Fluid Flow in Open Helical Channels

Size: px
Start display at page:

Download "Fluid Flow in Open Helical Channels"

Transcription

1 Hayden Tronnolone Supervisor: Yvonne Stokes School of Mathematical Sciences September 24, 2010

2 Much research has been conducted into flows in closed, helical pipes. Such flows have application to modelling blood flow in arteries.

3 Much research has been conducted into flows in closed, helical pipes. Such flows have application to modelling blood flow in arteries. We investigate flows in open helical channels. Focus on the application to spiral particle separators used in the mineral processing industry.

4 Problem Background Mathematical Formulation Thin-film Approximation Numerical Solution Comparison of Solution Methods C Water slides commons.wikimedia.org

5 Spiral Particle Separators 2004 Tiomin Resources INC. (TIO) All rights reserved.

6 Secondary Flow

7 Mathematical Formulation Radius A, pitch 2πP. Curvature κ = A A 2 +P 2, torsion τ = P A 2 +P 2.

8 Helical co-ordinate system - from Germano (1982). Tangent T Normal N Binormal B For an orthogonal co-ordinate system we must use N and B in place of N and B. These rotate with s.

9 The governing equations are the Navier Stokes equations for an incompressible fluid, along with the continuity equation. These equations are expressed in our helical co-ordinate system.

10 The governing equations are the Navier Stokes equations for an incompressible fluid, along with the continuity equation. These equations are expressed in our helical co-ordinate system. We seek steady-state solutions so drop time derivatives.

11 Definition A fluid flow in a helical domain is helically symmetric if it is invariant along the length of the helix.

12 Definition A fluid flow in a helical domain is helically symmetric if it is invariant along the length of the helix. We will seek helically symmetric solutions so set derivatives with respect to s to zero. This is justified by Holtham (1992).

13 Definition A fluid flow in a helical domain is helically symmetric if it is invariant along the length of the helix. We will seek helically symmetric solutions so set derivatives with respect to s to zero. This is justified by Holtham (1992). We can now consider our domain to be a cross section through the channel. This reduces the problem from three spacial dimensions to two, although we are still solving for the velocity perpendicular to the plane.

14 In addition, we non-dimensionalise the problem. This introduces the new dimensionless parameters: ɛ : the non-dimensional curvature λ : the ratio of the torsion to the curvature

15 In addition, we non-dimensionalise the problem. This introduces the new dimensionless parameters: ɛ : the non-dimensional curvature λ : the ratio of the torsion to the curvature We have the standard Reynolds and Froude numbers, R and F. We also introduce the Dean number, K = 2ɛR 2

16 We assume that ɛ and λ are sufficiently small so that 0 < ɛ, λ R 1 so we can drop terms of this order.

17 We assume that ɛ and λ are sufficiently small so that 0 < ɛ, λ R 1 so we can drop terms of this order. Finally, we transform to a Cartesian co-ordinate system in the cross section.

18 Cartesian co-ordinates

19 Equation System Continuity equation: Navier Stokes equations: v y + w z = 0 tan α = λ v u y + w u z = 2 u + R sin α F 2 v v y + w v z 1 2 Ku2 = p y + 2 v v w y + w w z = p z + 2 w R2 cos α F 2

20 Equation System Continuity equation: Navier Stokes equations: v y + w z = 0 tan α = λ v u y + w u z = 2 u + R sin α F 2 v v y + w v z 1 2 Ku2 = p y + 2 v v w y + w w z = p z + 2 w R2 cos α F 2

21 Equation System Continuity equation: Navier Stokes equations: v y + w z = 0 tan α = λ v u y + w u z = 2 u + R sin α F 2 v v y + w v z 1 2 Ku2 = p y + 2 v v w y + w w z = p z + 2 w R2 cos α F 2

22 Boundary Conditions We apply the no-slip condition along the channel walls.

23 Boundary Conditions We apply the no-slip condition along the channel walls. On the free surface, we have two boundary conditions. The kinematic boundary condition states that fluid particles on the free surface stay on the free surface. The dynamic boundary condition states that there is no stress on the free surface (we ignore the effects of surface tension).

24 Thin-film Approximation This approximation arises from the thin fluid depth compared to its width. We can reduce this to a system linear differential equations using a thin-film approximation.

25 Thin-film Approximation This approximation arises from the thin fluid depth compared to its width. We can reduce this to a system linear differential equations using a thin-film approximation. Rescale the vertical co-ordinate ž = z δ where 0 < δ 1 is some small aspect ratio.

26 Thin-film Approximation This approximation arises from the thin fluid depth compared to its width. We can reduce this to a system linear differential equations using a thin-film approximation. Rescale the vertical co-ordinate ž = z δ where 0 < δ 1 is some small aspect ratio. We substitute into the previous system and determine corresponding scales on v, w and p. We keep only terms of order O(1).

27 Thin-film Equations Continuity equation: Navier Stokes equations: ˇv y + ˇw ž = 0 2 u ž 2 + sin α = 0 ˇp y + 2ˇv ž 2 + χu2 = 0, ˇp ž cos α = 0 χ = δk 2R

28 Thin-film Equations Continuity equation: Navier Stokes equations: ˇv y + ˇw ž = 0 2 u ž 2 + sin α = 0 ˇp y + 2ˇv ž 2 + χu2 = 0, ˇp ž cos α = 0 χ = δk 2R

29 Thin-film Equations Continuity equation: Navier Stokes equations: ˇv y + ˇw ž = 0 2 u ž 2 + sin α = 0 ˇp y + 2ˇv ž 2 + χu2 = 0, ˇp ž cos α = 0 χ = δk 2R

30 Thin-film Equations Continuity equation: Navier Stokes equations: ˇv y + ˇw ž = 0 2 u ž 2 + sin α = 0 ˇp y + 2ˇv ž 2 + χu2 = 0, ˇp ž cos α = 0 χ = δk 2R

31 Let the channel shape be H(y) and the free surface be H(y) + h(y).

32 Let the channel shape be H(y) and the free surface be H(y) + h(y). The thin-film solution is then (dropping checks on variables) p(y, z) = cos α(h + h z) u(y, z) = sin α (z H)(H + 2h z) 2 v(y, z) = χ sin2 α 120 (z H){(z H)3 [(H + 2h z) (H + 4h z) + 2h 2 ] 16h 5 } cos α (z H)(H + 2h z) (H + h) 2 y

33 Numerical Solution To solve the full equations we must use a numerical solution method. We use the finite element package, Comsol Multiphysics.

34 Numerical Solution To solve the full equations we must use a numerical solution method. We use the finite element package, Comsol Multiphysics. Initially, we do not know the shape of the free surface. We use the Arbitrary Lagrangian Eulerian method. This method allows us to adjust the location of the free surface during the solution process.

35 ALE Method

36 1. Make an initial guess for the free surface shape.

37 1. Make an initial guess for the free surface shape. 2. Solve for the velocity and pressure, subject to the no-slip condition on the channel wall and dynamic condition on the free surface.

38 1. Make an initial guess for the free surface shape. 2. Solve for the velocity and pressure, subject to the no-slip condition on the channel wall and dynamic condition on the free surface. 3. Move the free surface in the direction of the normal component of velocity. If the flux is positive, the surface shifts up. If the flux is negative, the surface shifts down.

39 1. Make an initial guess for the free surface shape. 2. Solve for the velocity and pressure, subject to the no-slip condition on the channel wall and dynamic condition on the free surface. 3. Move the free surface in the direction of the normal component of velocity. If the flux is positive, the surface shifts up. If the flux is negative, the surface shifts down. 4. Repeat steps 2 and 3 until the kinematic boundary condition is satisfied to some tolerance ( free surface u n ds tolerance).

40 We can use several different measures to assess the accuracy of the solution. The flux through the free surface. The area of the flow domain.

41 We can use several different measures to assess the accuracy of the solution. The flux through the free surface. The area of the flow domain. We solve for a rectangular channel shape.

42 Streamlines of Numerical Solution z (thin film) y R = 20, F = 0.2, K = 375

43 We have error in area The absolute value of the flux through the free surface is approximately The flux down the channel is 0.051, which agrees with previous calculations (Stokes, Wilson & Duffy 2004).

44 Comparison of Solution Methods z (thin film) y Navier Stokes model (numerical solution) Thin-film approximation ( δ = 0.1 )

45 The Navier Stokes model gives the flux down the channel as 0.051, while the thin-film approximation gives

46 Conclusions Fluid flows in open, helical channels have been investigated. Full numerical solutions have been found which agree with the literature.

47 Conclusions Fluid flows in open, helical channels have been investigated. Full numerical solutions have been found which agree with the literature. A thin-film approximation has also been found which matches the numerical solution closely, except at the channel boundaries.

48 Conclusions Fluid flows in open, helical channels have been investigated. Full numerical solutions have been found which agree with the literature. A thin-film approximation has also been found which matches the numerical solution closely, except at the channel boundaries. Future work will consider investigating this agreement under different parameters. Solutions under different channel geometries could also be explored.

Helical Coil Flow: a Case Study

Helical Coil Flow: a Case Study Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Helical Coil Flow: a Case Study Marco Cozzini Renewable Energies and Environmental Technologies (REET) Research Unit, Fondazione Bruno Kessler

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

Microscopic Momentum Balance Equation (Navier-Stokes)

Microscopic Momentum Balance Equation (Navier-Stokes) CM3110 Transport I Part I: Fluid Mechanics Microscopic Momentum Balance Equation (Navier-Stokes) Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Microscopic

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Thomas P. Forbes and Jason G. Kralj National Institute of Standards and Technology,

More information

Mixing in Flow Devices:

Mixing in Flow Devices: Mixing in Flow Devices: Spiral microchannels in two and three dimensions Prepared by Ha Dinh Mentor: Professor Emeritus Bruce A. Finlayson Department of Chemical Engineering University of Washington June

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

NUMERICAL INVESTIGATION OF CURVATURE AND TORSION EFFECTS ON WATER FLOW FIELD IN HELICAL RECTANGULAR CHANNELS

NUMERICAL INVESTIGATION OF CURVATURE AND TORSION EFFECTS ON WATER FLOW FIELD IN HELICAL RECTANGULAR CHANNELS Journal of Engineering Science and Technology Vol. 10, No. 7 (2015) 827-840 School of Engineering, Taylor s University NUMERICAL INVESTIGATION OF CURVATURE AND TORSION EFFECTS ON WATER FLOW FIELD IN HELICAL

More information

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used.

Candidates must show on each answer book the type of calculator used. Only calculators permitted under UEA Regulations may be used. UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2011 2012 FLUID DYNAMICS MTH-3D41 Time allowed: 3 hours Attempt FIVE questions. Candidates must show on each answer book the type

More information

Entropic Evaluation of Dean Flow Micromixers

Entropic Evaluation of Dean Flow Micromixers COMSOL Conference, Boston, 2013 Brian Vyhnalek, Petru S. Fodor and Miron Kaufman Physics Department Cleveland State University Entropic Evaluation of Dean Flow Micromixers ABSTRACT We study the use of

More information

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics For Friday, October 26 th Start reading the handout entitled Notes on finite-volume methods. Review Chapter 7 on Dimensional Analysis

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

STEADY VISCOUS FLOW THROUGH A VENTURI TUBE

STEADY VISCOUS FLOW THROUGH A VENTURI TUBE CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 12, Number 2, Summer 2004 STEADY VISCOUS FLOW THROUGH A VENTURI TUBE K. B. RANGER ABSTRACT. Steady viscous flow through an axisymmetric convergent-divergent

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

Fundamentals of Fluid Dynamics: Elementary Viscous Flow Fundamentals of Fluid Dynamics: Elementary Viscous Flow Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI bluebox.ippt.pan.pl/ tzielins/ Institute of Fundamental Technological Research

More information

This is a repository copy of Internal twist drill coolant channel modelling using computational fluid dynamics.

This is a repository copy of Internal twist drill coolant channel modelling using computational fluid dynamics. This is a repository copy of Internal twist drill coolant channel modelling using computational fluid dynamics. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/89798/ Version:

More information

Just what is curvature, anyway?

Just what is curvature, anyway? MATH 2401 - Harrell Just what is curvature, anyway? Lecture 5 Copyright 2007 by Evans M. Harrell II. The osculating plane Bits of curve have a best plane. stickies on wire. Each stickie contains T and

More information

Any correspondence concerning this service should be sent to The Strathprints Administrator:

Any correspondence concerning this service should be sent to The Strathprints Administrator: Sullivan, J.M. and Wilson, S.K. and Duffy, B.R. 2008 Air-blown rivulet flow of a perfectly wetting fluid on an inclined substrate. In: Progress in Industrial Mathematics at ECMI 2006. Springer, pp. 774-778.

More information

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani* 1 1 Department of Industrial Engineering - University of Parma Parco Area delle Scienze 181/A I-43124 Parma,

More information

Boundary Layers. Lecture 2 by Basile Gallet. 2i(1+i) The solution to this equation with the boundary conditions A(0) = U and B(0) = 0 is

Boundary Layers. Lecture 2 by Basile Gallet. 2i(1+i) The solution to this equation with the boundary conditions A(0) = U and B(0) = 0 is Boundary Layers Lecture 2 by Basile Gallet continued from lecture 1 This leads to a differential equation in Z Z (A ib) + (A ib)[ C + Uy Uy 2i(1+i) ] = 0 with C = 2. The solution to this equation with

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

More information

6. Basic basic equations I ( )

6. Basic basic equations I ( ) 6. Basic basic equations I (4.2-4.4) Steady and uniform flows, streamline, streamtube One-, two-, and three-dimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity

More information

Magnetohydrodynamic Flow of a Liquid Metal in a Curved Circular Duct subject to the Effect of an External Magnetic Field

Magnetohydrodynamic Flow of a Liquid Metal in a Curved Circular Duct subject to the Effect of an External Magnetic Field Paper 85 Civil-Comp Press, 2012 Proceedings of the Eighth International Conference on Engineering Computational Technology, B.H.V. Topping, (Editor), Civil-Comp Press, Stirlingshire, Scotland Magnetohydrodynamic

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes Luca Cattani Department of Industrial Engineering - University of Parma Excerpt from the Proceedings of the 2012 COMSOL

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

LECTURE NOTES - III. Prof. Dr. Atıl BULU

LECTURE NOTES - III. Prof. Dr. Atıl BULU LECTURE NOTES - III «FLUID MECHANICS» Istanbul Technical University College of Civil Engineering Civil Engineering Department Hydraulics Division CHAPTER KINEMATICS OF FLUIDS.. FLUID IN MOTION Fluid motion

More information

UNIVERSITY OF EAST ANGLIA

UNIVERSITY OF EAST ANGLIA UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2007 2008 FLUIDS DYNAMICS WITH ADVANCED TOPICS Time allowed: 3 hours Attempt question ONE and FOUR other questions. Candidates must

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

Magnetic Drug Targeting in Cancer Therapy

Magnetic Drug Targeting in Cancer Therapy Magnetic Drug Targeting in Cancer Therapy SOLVED WITH COMSOL MULTIPHYSICS 3.5a COPYRIGHT 2008. All right reserved. No part of this documentation may be photocopied or reproduced in any form without prior

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 15 Conservation Equations in Fluid Flow Part III Good afternoon. I welcome you all

More information

e 2 = e 1 = e 3 = v 1 (v 2 v 3 ) = det(v 1, v 2, v 3 ).

e 2 = e 1 = e 3 = v 1 (v 2 v 3 ) = det(v 1, v 2, v 3 ). 3. Frames In 3D space, a sequence of 3 linearly independent vectors v 1, v 2, v 3 is called a frame, since it gives a coordinate system (a frame of reference). Any vector v can be written as a linear combination

More information

Flow Focusing Droplet Generation Using Linear Vibration

Flow Focusing Droplet Generation Using Linear Vibration Flow Focusing Droplet Generation Using Linear Vibration A. Salari, C. Dalton Department of Electrical & Computer Engineering, University of Calgary, Calgary, AB, Canada Abstract: Flow focusing microchannels

More information

Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass

Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Vladimír Prokop, Karel Kozel Czech Technical University Faculty of Mechanical Engineering Department of Technical Mathematics Vladimír

More information

PF BC. When is it Energetically Favourable for a Rivulet of Perfectly Wetting Fluid to Split?

PF BC. When is it Energetically Favourable for a Rivulet of Perfectly Wetting Fluid to Split? PF 05-0109-BC When is it Energetically Favourable for a Rivulet of Perfectly Wetting Fluid to Split? S. K. Wilson 1 and B. R. Duffy 2 Department of Mathematics, University of Strathclyde, Livingstone Tower,

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes.

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. Section 10.3 Arclength and Curvature (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. MATH 127 (Section 10.3) Arclength and Curvature The University

More information

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations AA210A Fundamentals of Compressible Flow Chapter 5 -The conservation equations 1 5.1 Leibniz rule for differentiation of integrals Differentiation under the integral sign. According to the fundamental

More information

Course Syllabus: Continuum Mechanics - ME 212A

Course Syllabus: Continuum Mechanics - ME 212A Course Syllabus: Continuum Mechanics - ME 212A Division Course Number Course Title Academic Semester Physical Science and Engineering Division ME 212A Continuum Mechanics Fall Academic Year 2017/2018 Semester

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Experimental and Numerical comparison between the performance of Helical cone coils and ordinary helical coils used as dehumidifier for humidification dehumidification in desalination units Abo Elazm M.M.

More information

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass),

MOMENTUM PRINCIPLE. Review: Last time, we derived the Reynolds Transport Theorem: Chapter 6. where B is any extensive property (proportional to mass), Chapter 6 MOMENTUM PRINCIPLE Review: Last time, we derived the Reynolds Transport Theorem: where B is any extensive property (proportional to mass), and b is the corresponding intensive property (B / m

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation

Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation Available online at www.sciencedirect.com Energy Procedia 17 (2012 ) 791 800 2012 International Conference on Future Electrical Power and Energy Systems Fluid Flow and Heat Transfer Characteristics in

More information

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if

Unit Speed Curves. Recall that a curve Α is said to be a unit speed curve if Unit Speed Curves Recall that a curve Α is said to be a unit speed curve if The reason that we like unit speed curves that the parameter t is equal to arc length; i.e. the value of t tells us how far along

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Lecture 3: The Navier-Stokes Equations: Topological aspects

Lecture 3: The Navier-Stokes Equations: Topological aspects Lecture 3: The Navier-Stokes Equations: Topological aspects September 9, 2015 1 Goal Topology is the branch of math wich studies shape-changing objects; objects which can transform one into another without

More information

Multiphysics Analysis of Electromagnetic Flow Valve

Multiphysics Analysis of Electromagnetic Flow Valve Multiphysics Analysis of Electromagnetic Flow Valve Jeffrey S. Crompton *, Kyle C. Koppenhoefer, and Sergei Yushanov AltaSim Technologies, LLC *Corresponding author: 13 E. Wilson Bridge Road, Suite 14,

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

Chapter 3: Newtonian Fluids

Chapter 3: Newtonian Fluids Chapter 3: Newtonian Fluids CM4650 Michigan Tech Navier-Stokes Equation v vv p t 2 v g 1 Chapter 3: Newtonian Fluid TWO GOALS Derive governing equations (mass and momentum balances Solve governing equations

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Getting started: CFD notation

Getting started: CFD notation PDE of p-th order Getting started: CFD notation f ( u,x, t, u x 1,..., u x n, u, 2 u x 1 x 2,..., p u p ) = 0 scalar unknowns u = u(x, t), x R n, t R, n = 1,2,3 vector unknowns v = v(x, t), v R m, m =

More information

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL

THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL THE EFFECT OF SLIP CONDITION ON UNSTEADY MHD OSCILLATORY FLOW OF A VISCOUS FLUID IN A PLANER CHANNEL A. MEHMOOD, A. ALI Department of Mathematics Quaid-i-Azam University 4530, Islamabad 44000 Pakistan

More information

Thin flow over a sphere

Thin flow over a sphere 1 University of Waterloo, Faculty of Mathematics, Waterloo, Canada 2 Ryerson University, Department of Mathematics, Toronto, Canada IMA8 2016, June 12-16, Bad Honnef, Germany Problem description Related

More information

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Exercise 5: Exact Solutions to the Navier-Stokes Equations I Fluid Mechanics, SG4, HT009 September 5, 009 Exercise 5: Exact Solutions to the Navier-Stokes Equations I Example : Plane Couette Flow Consider the flow of a viscous Newtonian fluid between two parallel

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Curves - A lengthy story

Curves - A lengthy story MATH 2401 - Harrell Curves - A lengthy story Lecture 4 Copyright 2007 by Evans M. Harrell II. Reminder What a lonely archive! Who in the cast of characters might show up on the test? Curves r(t), velocity

More information

MODELING THREE-DIMENSIONAL NON-NEWTONIAN FLOWS IN SINGLE- SCREW EXTRUDERS

MODELING THREE-DIMENSIONAL NON-NEWTONIAN FLOWS IN SINGLE- SCREW EXTRUDERS MODELING THREE-DIMENSIONAL NON-NEWTONIAN FLOWS IN SINGLE- SCREW EXTRUDERS Christian Marschik Wolfgang Roland Bernhard Löw-Baselli Jürgen Miethlinger Johannes Kepler University Institute of Polymer Extrusion

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Lecture D4 - Intrinsic Coordinates

Lecture D4 - Intrinsic Coordinates J. Peraire 16.07 Dynamics Fall 2004 Version 1.1 Lecture D4 - Intrinsic Coordinates In lecture D2 we introduced the position, velocity and acceleration vectors and referred them to a fixed cartesian coordinate

More information

Homework #4 Solution. μ 1. μ 2

Homework #4 Solution. μ 1. μ 2 Homework #4 Solution 4.20 in Middleman We have two viscous liquids that are immiscible (e.g. water and oil), layered between two solid surfaces, where the top boundary is translating: y = B y = kb y =

More information

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Detailed Outline, M E 521: Foundations of Fluid Mechanics I Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Second-order tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Viscous Fluids. Amanda Meier. December 14th, 2011

Viscous Fluids. Amanda Meier. December 14th, 2011 Viscous Fluids Amanda Meier December 14th, 2011 Abstract Fluids are represented by continuous media described by mass density, velocity and pressure. An Eulerian description of uids focuses on the transport

More information

Boundary Conditions in Fluid Mechanics

Boundary Conditions in Fluid Mechanics Boundary Conditions in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University The governing equations for the velocity and pressure fields are partial

More information

Assignment 2 Continuous Matter 4335/8191(B)

Assignment 2 Continuous Matter 4335/8191(B) Assignment 2 Continuous Matter 4335/8191(B Tyler Shendruk October 29, 2012 1 Problem 1 Given the stream function ψ = x x 3 y/2, determine if mass is conserved the flow is irrotational and the velocity

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

Chapter 1: Basic Concepts

Chapter 1: Basic Concepts What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms

More information

d v 2 v = d v d t i n where "in" and "rot" denote the inertial (absolute) and rotating frames. Equation of motion F =

d v 2 v = d v d t i n where in and rot denote the inertial (absolute) and rotating frames. Equation of motion F = Governing equations of fluid dynamics under the influence of Earth rotation (Navier-Stokes Equations in rotating frame) Recap: From kinematic consideration, d v i n d t i n = d v rot d t r o t 2 v rot

More information

1. Introduction, tensors, kinematics

1. Introduction, tensors, kinematics 1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and

More information

FLOWS IN LIQUID FOAMS

FLOWS IN LIQUID FOAMS FLOWS IN LIQUID FOAMS A finite element approach A. SAUGEY, E. JANIAUD, W. DRENCKHAN, S. HUTZLER, D. WEAIRE Physics Department,, TRINITY COLLEGE DUBLIN Facing a problem of fluid flow in a physical system,

More information

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering

MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring Dr. Jason Roney Mechanical and Aerospace Engineering MAE 3130: Fluid Mechanics Lecture 7: Differential Analysis/Part 1 Spring 2003 Dr. Jason Roney Mechanical and Aerospace Engineering Outline Introduction Kinematics Review Conservation of Mass Stream Function

More information

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods

Homework 4 in 5C1212; Part A: Incompressible Navier- Stokes, Finite Volume Methods Homework 4 in 5C11; Part A: Incompressible Navier- Stokes, Finite Volume Methods Consider the incompressible Navier Stokes in two dimensions u x + v y = 0 u t + (u ) x + (uv) y + p x = 1 Re u + f (1) v

More information

Study of rotation of ellipsoidal particles in combined simple shear flow and magnetic fields

Study of rotation of ellipsoidal particles in combined simple shear flow and magnetic fields Study of rotation of ellipsoidal particles in combined simple shear flow and magnetic fields Jie Zhang 1, Cheng Wang 1 1. Department of Mechanical and Aerospace Engineering, Missouri University of Science

More information

Injection Molding. Figure 1: Principles of injection molding. Injection molding cycle: part solidifies. Open Mold Eject Part Close Mold

Injection Molding. Figure 1: Principles of injection molding. Injection molding cycle: part solidifies. Open Mold Eject Part Close Mold Injection Molding Figure 1: Principles of injection molding. Injection molding cycle: Extruder Pressure Extrude Mold Inject Pack Solidify Open Mold Eject Part Close Mold gate solidifies part solidifies

More information

Interpreting Differential Equations of Transport Phenomena

Interpreting Differential Equations of Transport Phenomena Interpreting Differential Equations of Transport Phenomena There are a number of techniques generally useful in interpreting and simplifying the mathematical description of physical problems. Here we introduce

More information

AN OVERVIEW OF IMPELLERS, VELOCITY PROFILES AND REACTOR DESIGN

AN OVERVIEW OF IMPELLERS, VELOCITY PROFILES AND REACTOR DESIGN AN OVERVIEW OF IMPELLERS, VELOCITY PROFILES AND REACTOR DESIGN Instructor: Gurmeet Singh (Department Manager of Polymer and Processing Department IOCL R&D center, Faridabad) 1 Presented by: Pranay. K.

More information

ρ Du i Dt = p x i together with the continuity equation = 0, x i

ρ Du i Dt = p x i together with the continuity equation = 0, x i 1 DIMENSIONAL ANALYSIS AND SCALING Observation 1: Consider the flow past a sphere: U a y x ρ, µ Figure 1: Flow past a sphere. Far away from the sphere of radius a, the fluid has a uniform velocity, u =

More information

2 Law of conservation of energy

2 Law of conservation of energy 1 Newtonian viscous Fluid 1 Newtonian fluid For a Newtonian we already have shown that σ ij = pδ ij + λd k,k δ ij + 2µD ij where λ and µ are called viscosity coefficient. For a fluid under rigid body motion

More information

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226 INDEX 363 A Absolute differentiation 120 Absolute scalar field 43 Absolute tensor 45,46,47,48 Acceleration 121, 190, 192 Action integral 198 Addition of systems 6, 51 Addition of tensors 6, 51 Adherence

More information

Numerical Simulation of Core- Annular Flow in a Curved Pipe

Numerical Simulation of Core- Annular Flow in a Curved Pipe Numerical Simulation of Core- Annular Flow in a Curved Pipe Simulation of two phase flow with OpenFOAM Report Number:2625(MEAH:277) Master of Science Thesis Process and Energy Numerical Simulation of

More information

The dependence of the cross-sectional shape on the hydraulic resistance of microchannels

The dependence of the cross-sectional shape on the hydraulic resistance of microchannels 3-weeks course report, s0973 The dependence of the cross-sectional shape on the hydraulic resistance of microchannels Hatim Azzouz a Supervisor: Niels Asger Mortensen and Henrik Bruus MIC Department of

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES Today s Objectives: Students will be able to: 1. Apply the equation of motion using normal and tangential coordinates. In-Class Activities: Check

More information

Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor

Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor Computational and Experimental Studies of Fluid flow and Heat Transfer in a Calandria Based Reactor SD Ravi 1, NKS Rajan 2 and PS Kulkarni 3 1 Dept. of Aerospace Engg., IISc, Bangalore, India. ravi@cgpl.iisc.ernet.in

More information

1. Fluid Dynamics Around Airfoils

1. Fluid Dynamics Around Airfoils 1. Fluid Dynamics Around Airfoils Two-dimensional flow around a streamlined shape Foces on an airfoil Distribution of pressue coefficient over an airfoil The variation of the lift coefficient with the

More information

Part IB Fluid Dynamics

Part IB Fluid Dynamics Part IB Fluid Dynamics Based on lectures by P. F. Linden Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines. 4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,

More information

Flow past a slippery cylinder

Flow past a slippery cylinder Faculty of Mathematics, University of Waterloo, Canada EFMC12, September 9-13, 2018, Vienna, Austria Problem description and background Conformal mapping Boundary conditions Rescaled equations Asymptotic

More information

Lagrangian acceleration in confined 2d turbulent flow

Lagrangian acceleration in confined 2d turbulent flow Lagrangian acceleration in confined 2d turbulent flow Kai Schneider 1 1 Benjamin Kadoch, Wouter Bos & Marie Farge 3 1 CMI, Université Aix-Marseille, France 2 LMFA, Ecole Centrale, Lyon, France 3 LMD, Ecole

More information

F11AE1 1. C = ρν r r. r u z r

F11AE1 1. C = ρν r r. r u z r F11AE1 1 Question 1 20 Marks) Consider an infinite horizontal pipe with circular cross-section of radius a, whose centre line is aligned along the z-axis; see Figure 1. Assume no-slip boundary conditions

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Introduction to immersed boundary method

Introduction to immersed boundary method Introduction to immersed boundary method Ming-Chih Lai mclai@math.nctu.edu.tw Department of Applied Mathematics Center of Mathematical Modeling and Scientific Computing National Chiao Tung University 1001,

More information

Transport by convection. Coupling convection-diffusion

Transport by convection. Coupling convection-diffusion Transport by convection. Coupling convection-diffusion 24 mars 2017 1 When can we neglect diffusion? When the Peclet number is not very small we cannot ignore the convection term in the transport equation.

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out by the vector-valued function rt vector T t r r t t is the unit tangent vector to the curve C. Now define N

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

ASTR 320: Solutions to Problem Set 2

ASTR 320: Solutions to Problem Set 2 ASTR 320: Solutions to Problem Set 2 Problem 1: Streamlines A streamline is defined as a curve that is instantaneously tangent to the velocity vector of a flow. Streamlines show the direction a massless

More information

7. Basics of Turbulent Flow Figure 1.

7. Basics of Turbulent Flow Figure 1. 1 7. Basics of Turbulent Flow Whether a flow is laminar or turbulent depends of the relative importance of fluid friction (viscosity) and flow inertia. The ratio of inertial to viscous forces is the Reynolds

More information

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 1 CHAPTER FOUR The Detailed Model In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 3, one would have to build several heat exchanger prototypes, and then

More information