programmed Control

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Sampled-data response: i L /i c Sampled-data transfer function : î L (s) î c (s) = (1 ) 1 e st

More information

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 8.1.7. The low-q approximation Given a second-order denominator polynomial, of the form G(s)= 1

More information

Part II Converter Dynamics and Control

Part II Converter Dynamics and Control Part II Converter Dynamics and Control 7. AC equivalent circuit modeling 8. Converter transfer functions 9. Controller design 10. Ac and dc equivalent circuit modeling of the discontinuous conduction mode

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Part II" Converter Dynamics and Control! 7.!AC equivalent circuit modeling! 8.!Converter transfer

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Objective of Part II! Develop tools for modeling, analysis, and design of converter control systems!

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 2.4 Cuk converter example L 1 C 1 L 2 Cuk converter, with ideal switch i 1 i v 1 2 1 2 C 2 v 2 Cuk

More information

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency 3.1. The dc transformer model 3.2. Inclusion of inductor copper loss 3.3. Construction of equivalent circuit model 3.4. How to

More information

Chapter 8: Converter Transfer Functions

Chapter 8: Converter Transfer Functions Chapter 8. Converter Transfer Functions 8.1. Review of Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right half-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

More information

Converter System Modeling via MATLAB/Simulink

Converter System Modeling via MATLAB/Simulink Converter System Modeling via MATLAB/Simulink A powerful environment for system modeling and simulation MATLAB: programming and scripting environment Simulink: block diagram modeling environment that runs

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models ETUE 44 Averaged Switch Models II and anonical ircuit Models A Additional Averaged ossless Switch Models 1 Single Transformer ircuits a buck b boost 2 Double ascade Transformer Models: a Buck Boost b Flyback

More information

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) 1 ECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) I. Quasi-Static Approximation A. inear Models/ Small Signals/ Quasistatic I V C dt Amp-Sec/Farad V I dt Volt-Sec/Henry 1. Switched

More information

6.3. Transformer isolation

6.3. Transformer isolation 6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

More information

Lecture 47 Switch Mode Converter Transfer Functions: Tvd(s) and Tvg(s) A. Guesstimating Roots of Complex Polynomials( this section is optional)

Lecture 47 Switch Mode Converter Transfer Functions: Tvd(s) and Tvg(s) A. Guesstimating Roots of Complex Polynomials( this section is optional) Lecture 47 Switch Mode Converter Transfer Functions: T vd (s) and T vg (s) A. Guesstimating Roots of Complex Polynomials( this section is optional). Quick Insight n=. n th order case. Cuk example 4. Forth

More information

7.3 State Space Averaging!

7.3 State Space Averaging! 7.3 State Space Averaging! A formal method for deriving the small-signal ac equations of a switching converter! Equivalent to the modeling method of the previous sections! Uses the state-space matrix description

More information

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 1. In the single-phase rectifier shown below in Fig 1a., s = 1mH and I d = 10A. The input voltage v s has the pulse waveform shown

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2007.

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2007. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Circuits & Electronics Spring 2007 Quiz #2 25 April 2007 Name: There are 20 pages in this quiz, including

More information

Section 5 Dynamics and Control of DC-DC Converters

Section 5 Dynamics and Control of DC-DC Converters Section 5 Dynamics and ontrol of D-D onverters 5.2. Recap on State-Space Theory x Ax Bu () (2) yxdu u v d ; y v x2 sx () s Ax() s Bu() s ignoring x (0) (3) ( si A) X( s) Bu( s) (4) X s si A BU s () ( )

More information

Modeling Buck Converter by Using Fourier Analysis

Modeling Buck Converter by Using Fourier Analysis PIERS ONLINE, VOL. 6, NO. 8, 2010 705 Modeling Buck Converter by Using Fourier Analysis Mao Zhang 1, Weiping Zhang 2, and Zheng Zhang 2 1 School of Computing, Engineering and Physical Sciences, University

More information

ECE315 / ECE515 Lecture 11 Date:

ECE315 / ECE515 Lecture 11 Date: ecture 11 Date: 15.09.016 MOS Differential Pair Quantitative Analysis differential input Small Signal Analysis MOS Differential Pair ECE315 / ECE515 M 1 and M are perfectly matched (at least in theory!)

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure

More information

Regulated DC-DC Converter

Regulated DC-DC Converter Regulated DC-DC Converter Zabir Ahmed Lecturer, BUET Jewel Mohajan Lecturer, BUET M A Awal Graduate Research Assistant NSF FREEDM Systems Center NC State University Former Lecturer, BUET 1 Problem Statement

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture - 19 Modeling DC-DC convertors Good day to all of you. Today,

More information

Basics of Network Theory (Part-I)

Basics of Network Theory (Part-I) Basics of Network Theory (PartI). A square waveform as shown in figure is applied across mh ideal inductor. The current through the inductor is a. wave of peak amplitude. V 0 0.5 t (m sec) [Gate 987: Marks]

More information

Lecture 12 - Non-isolated DC-DC Buck Converter

Lecture 12 - Non-isolated DC-DC Buck Converter ecture 12 - Non-iolated DC-DC Buck Converter Step-Down or Buck converter deliver DC power from a higher voltage DC level ( d ) to a lower load voltage o. d o ene ref + o v c Controller Figure 12.1 The

More information

ECE1750, Spring Week 11 Power Electronics

ECE1750, Spring Week 11 Power Electronics ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,

More information

Electric Circuits I. Inductors. Dr. Firas Obeidat

Electric Circuits I. Inductors. Dr. Firas Obeidat Electric Circuits I Inductors Dr. Firas Obeidat 1 Inductors An inductor is a passive element designed to store energy in its magnetic field. They are used in power supplies, transformers, radios, TVs,

More information

Chapter 7 DC-DC Switch-Mode Converters

Chapter 7 DC-DC Switch-Mode Converters Chapter 7 DC-DC Switch-Mode Converters dc-dc converters for switch-mode dc power supplies and dc-motor drives 7-1 Block Diagram of DC-DC Converters Functional block diagram 7-2 Stepping Down a DC Voltage

More information

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering

System Modeling. Lecture-2. Emam Fathy Department of Electrical and Control Engineering System Modeling Lecture-2 Emam Fathy Department of Electrical and Control Engineering email: emfmz@yahoo.com 1 Types of Systems Static System: If a system does not change with time, it is called a static

More information

Chapter 9: Controller design

Chapter 9: Controller design Chapter 9. Controller Design 9.1. Introduction 9.2. Effect of negative feedback on the network transfer functions 9.2.1. Feedback reduces the transfer function from disturbances to the output 9.2.2. Feedback

More information

Last week: analysis of pinion-rack w velocity feedback

Last week: analysis of pinion-rack w velocity feedback Last week: analysis of pinion-rack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s

More information

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o ----------- ----------- w L =Q - w o πf o w h =Qw o w L ~ RC w h w L f(l) w h f(c) B. Construction from T(s) Asymptotes

More information

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics Lena Peterson 2015-10-13 Outline (1) Why is the CMOS inverter gain not infinite? Large-signal

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 34 Network Theorems (1) Superposition Theorem Substitution Theorem The next

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps EE 435 ecture 2: Basic Op Amp Design - Single Stage ow Gain Op Amps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op Amp Amplifier Amplifier used in open-loop

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM)

EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM) EE 545 POWER EECTRONICS I ecture #4: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM) Objectives Overview of Discontinuous Conduction Mode Buck Converter Analysis (DCM) Simulation

More information

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow EE 330 Lecture 16 MOSFET Modeling CMOS Process Flow Model Extensions 300 Id 250 200 150 100 50 300 0 0 1 2 3 4 5 Vds Existing Model 250 200 Id 150 100 50 Slope is not 0 0 0 1 2 3 4 Actual Device Vds Model

More information

CHAPTER FOUR MUTUAL INDUCTANCE

CHAPTER FOUR MUTUAL INDUCTANCE CHAPTER FOUR MUTUAL INDUCTANCE 4.1 Inductance 4.2 Capacitance 4.3 Serial-Parallel Combination 4.4 Mutual Inductance 4.1 Inductance Inductance (L in Henry is the circuit parameter used to describe an inductor.

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

Lecture 04 Review of MOSFET

Lecture 04 Review of MOSFET ECE 541/ME 541 Microelectronic Fabrication Techniques Lecture 04 Review of MOSFET Zheng Yang (ERF 3017, email: yangzhen@uic.edu) What is a Transistor? A Switch! An MOS Transistor V GS V T V GS S Ron D

More information

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER: UNIT VII IASING & STAILIZATION AMPLIFIE: - A circuit that increases the amplitude of given signal is an amplifier - Small ac signal applied to an amplifier is obtained as large a.c. signal of same frequency

More information

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow EE 330 Lecture 16 MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow Review from Last Time Operation Regions by Applications Id I D 300 250 200 150

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder Cloed-loop buck converter example: Section 9.5.4 In ECEN 5797, we ued the CCM mall ignal model to

More information

Chapter 8: Converter Transfer Functions

Chapter 8: Converter Transfer Functions Chapter 8. Converter Transer Functions 8.1. Review o Bode plots 8.1.1. Single pole response 8.1.2. Single zero response 8.1.3. Right hal-plane zero 8.1.4. Frequency inversion 8.1.5. Combinations 8.1.6.

More information

Lecture 5: DC & Transient Response

Lecture 5: DC & Transient Response Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

Chapter 14: Inductor design

Chapter 14: Inductor design Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points

More information

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors EE 330 Lecture 16 Devices in Semiconductor Processes MOS Transistors Review from Last Time Model Summary I D I V DS V S I B V BS = 0 0 VS VT W VDS ID = μcox VS VT VDS VS V VDS VS VT L T < W μc ( V V )

More information

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs ECE 642, Spring 2003 - Final Exam Page FINAL EXAMINATION (ALLEN) - SOLUTION (Average Score = 9/20) Problem - (20 points - This problem is required) An open-loop comparator has a gain of 0 4, a dominant

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

Half-circuit incremental analysis techniques

Half-circuit incremental analysis techniques 6.012 Electronic Devices and Circuits Lecture 19 Differential Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Design Problem out tomorrow in recitation Review Singletransistor

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter

Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter Predrag Pejović and Marija Glišić Abstract In this paper, analysis of a buck converter operated applying a peak limiting current

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

4.4 The MOSFET as an Amp and Switch

4.4 The MOSFET as an Amp and Switch 10/31/004 section 4_4 The MSFET as an Amp and Switch blank 1/1 44 The MSFET as an Amp and Switch Reading Assignment: pp 70-80 Now we know how an enhancement MSFET works! Q: A: 1 H: The MSFET as an Amp

More information

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve ISPACS2017 Paper 2017 ID 21 Nov. 9 NQ-L5 Paper ID 21, Estimation of Circuit Component Values in Buck Converter using Efficiency Curve S. Sakurai, N. Tsukiji, Y. Kobori, H. Kobayashi Gunma University 1/36

More information

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2 EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps EE 435 ecture 2: Basic Op mp Design - Single Stage ow Gain Op mps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op mp mplifier mplifier used in open-loop applications

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

Bifurcations in Switching Converters: From Theory to Design

Bifurcations in Switching Converters: From Theory to Design Presented at Tokushima University, August 2008 Bifurcations in Switching Converters: From Theory to Design C. K. Michael Tse Department of Electronic and Information Engineering The Hong H Kong Polytechnic

More information

ECE 546 Lecture 11 MOS Amplifiers

ECE 546 Lecture 11 MOS Amplifiers ECE 546 Lecture MOS Amplifiers Spring 208 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Amplifiers Definitions Used to increase

More information

(Refer Slide Time: 1:49)

(Refer Slide Time: 1:49) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide

More information

6.334 Power Electronics Spring 2007

6.334 Power Electronics Spring 2007 MIT OpenCourseWare http://ocw.mit.edu 6.334 Power Electronics Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Chapter 1 Introduction and Analysis

More information

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

EE 321 Analog Electronics, Fall 2013 Homework #3 solution EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [

More information

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS PRODUCT SUMMARY D V (BR)DSS R DS(ON) I D -4V 15mΩ -45A G 1. GATE 2. DRAIN 3. SOURCE ABSOLUTE MAXIMUM RATINGS (T A = 25 C Unless Otherwise Noted) PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS Drain-Source

More information

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010

Lecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD

More information

ECE Analog Integrated Circuit Design - II P.E. Allen

ECE Analog Integrated Circuit Design - II P.E. Allen Lecture 290 Feedback Analysis using Return Ratio (3/20/02) Page 2901 LECTURE 290 FEEDBACK CIRCUIT ANALYSIS USING RETURN RATIO (READING: GHLM 599613) Objective The objective of this presentation is: 1.)

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

500V N-Channel MOSFET

500V N-Channel MOSFET 830 / 830 500V N-Channel MOSFET General Description This Power MOSFET is produced using SL semi s advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize

More information

Lecture 06: Current Mirrors

Lecture 06: Current Mirrors Lecture 06: Current Mirrors Analog IC Design Dr. Ryan Robucci Department of Computer Science and Electrical Engineering, UMBC Spring 2015 Dr. Ryan Robucci Lecture VI 1 / 26 Lowered Resistance Looking into

More information

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution ECE-342 Test 3: Nov 30, 2010 6:00-8:00, Closed Book Name : Solution All solutions must provide units as appropriate. Unless otherwise stated, assume T = 300 K. 1. (25 pts) Consider the amplifier shown

More information

400V N-Channel MOSFET GENERAL DESCRIPTION VDSS RDS(ON) ID. Features. Ordering Information 400V 0.55Ω 10.5A. This Power MOSFET is produced using

400V N-Channel MOSFET GENERAL DESCRIPTION VDSS RDS(ON) ID. Features. Ordering Information 400V 0.55Ω 10.5A. This Power MOSFET is produced using 400V N-Channel MOSFET GENERAL DESCRIPTION This Power MOSFET is produced using advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance,

More information

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters Bob Erickson and Dragan Maksimovic Colorado Power Electronics Center (CoPEC) University of Colorado, Boulder 80309-0425 http://ece-www.colorado.edu/~pwrelect

More information

ECE315 / ECE515 Lecture-2 Date:

ECE315 / ECE515 Lecture-2 Date: Lecture-2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS I-V Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cut-off Linear/Triode

More information

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A.

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A. ETUE 12 ossy onverters (Static State osses but Neglecting Switching osses) HW #2 Erickson hapter 3 Problems 6 & 7 A. General Effects Expected: (load) as (load) B. Switch and esistive osses hange M(D) Modified

More information

Teaching of Switch-Mode Power Electronics Using A Building-Block Approach, Assisted by PSpice Modeling

Teaching of Switch-Mode Power Electronics Using A Building-Block Approach, Assisted by PSpice Modeling Teaching of SwitchMode Power Electronics Using BuildingBlock pproach, ssisted by PSpice Modeling [, 2] Ned Mohan Email: mohan@ece.umn.edu Department of ECE University of Minnesota Minneapolis, MN 55455

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics System Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics System Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics System Engineering Indian Institute of Science, Bangalore Lecture - 39 Magnetic Design Good day to all of you. Today, we shall

More information

Generalized Analysis for ZCS

Generalized Analysis for ZCS Generalized Analysis for ZCS The QRC cells (ZCS and ZS) analysis, including the switching waveforms, can be generalized, and then applies to each converter. nstead of analyzing each QRC cell (L-type ZCS,

More information

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 = ECE 3050A, Spring 2004 Page Problem (20 points This problem must be attempted) The simplified schematic of a feedback amplifier is shown. Assume that all transistors are matched and g m ma/v and r ds.

More information

ECE Spring 2015 Final Exam

ECE Spring 2015 Final Exam ECE 20100 Spring 2015 Final Exam May 7, 2015 Section (circle below) Jung (1:30) 0001 Qi (12:30) 0002 Peleato (9:30) 0004 Allen (10:30) 0005 Zhu (4:30) 0006 Name PUID Instructions 1. DO NOT START UNTIL

More information

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter Lecture 380 Two-Stage Open-Loop Comparators-II (4/5/02) Page 380-1 LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH 445-461) Trip Point of an Inverter V DD In order to determine the propagation

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

More information

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3 ECE 523/42 - Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o

More information

DC & Transient Responses

DC & Transient Responses ECEN454 Digital Integrated Circuit Design DC & Transient Responses ECEN 454 DC Response DC Response: vs. for a gate Ex: Inverter When = -> = When = -> = In between, depends on transistor size and current

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

Elements of Power Electronics PART I: Bases

Elements of Power Electronics PART I: Bases Elements of Power Electronics PART I: Bases Fabrice Frébel (fabrice.frebel@ulg.ac.be) September 21 st, 2017 Goal and expectations The goal of the course is to provide a toolbox that allows you to: understand

More information

ECE 524: Reducing Capacitor Switching Transients

ECE 524: Reducing Capacitor Switching Transients ECE 54: Session 6; Page / Spring 08 ECE 54: Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive reactance

More information

1. Review of Circuit Theory Concepts

1. Review of Circuit Theory Concepts 1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements

More information

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini;

More information

Chapter 5 Objectives

Chapter 5 Objectives Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define

More information

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s

ECE 524: Lecture 15 Reducing Capacitor Switching Transients. jx s C 2 C 1. Define units: MW 1000kW MVA MW MVAr MVA. rad s ECE 54: Session 5; Page / Spring 04 ECE 54: Lecture 5 Reducing Capacitor Switching Transients Define units: MW 000kW MVA MW MVAr MVA Example : f 60Hz ω πf ω 76.99 rad s t 0 0.00000sec 60 sec Add inductive

More information

Microelectronics Part 1: Main CMOS circuits design rules

Microelectronics Part 1: Main CMOS circuits design rules GBM8320 Dispositifs Médicaux telligents Microelectronics Part 1: Main CMOS circuits design rules Mohamad Sawan et al. Laboratoire de neurotechnologies Polystim! http://www.cours.polymtl.ca/gbm8320/! med-amine.miled@polymtl.ca!

More information