This last statement about dimension is only one part of a more fundamental fact.

Size: px
Start display at page:

Download "This last statement about dimension is only one part of a more fundamental fact."

Transcription

1 Chapter 4 Isomorphism and Coordinates Recall that a vector space isomorphism is a linear map that is both one-to-one and onto. Such a map preserves every aspect of the vector space structure. In other words, if L : V W is an isomorphism, then any true statement you can say about V using abstract vector notation, vector addition, and scalar multiplication, will transfertoatruestatement about W when L is applied to the entire statement. We make this more precise with some examples. Example. If L : V W is an isomorphism, then the set {v 1,...,v n } is linearly independent in V if and only if the set {L(v 1 ),...,L(v n )} is linearly independent in W. The dimension of the subspace spanned by the first set equals the dimension of the subset spanned by the second set. In particular, the dimension of V equals that of W. This last statement about dimension is only one part of a more fundamental fact. Theorem Suppose V is a finite-dimensional vector space. Then V is isomorphic to W if and only if dim V = dim W. Proof. Suppose that V and W are isomorphic, and let L : V W be an isomorphism. Then L is one-to-one, so dim ker L = 0. Since L is onto, we also have dim iml = dim W. Plugging these into the rank-nullity theorem for L shows then that dim V = dim W. Now suppose that dim V = dim W = n,andchoosebases{v 1,...,v n } and {w 1,...,w n } for V and W, respectively. Foranyvectorv in V, wewritev = a 1 v a n v n,and define L(v) =L(a 1 v a n v n )=a 1 w a n w n. We claim that L is linear, one-to-one, and onto. (Proof omitted.) In particular, and 2 dimensional real vector space is necessarily isomorphic to R 2,for example. This helps to explain why so many problems in these other spaces ended up reducing to solving systems of equations just like those we saw in R n. Looking at the proof, we see that isomorphisms are constructed by sending bases to bases. In particular, there is a different isomorphism V W for each choice of basis for V and for W. 27

2 28 CHAPTER 4. ISOMORPHISM AND COORDINATES One special case of this is when we look at isomorphisms V V. Suchanisomorphism is called a change of coordinates. If S = {v 1,...,v n } is a basis for V, wesaythen-tuple (a 1,...,a n ) is the coordinate vector of v with respect to S if v = a 1 v + + a n v n.wedenotethisvectoras[v] S. Example. Find the coordinates for (1, 3) with respect to the basis S = {(1, 1), ( 1, 1)}. We set (1, 3) =a(1, 1)+b( 1, 1), whichleadstotheequationsa b = 1 and a + b = 3. This system has solution a = 2, b = 1. Thus (1, 3) =2(1, 1)+1( 1, 1), so that [(1, 3)] S = (2, 1). Example. Find the coordinates for t 2 + 3t + 2withrespecttothebasisS = {t 2 + 1, t + 1, t 1}. Wesett 2 + 3t + 2 = a(t 2 + 1)+b(t + 1)+c(t 1). Collectingliketermsgives t 2 + 3t + 2 = at 2 +(b + c)t +(a + b c). Thisleadstothesystemofequations a = 1 b + c = 3 a + b c = 2 The solution is a = 1, b = 2, c = 1. Thus we have t 2 + 3t + 2 = 1(t 2 + 1)+2(t + 1)+ 1(t 1), sothat[t 2 + 3t + 2] S =(1, 2, 1). Note that for any vector v in an n dimensional vector space V and for any basis S for V, the coordinate vector [v] S is an element of R n. Proposition For any basis S for an n dimensional vector space V, thecorrespondence v [v] S is an isomorphism from V to R n. Corollary Every n dimensional vector space over a R is isomorphic to R n.

3 Chapter 5 Linear Maps R n R m Since every finite-dimensional vector space over R is isomorphic to R n, any problem we have in such a vector space that can be expressed entirely in terms of vector operations can be tranferred to one in R n. Since our ultimate goal is to understand linear maps V W, wewillfocusoureffortsonunderstandinglinearmapsr n R m,without worrying about expressing things in abstract terms. Remark. Unlike any previous section, we focus specifically on R n in this chapter. To emphasize the distinction, we use x to denote an arbitrary vector in R n. 5.1 Linear maps from R n to R We ve already seen above that the linear maps R R are precisely those of the form L(x) =ax for some real number a. For the next step, we allow our domain to have multiple dimensions, but insist that our target space be R. Wewilldiscoverthatlinear maps L : R n R are already familiar to us. Theorem If L : R n R is a linear map, then there is some vector m such that L(x) =a x. Proof. For j = 1,..., n, wesete j equal to the jth standard basis vector in R n. Set a = (a 1,...,a n ),whereeacha j = L(e j ),andconsideranarbitraryvectorx =(x 1,...,x n ) in R n.wecompute L(x) =L(x 1 e x n e n )=x 1 L(e 1 )+ + x n L(e n )=x 1 a x n a n = x a. Remark. Wait, didn t we say that we weren t going to think about dot products? Then we would be studying inner product spaces rather than vector spaces! Yes, and that s still true. Within a given vector space, we will not be performing any dot products, and so in particular will never speak of length or angle. And in factourdefinitionof linear map did not use the notion of dot product; it used only vector addition and scalar multiplication. What we ve shown is that every linear map from R n to R has the form f (x 1,,...,x n )=a 1 x a n x n 29

4 30 CHAPTER 5. LINEAR MAPS R N R M for some fixed real numbers a 1,...,a n. It just so happens that we have a name for this type of operation, and we call it the dot product, but this is just a convenient way to explain what linear maps do; we re not studying the algebraic or geometric properties of the dot product in R n. 5.2 Linear Maps R n R m One of the first things you learn in vector calculus is that functions with multiple outputs can be thought of as a list of functions with one output. Thus given an arbitrary function f : R 2 R 3,say,wethinkofitas f (x, y) =(f 1 (x, y), f 2 (x, y), f 3 (x, y)), whereeach component function f j is a map R 2 R 1. We thus expect to find that linear maps from R n to R m are those whose component functions are linear maps from R n to R, which we saw in the last section are just dot products. This is the content of the following. Theorem The function L: R n R m is linear if and only if each component function L j : R n R is linear. Proof. Omitted. Thus any linear map R n R m is built up from a bunch of dot products in each component. In the next section we will make use of this fact to come up with a nice way to present linear maps. 5.3 Matrices There are many ways to write vectors in R n.forexample,thesamevectorinr 3 can be represented as 3i + 2j 4k, 3, 2, 4, (3, 2, 4), [3, 2, 4], We will focus on these last two for the time being. In particular, whenever we have a dot product x y of two vectors x and y (in that order), we will write the first as a row in square brackets and the second as a column in square brackets. Thus we have, for example, [ 1 2 ] = = 4. Note that we are also avoiding commas in the row vector.

5 5.3. MATRICES 31 Now suppose L is an arbitrary linear map from R n to R. Thengiveninputvectorx, L(x) is the dot product a x for some fixed vector a. Thuswemaywrite x 1 x n x 1 L. = [ ] a 1 a 2 a n.. Now suppose L is a linear map from R n to R m,andtheith component functions is the dot product with a i.thewecanwrite x 1 a 11 a 12 a 1n x 1 a 1 x L. = a 21 a 22 a 2n.... = a 2 x.. x n a m1 a m2 a mn x n a m x Thus we can think of any linear map from R n to R m as multiplication by a matrix, assuming we define multiplication in exactly this way. Definition If A =(a ij ) is an m n matrix and x is an n 1columnvector,the product Ax is defined to be the m 1 column vector whose ith entry is the dot product of the ith row of A with x. Thus we are led to the fortuitous observation that every linear map L : R n R m has the form L(x) =Ax for some m n matrix A. ThuslinearmapsfromR to itself are just multiplication by a 1 1matrix;i.e.,multiplicationbyaconstant.Thisagreeswith what we saw earlier. We now note an important fact about compositions of linear maps. Theorem Suppose L : R n R m and T : R m R p are linear maps. Then the composition T L : R n R p is a linear map. Suppose L is represented by the m n matrix A and T is represented by the p m matrix B. BecauseT L is also linear, it is represented by some p n matrix C. Wenow show how to construct C from A and B. We begin with a motivating example. Suppose L maps from R 2 to R 2,asdoesT, and suppose L dots with a =(a 1, a 2, ) and b =(b 1, b 2 ) while T dots with c =(c 1, c 2 ) and d =(d 1, d 2 ).Then T L(x) =T ([ ]) a x = T b x ([ ]) a1 x 1 + a 2 = b 1 x 1 + b 2 [ c1 a = 1 + c 2 b 1 c 1 a 2 + c 2 b 2 d 1 a 1 + d 2 b 1 d 1 a 2 + d 2 b 2 x n [ ] c1 (a 1 x 1 + a 2 )+c 2 (b 1 x 1 + b 2 ) d 1 (a 1 x 1 + a 2 )+d 2 (b 1 x 1 + b 2 ) ][ x1 ]

6 32 CHAPTER 5. LINEAR MAPS R N R M [ ] [ ] a1 a Thus if L is multiplication by A = 2 c1 c and T is multiplication by B = 2, b 1 b 2 d 1 d 2 then T L is multiplication by C =(c ij ),wherec ij is the dot product of the ith row of B with the jth row of A. Inotherwords,wehave [ ][ ] [ ] c1 c 2 a1 a 2 c1 a = 1 + c 2 b 1 c 1 a 2 + c 2 b 2. d 1 d 2 b 1 b 2 d 1 a 1 + d 2 b 1 d 1 a 2 + d 2 b 2 This may seem a strange way to define the product of two matrices, but since we re thinking of matrices as representing linear maps, it only makes sense that the product of two should be the matrix of the composition, so the definition is essentially forced upon us. Remark. According to this definition, we cannot just multiply any two matrices. Their sizes have to match up in a nice way. In particular, for the dot products to make sense in computing AB, the rows of A have to have just as many elements as the columns of B. In short, the product AB is defined as long as A is m p and B is p n, inwhichcase the product is m n. Proposition Matrix multiplication is associative when it is defined. In other words, for any matrices A, B, and C we have A(BC) =(AB)C, as long as all the individual products in this identity are defined. Proof. It is straightforward, though incredibly tedious, to prove this directly using our algebraic definition of matrix multiplication. What is far easier, however, is simply to note that function composition is always associative, when it s defined. The result follows. There are some particularly special linear maps: the zero map and the identity. It is not to hard to see that the zero map R n R m can be represented as multiplication by the zero matrix 0 m n.theidentitymapr n R m is represented by the aptly named identity matrix I m n,whichhas1sonitsmaindiagonaland0selsewhere. Notethatit follows that IA = AI = A for approriately sized I, whilea0 = 0A = 0, forappropriatelysized 0.

MATH Linear Algebra

MATH Linear Algebra MATH 304 - Linear Algebra In the previous note we learned an important algorithm to produce orthogonal sequences of vectors called the Gramm-Schmidt orthogonalization process. Gramm-Schmidt orthogonalization

More information

Mathematics Department Stanford University Math 61CM/DM Vector spaces and linear maps

Mathematics Department Stanford University Math 61CM/DM Vector spaces and linear maps Mathematics Department Stanford University Math 61CM/DM Vector spaces and linear maps We start with the definition of a vector space; you can find this in Section A.8 of the text (over R, but it works

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Math 108A: August 21, 2008 John Douglas Moore Our goal in these notes is to explain a few facts regarding linear systems of equations not included in the first few chapters

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

Chapter 3. Abstract Vector Spaces. 3.1 The Definition

Chapter 3. Abstract Vector Spaces. 3.1 The Definition Chapter 3 Abstract Vector Spaces 3.1 The Definition Let s look back carefully at what we have done. As mentioned in thebeginning,theonly algebraic or arithmetic operations we have performed in R n or C

More information

Chapter 2 Linear Transformations

Chapter 2 Linear Transformations Chapter 2 Linear Transformations Linear Transformations Loosely speaking, a linear transformation is a function from one vector space to another that preserves the vector space operations. Let us be more

More information

Solutions to Final Exam

Solutions to Final Exam Solutions to Final Exam. Let A be a 3 5 matrix. Let b be a nonzero 5-vector. Assume that the nullity of A is. (a) What is the rank of A? 3 (b) Are the rows of A linearly independent? (c) Are the columns

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

Lecture 3: Linear Algebra Review, Part II

Lecture 3: Linear Algebra Review, Part II Lecture 3: Linear Algebra Review, Part II Brian Borchers January 4, Linear Independence Definition The vectors v, v,..., v n are linearly independent if the system of equations c v + c v +...+ c n v n

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

There are two things that are particularly nice about the first basis

There are two things that are particularly nice about the first basis Orthogonality and the Gram-Schmidt Process In Chapter 4, we spent a great deal of time studying the problem of finding a basis for a vector space We know that a basis for a vector space can potentially

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

Usually, when we first formulate a problem in mathematics, we use the most familiar

Usually, when we first formulate a problem in mathematics, we use the most familiar Change of basis Usually, when we first formulate a problem in mathematics, we use the most familiar coordinates. In R, this means using the Cartesian coordinates x, y, and z. In vector terms, this is equivalent

More information

12. Perturbed Matrices

12. Perturbed Matrices MAT334 : Applied Linear Algebra Mike Newman, winter 208 2. Perturbed Matrices motivation We want to solve a system Ax = b in a context where A and b are not known exactly. There might be experimental errors,

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date May 9, 29 2 Contents 1 Motivation for the course 5 2 Euclidean n dimensional Space 7 2.1 Definition of n Dimensional Euclidean Space...........

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3 Answers in blue. If you have questions or spot an error, let me know. 3 4. Find all matrices that commute with A =. 4 3 a b If we set B = and set AB = BA, we see that 3a + 4b = 3a 4c, 4a + 3b = 3b 4d,

More information

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via.

Matrix Arithmetic. a 11 a. A + B = + a m1 a mn. + b. a 11 + b 11 a 1n + b 1n = a m1. b m1 b mn. and scalar multiplication for matrices via. Matrix Arithmetic There is an arithmetic for matrices that can be viewed as extending the arithmetic we have developed for vectors to the more general setting of rectangular arrays: if A and B are m n

More information

A PRIMER ON SESQUILINEAR FORMS

A PRIMER ON SESQUILINEAR FORMS A PRIMER ON SESQUILINEAR FORMS BRIAN OSSERMAN This is an alternative presentation of most of the material from 8., 8.2, 8.3, 8.4, 8.5 and 8.8 of Artin s book. Any terminology (such as sesquilinear form

More information

1.8 Dual Spaces (non-examinable)

1.8 Dual Spaces (non-examinable) 2 Theorem 1715 is just a restatement in terms of linear morphisms of a fact that you might have come across before: every m n matrix can be row-reduced to reduced echelon form using row operations Moreover,

More information

Systems of Linear Equations

Systems of Linear Equations LECTURE 6 Systems of Linear Equations You may recall that in Math 303, matrices were first introduced as a means of encapsulating the essential data underlying a system of linear equations; that is to

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

ENGINEERING MATH 1 Fall 2009 VECTOR SPACES

ENGINEERING MATH 1 Fall 2009 VECTOR SPACES ENGINEERING MATH 1 Fall 2009 VECTOR SPACES A vector space, more specifically, a real vector space (as opposed to a complex one or some even stranger ones) is any set that is closed under an operation of

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

Section 1.6. M N = [a ij b ij ], (1.6.2)

Section 1.6. M N = [a ij b ij ], (1.6.2) The Calculus of Functions of Several Variables Section 16 Operations with Matrices In the previous section we saw the important connection between linear functions and matrices In this section we will

More information

Math 110, Spring 2015: Midterm Solutions

Math 110, Spring 2015: Midterm Solutions Math 11, Spring 215: Midterm Solutions These are not intended as model answers ; in many cases far more explanation is provided than would be necessary to receive full credit. The goal here is to make

More information

(II.B) Basis and dimension

(II.B) Basis and dimension (II.B) Basis and dimension How would you explain that a plane has two dimensions? Well, you can go in two independent directions, and no more. To make this idea precise, we formulate the DEFINITION 1.

More information

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

Linear Algebra Differential Equations Math 54 Lec 005 (Dis 501) July 10, 2014

Linear Algebra Differential Equations Math 54 Lec 005 (Dis 501) July 10, 2014 Vector space R n A vector space R n is the set of all possible ordered pairs of n real numbers So, R n = {(a, a,, a n ) : a, a,, a n R} a a We abuse the notation (a, a,, a n ) instead of sometimes a n

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

MAT2342 : Introduction to Applied Linear Algebra Mike Newman, fall Projections. introduction

MAT2342 : Introduction to Applied Linear Algebra Mike Newman, fall Projections. introduction MAT4 : Introduction to Applied Linear Algebra Mike Newman fall 7 9. Projections introduction One reason to consider projections is to understand approximate solutions to linear systems. A common example

More information

Contents. 2.1 Vectors in R n. Linear Algebra (part 2) : Vector Spaces (by Evan Dummit, 2017, v. 2.50) 2 Vector Spaces

Contents. 2.1 Vectors in R n. Linear Algebra (part 2) : Vector Spaces (by Evan Dummit, 2017, v. 2.50) 2 Vector Spaces Linear Algebra (part 2) : Vector Spaces (by Evan Dummit, 2017, v 250) Contents 2 Vector Spaces 1 21 Vectors in R n 1 22 The Formal Denition of a Vector Space 4 23 Subspaces 6 24 Linear Combinations and

More information

Math 291-2: Lecture Notes Northwestern University, Winter 2016

Math 291-2: Lecture Notes Northwestern University, Winter 2016 Math 291-2: Lecture Notes Northwestern University, Winter 2016 Written by Santiago Cañez These are lecture notes for Math 291-2, the second quarter of MENU: Intensive Linear Algebra and Multivariable Calculus,

More information

0.2 Vector spaces. J.A.Beachy 1

0.2 Vector spaces. J.A.Beachy 1 J.A.Beachy 1 0.2 Vector spaces I m going to begin this section at a rather basic level, giving the definitions of a field and of a vector space in much that same detail as you would have met them in a

More information

Two matrices of the same size are added by adding their corresponding entries =.

Two matrices of the same size are added by adding their corresponding entries =. 2 Matrix algebra 2.1 Addition and scalar multiplication Two matrices of the same size are added by adding their corresponding entries. For instance, 1 2 3 2 5 6 3 7 9 +. 4 0 9 4 1 3 0 1 6 Addition of two

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

Working with Block Structured Matrices

Working with Block Structured Matrices Working with Block Structured Matrices Numerical linear algebra lies at the heart of modern scientific computing and computational science. Today it is not uncommon to perform numerical computations with

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date April 29, 23 2 Contents Motivation for the course 5 2 Euclidean n dimensional Space 7 2. Definition of n Dimensional Euclidean Space...........

More information

Jim Lambers MAT 610 Summer Session Lecture 1 Notes

Jim Lambers MAT 610 Summer Session Lecture 1 Notes Jim Lambers MAT 60 Summer Session 2009-0 Lecture Notes Introduction This course is about numerical linear algebra, which is the study of the approximate solution of fundamental problems from linear algebra

More information

Outline. Linear maps. 1 Vector addition is commutative: summands can be swapped: 2 addition is associative: grouping of summands is irrelevant:

Outline. Linear maps. 1 Vector addition is commutative: summands can be swapped: 2 addition is associative: grouping of summands is irrelevant: Outline Wiskunde : Vector Spaces and Linear Maps B Jacobs Institute for Computing and Information Sciences Digital Security Version: spring 0 B Jacobs Version: spring 0 Wiskunde / 55 Points in plane The

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a beginning course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc I will review some of these terms here,

More information

Linear Algebra. Session 8

Linear Algebra. Session 8 Linear Algebra. Session 8 Dr. Marco A Roque Sol 08/01/2017 Abstract Linear Algebra Range and kernel Let V, W be vector spaces and L : V W, be a linear mapping. Definition. The range (or image of L is the

More information

Gaussian elimination

Gaussian elimination Gaussian elimination October 14, 2013 Contents 1 Introduction 1 2 Some definitions and examples 2 3 Elementary row operations 7 4 Gaussian elimination 11 5 Rank and row reduction 16 6 Some computational

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists

x n -2.5 Definition A list is a list of objects, where multiplicity is allowed, and order matters. For example, as lists Vectors, Linear Combinations, and Matrix-Vector Mulitiplication In this section, we introduce vectors, linear combinations, and matrix-vector multiplication The rest of the class will involve vectors,

More information

Matrix-Vector Products and the Matrix Equation Ax = b

Matrix-Vector Products and the Matrix Equation Ax = b Matrix-Vector Products and the Matrix Equation Ax = b A. Havens Department of Mathematics University of Massachusetts, Amherst January 31, 2018 Outline 1 Matrices Acting on Vectors Linear Combinations

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

October 25, 2013 INNER PRODUCT SPACES

October 25, 2013 INNER PRODUCT SPACES October 25, 2013 INNER PRODUCT SPACES RODICA D. COSTIN Contents 1. Inner product 2 1.1. Inner product 2 1.2. Inner product spaces 4 2. Orthogonal bases 5 2.1. Existence of an orthogonal basis 7 2.2. Orthogonal

More information

Definition 1.2. Let p R n be a point and v R n be a non-zero vector. The line through p in direction v is the set

Definition 1.2. Let p R n be a point and v R n be a non-zero vector. The line through p in direction v is the set Important definitions and results 1. Algebra and geometry of vectors Definition 1.1. A linear combination of vectors v 1,..., v k R n is a vector of the form c 1 v 1 + + c k v k where c 1,..., c k R are

More information

1 Linear transformations; the basics

1 Linear transformations; the basics Linear Algebra Fall 2013 Linear Transformations 1 Linear transformations; the basics Definition 1 Let V, W be vector spaces over the same field F. A linear transformation (also known as linear map, or

More information

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n.

Vector Spaces. Addition : R n R n R n Scalar multiplication : R R n R n. Vector Spaces Definition: The usual addition and scalar multiplication of n-tuples x = (x 1,..., x n ) R n (also called vectors) are the addition and scalar multiplication operations defined component-wise:

More information

x 1 x 2. x 1, x 2,..., x n R. x n

x 1 x 2. x 1, x 2,..., x n R. x n WEEK In general terms, our aim in this first part of the course is to use vector space theory to study the geometry of Euclidean space A good knowledge of the subject matter of the Matrix Applications

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

Math 54 Homework 3 Solutions 9/

Math 54 Homework 3 Solutions 9/ Math 54 Homework 3 Solutions 9/4.8.8.2 0 0 3 3 0 0 3 6 2 9 3 0 0 3 0 0 3 a a/3 0 0 3 b b/3. c c/3 0 0 3.8.8 The number of rows of a matrix is the size (dimension) of the space it maps to; the number of

More information

Math 113 Winter 2013 Prof. Church Midterm Solutions

Math 113 Winter 2013 Prof. Church Midterm Solutions Math 113 Winter 2013 Prof. Church Midterm Solutions Name: Student ID: Signature: Question 1 (20 points). Let V be a finite-dimensional vector space, and let T L(V, W ). Assume that v 1,..., v n is a basis

More information

CHANGE OF BASIS AND ALL OF THAT

CHANGE OF BASIS AND ALL OF THAT CHANGE OF BASIS AND ALL OF THAT LANCE D DRAGER Introduction The goal of these notes is to provide an apparatus for dealing with change of basis in vector spaces, matrices of linear transformations, and

More information

Section 4.5. Matrix Inverses

Section 4.5. Matrix Inverses Section 4.5 Matrix Inverses The Definition of Inverse Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that ab = 1. We define the inverse of a matrix in almost

More information

Math 205, Summer I, Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b. Chapter 4, [Sections 7], 8 and 9

Math 205, Summer I, Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b. Chapter 4, [Sections 7], 8 and 9 Math 205, Summer I, 2016 Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b Chapter 4, [Sections 7], 8 and 9 4.5 Linear Dependence, Linear Independence 4.6 Bases and Dimension 4.7 Change of Basis,

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02)

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02) Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 206, v 202) Contents 2 Matrices and Systems of Linear Equations 2 Systems of Linear Equations 2 Elimination, Matrix Formulation

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016 Linear Algebra Notes Lecture Notes, University of Toronto, Fall 2016 (Ctd ) 11 Isomorphisms 1 Linear maps Definition 11 An invertible linear map T : V W is called a linear isomorphism from V to W Etymology:

More information

Announcements Wednesday, October 10

Announcements Wednesday, October 10 Announcements Wednesday, October 10 The second midterm is on Friday, October 19 That is one week from this Friday The exam covers 35, 36, 37, 39, 41, 42, 43, 44 (through today s material) WeBWorK 42, 43

More information

MATH PRACTICE EXAM 1 SOLUTIONS

MATH PRACTICE EXAM 1 SOLUTIONS MATH 2359 PRACTICE EXAM SOLUTIONS SPRING 205 Throughout this exam, V and W will denote vector spaces over R Part I: True/False () For each of the following statements, determine whether the statement is

More information

Fact: Every matrix transformation is a linear transformation, and vice versa.

Fact: Every matrix transformation is a linear transformation, and vice versa. Linear Transformations Definition: A transformation (or mapping) T is linear if: (i) T (u + v) = T (u) + T (v) for all u, v in the domain of T ; (ii) T (cu) = ct (u) for all scalars c and all u in the

More information

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts (in

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Definition Suppose S R n, V R m are subspaces. A map U : S V is linear if

Definition Suppose S R n, V R m are subspaces. A map U : S V is linear if .6. Restriction of Linear Maps In this section, we restrict linear maps to subspaces. We observe that the notion of linearity still makes sense for maps whose domain and codomain are subspaces of R n,

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

Chapter 3: Theory Review: Solutions Math 308 F Spring 2015

Chapter 3: Theory Review: Solutions Math 308 F Spring 2015 Chapter : Theory Review: Solutions Math 08 F Spring 05. What two properties must a function T : R m R n satisfy to be a linear transformation? (a) For all vectors u and v in R m, T (u + v) T (u) + T (v)

More information

A supplement to Treil

A supplement to Treil A supplement to Treil JIH Version of: 13 April 2016 Throughout we use Treil to identify our text notes: Sergei Treil, Linear Algebra Done Wrong (9/7/2015 version), https://www.math.brown.edu/ treil/papers/ladw/book.pdf

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full n n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in n variables x 1, x 2,..., x n a 11 x 1 + a 12 x

More information

Solving Systems of Equations Row Reduction

Solving Systems of Equations Row Reduction Solving Systems of Equations Row Reduction November 19, 2008 Though it has not been a primary topic of interest for us, the task of solving a system of linear equations has come up several times. For example,

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Winfried Just Department of Mathematics, Ohio University February 28, 218 Review: The linear span Definition Let { v 1, v 2,..., v n }

More information

2: LINEAR TRANSFORMATIONS AND MATRICES

2: LINEAR TRANSFORMATIONS AND MATRICES 2: LINEAR TRANSFORMATIONS AND MATRICES STEVEN HEILMAN Contents 1. Review 1 2. Linear Transformations 1 3. Null spaces, range, coordinate bases 2 4. Linear Transformations and Bases 4 5. Matrix Representation,

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.4 The Projection Matrix 1 Chapter 6. Orthogonality 6.4 The Projection Matrix Note. In Section 6.1 (Projections), we projected a vector b R n onto a subspace W of R n. We did so by finding a basis for

More information

Lecture 9. Econ August 20

Lecture 9. Econ August 20 Lecture 9 Econ 2001 2015 August 20 Lecture 9 Outline 1 Linear Functions 2 Linear Representation of Matrices 3 Analytic Geometry in R n : Lines and Hyperplanes 4 Separating Hyperplane Theorems Back to vector

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Linear Algebra 1/33 Linear Algebra 1/33 Vectors A vector is a magnitude and a direction Magnitude = v Direction Also known as norm, length Represented by unit vectors (vectors with a length of 1 that point along distinct

More information

1 Last time: multiplying vectors matrices

1 Last time: multiplying vectors matrices MATH Linear algebra (Fall 7) Lecture Last time: multiplying vectors matrices Given a matrix A = a a a n a a a n and a vector v = a m a m a mn Av = v a a + v a a v v + + Rn we define a n a n a m a m a mn

More information

x y = 1, 2x y + z = 2, and 3w + x + y + 2z = 0

x y = 1, 2x y + z = 2, and 3w + x + y + 2z = 0 Section. Systems of Linear Equations The equations x + 3 y =, x y + z =, and 3w + x + y + z = 0 have a common feature: each describes a geometric shape that is linear. Upon rewriting the first equation

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

1 Matrices and Systems of Linear Equations

1 Matrices and Systems of Linear Equations March 3, 203 6-6. Systems of Linear Equations Matrices and Systems of Linear Equations An m n matrix is an array A = a ij of the form a a n a 2 a 2n... a m a mn where each a ij is a real or complex number.

More information

MA106 Linear Algebra lecture notes

MA106 Linear Algebra lecture notes MA106 Linear Algebra lecture notes Lecturers: Diane Maclagan and Damiano Testa 2017-18 Term 2 Contents 1 Introduction 3 2 Matrix review 3 3 Gaussian Elimination 5 3.1 Linear equations and matrices.......................

More information

Linear Algebra Highlights

Linear Algebra Highlights Linear Algebra Highlights Chapter 1 A linear equation in n variables is of the form a 1 x 1 + a 2 x 2 + + a n x n. We can have m equations in n variables, a system of linear equations, which we want to

More information

Lecture 1s Isomorphisms of Vector Spaces (pages )

Lecture 1s Isomorphisms of Vector Spaces (pages ) Lecture 1s Isomorphisms of Vector Spaces (pages 246-249) Definition: L is said to be one-to-one if L(u 1 ) = L(u 2 ) implies u 1 = u 2. Example: The mapping L : R 4 R 2 defined by L(a, b, c, d) = (a, d)

More information

Chapter 4 & 5: Vector Spaces & Linear Transformations

Chapter 4 & 5: Vector Spaces & Linear Transformations Chapter 4 & 5: Vector Spaces & Linear Transformations Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapters 4 & 5 1 / 40 Objective The purpose of Chapter 4 is to think

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear independence Example 1. Recall the set S = {a i : i = 1,...,5} R 4 of the last two lectures, where a 1 = (1,1,3,1) a 2 = (2,1,2, 1) a 3 = (7,3,5, 5) a 4

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information