ISOTHERMAL REACTOR DESIGN (4) Marcel Lacroix Université de Sherbrooke

Size: px
Start display at page:

Download "ISOTHERMAL REACTOR DESIGN (4) Marcel Lacroix Université de Sherbrooke"

Transcription

1 ISOTHERML RETOR DESIGN (4) Marcel Lacroix Université de Sherbrooke

2 ISOTHERML RETOR DESIGN: OBJETIVE TO DESIGN VRIOUS TYES OF IDEL ISOTHERML RETORS USING THE FOLLOWING TOOLS: 1. MOLE BLNE OR DESIGN EQUTION: ( r, V, X ). RTE LW: r f ( ) 3. STOIHIOMETRY: g(, X, ε ) 4. OMBINTION OF THE BOVE TO DETERMINE VOLUME V OF RETOR FOR HIEVING ONVERSION X. M. Lacroix Isothermal Reactor Design

3 DESIGN STRUTURE FOR ISOTHERML RETORS 1. LY THE GENERL MOLE BLNE EQUTION. TO RRIVE T THE DESIGN EQUTION; IF THE FEED ONDITIONS RE SEIFIED (N OR F ), LL THT IS REQUIRED TO EVLUTE THE DESIGN EQUTION IS THE RTE OF RETION S FUNTION OF ONVERSION T THE SME ONDITIONS S THOSE T WHIH THE RETOR IS TO BE OERTED (TEMERTURE ND RESSURE). WHEN r f(x) IS GIVEN, ONE N DETRMINE REDILY THE TIME OR RETOR VOLUME NEESSRY TO HIEVE THE SEIFIED ONVERSION X. 3. IF THE RTE OF RETION IS NOT GIVEN EXLIITELY S FUNTION OF ONVERSION, THE RTE LW MUST BE DETERMINED (FROM REFERENES OR EXERIMENTS). M. Lacroix Isothermal Reactor Design 3

4 DESIGN STRUTURE FOR ISOTHERML RETORS 4. USE STOIHIOMETRY TOGETHER WITH THE ONDITIONS OF THE SYSTEM (i.e., ONSTNT VOLUME, ONSTNT TEMERTURE, ET.) TO EXRESS ONENTRTION S FUNTION OF ONVERSION. 5. BY OMBINING THE INFORMTION GTHERED IN THE REVIOUS STES, ONE N EXRESS THE RTE OF RETION S FUNTION OF ONVERSION. 6. IT IS NOW OSSIBLE TO DETERMINE EITHER THE TIME OR RETOR VOLUME NEESSRY TO HIEVE THE DESIRED ONVERSION BY SUBSTITUTING THE RELTIONSHIS RELTING ONVERSION ND RTE OF RETION INTO THE RORITE DESIGN EQUTION. THE DESIGN EQUTION IS THEN EVLUTED IN THE RORITE MNNER (i.e., NLYTILLY OR NUMERILLY). M. Lacroix Isothermal Reactor Design 4

5 ISOTHERML RETOR DESIGN LGORITHM 5

6 BTH OERTION: SLE-U OF DT TO THE DESIGN OF STR 1. WE SEEK TO DETERMINE THE SEIFI RETION RTE k OF LBORTORY-SLE BTH RETOR IN WHIH ONSTNT- VOLUME RETION OF KNOWN ORDER IS BEING RRIED OUT.. ND NEXT TO USE THE RETION RTE k IN THE DESIGN OF FULL-SLE STR. M. Lacroix Isothermal Reactor Design 6

7 LGORITHM TO ESTIMTE RETION TIMES IN BTH RETORS M. Lacroix Isothermal Reactor Design 7

8 EXMLE No. 1: DETERMINING k FROM BTH DT IT IS DESIRED TO DESIGN STR TO RODUE MILLION KG OF ETHYLENE GLYOL ER YER BY HYDROLYSING ETHYLENE OXIDE. HOWEVER, BEFORE THE DESIGN N BE RRIED OUT, IT IS NEESSRY TO ERFORM ND NLYZE BTH RETOR EXERIMENT TO DETERMINE THE SEIFI RETION RTE ONSTNT k. SINE THE RETION WILL BE RRIED OUT ISOTHERMLLY, THE SEIFI RETION RTE WILL NEED TO BE DETERMINED ONLY T THE RETION TEMERTURE OF THE STR. T HIGH TEMERTURES THERE IS SIGNIFINT BY-RODUT FORMTION, WHILE T TEMERTURES BELOW 313 K THE RETION DOES NOT ROEED T SIGNIFINT RTE. ONSEQUENTLY, TEMERTURE OF 38 K HS BEEN HOSEN. SINE WTER IS USULLY RESENT IN EXESS, ITS ONENTRTION MY BE ONSIDERED ONSTNT DURING THE OURSE OF THE RETION. THE RETION IS FIRST-ORDER IN ETHYLENE OXIDE. M. Lacroix Isothermal Reactor Design 8

9 THE RETION IS EXMLE No. : DETERMINING k FROM BTH DT ( H OH + B SO4 ) O + H O H ( H ) ( ) catalyst IN THE LBORTORY EXERIMENT, 5 ml ( kmole/m 3 ) OF ETHYLENE OXIDE IN WTER IS MIXED WITH 5 ml OF WTER ONTINING.9 wt % SULFURI ID, WHIH IS TLYST. THE TEMERTURE WS MINTINED T 38 K. THE ONENTRTION OF ETHYLENE GLYOL WS REORDED S FUNTION OF TIME. FROM THESE DT DETERMINE THE SEIFI RETION RTE T 38 K. Time (min) (kmole/m 3 ) M. Lacroix Isothermal Reactor Design 9

10 DETERMINING k WITH OLYMTH Nonlinear regression (mrqmin) 1 t; ; Model: 1 -ln()/ Variable Ini guess Value onf-inter 1,, ,41E-5 k.31min 1 M. Lacroix Isothermal Reactor Design 1

11 DESIGN OF STRs: DMKÖHLER NUMBER DESIGN EQUTION FOR STR: V F ( r X ) exit IF THE VOLUMETRI FLOW RTE ONSTNT, v v, V v ( r ) OR τ V v r FOR FIRST-ORDER IRREVERSIBLE RETION, r ND NO VOLUME HNGE DURING THE OURSE OF THE RETION (1 ), τk Da X 1+ τk 1+ Da X k Da: DMKÖHLER NUMBER. FOR Da<.1, X<1%; FOR Da>1., X>9% M. Lacroix Isothermal Reactor Design 11

12 DESIGN OF DESIGN OF STR STRs: STRs IN SERIES s: STRs IN SERIES FIRST-ORDER RETION WITH NO VOLUME HNGE, v v k +τ 1 1 ) ( k v r F F V ) )(1 ( k k k τ τ τ M. Lacroix Isothermal Reactor Design 1

13 DESIGN OF STRs: n STRs IN SERIES FOR n STRs IN SERIES, n n n (1 + τk) (1 + Da) ONVERSION FOR n RETORS IN SERIES: X 1 1 (1 +τk) n M. Lacroix Isothermal Reactor Design 13

14 DESIGN OF STRs: STRs IN RLLEL X ( r V n i V F ) i i V F X r i i i F X r F n X r i i THE ONVERSION HIEVED IN NY ONE OF THE RETORS IN RLLEL IS IDENTIL TO WHT WOULD BE HIEVED IF THE RETNT WERE FED IN ONE STREM TO ONE LRGE RETOR OF VOLUME V M. Lacroix Isothermal Reactor Design 14

15 EXMLE No. 3: DESIGN OF STR IT IS DESIRED TO RODUE 1 MILLION KG OF ETHYLENE GLYOL ER YER. THE STR IS TO BE OERTED ISOTHERMLLY..16 kmole/liter SOLUTION OF ETHYLENE OXIDE IN WTER IS FED TO THE RETOR TOGETHER WITH N EQUL VOLUMETRI SOLUTION OF WTER ONTINING.9% wt OF SULFURI ID (TLYST). IF 8% ONVERSION IS TO BE HIEVED, DETERMINE THE NEESSRY RETOR VOLUME. HOW MNY 4-liters RETORS WOULD BE REQUIRED IF THEY RE RRNGED IN RLLEL? WHT IS THE ORRESONDING ONVERSION? HOW MNY 4-liters RETORS WOULD BE REQUIRED IF THEY RE RRNGED IN SERIES? WHT IS THE ORRESONDING ONVERSION? THE SEIFI RETION RTE ONSTNT IS.311 min -1. M. Lacroix Isothermal Reactor Design 15

16 DESIGN OF FRs GS-HSE RETIONS RE RRIED OUT RIMRILY IN TUBULR RETORS SSUMING NO DISERSION ND NO RDIL GRDIENTS, WE N MODEL THE FLOW IN THE RETOR S LUG FLOW dx F r dv IN THE BSENE OF RESSURE DRO OR HET EXHNGE, THE INTEGRL FORM OF THE LUG FLOW DESIGN EQUTION IS V F X dx r r f ( ) g(, X, ε ) M. Lacroix Isothermal Reactor Design 16

17 EXMLE No.4: DESIGN OF FR IT IS DESIRED TO RODUE 15 MILLION KG OF ETHYLENE YER FROM RKING FEED STREM OF URE ETHNE USING LUG-FLOW RETOR. THE RETION IS IRREVERSIBLE ND FOLLOWS N ELEMENTRY RTE LW. WE WNT TO HIEVE 8% ONVERSION OF ETHNE, OERTING THE RETOR ISOTHERMLLY T 11 K T RESSURE OF 6 TM. THE RETION IS + H 6 H 4 H B + THE ROOSED RTE LW IS WITH 1 k.7s 8kcal / mole r k T 1 K. THE TIVTION ENERGY IS M. Lacroix Isothermal Reactor Design 17

18 RESSURE DRO IN RETORS IN LIQUID-HSE RETIONS, THE ONENTRTION OF RETNTS IS INSIGNIFINTLY FFETED BY EVEN RELTIVELY LRGE HNGES IN THE TOTL RESSURE. S RESULT, THE EFFET OF RESSURE DRO ON THE RTE OF RETION WHEN SIZING LIQUID- HSE HEMIL RETORS N BE IGNORED. IN GS-HSE RETIONS, THE ONENTRTION OF THE RETING SEIES IS ROORTIONL TO THE TOTL RESSURE ND ONSEQUENTLY, ROER OUNTING FOR THE EFFETS OF RESSURE DRO ON THE RETION SYSTEM N, IN MNY INSTNES, BE KEY FTOR IN THE SUESS OR FILURE OF THE RETOR OERTION. M. Lacroix Isothermal Reactor Design 18

19 RESSURE DRO ND THE RTE LW: EXMLE LET US ONSIDER THE SEOND-ORDER ISOMERIZTION RETION B RRIED OUT IN KED-BED RETOR. MOLE BLNE: RTE LW: r STOIHIOMETRY: (FOR GS-HSE RETIONS) OMBINTION: dx dw ' FOR ISOTHERML OERTION (TT ), F ' k dx dw k v r RIGHT-HND SIDE FUNTION OF X ND ONLY: M. Lacroix Isothermal Reactor Design 19 1 X 1+ εx (1 X ) 1+ εx T T WE NEED NOTHER EQUTION TO DETERMINE X dx dw F1 ( X, )

20 FLOW THROUGH KED BED: : ERGUN EQUTION MJORITY OF GS-HSE RETIONS RE TLYSED BY SSING THE RETNT THROUGH KED BED OF TLYST RTILES. THE EQUTION USED MOST TO LULTE THE RESSURE DRO IN KED OROUS BED IS ERGUN EQUTION : d dw α T T / (1 + εx ) α β ρ (1 φ) c c β G 1 φ 15(1 φ) µ G 3 ρ D p φ Dp M. Lacroix Isothermal Reactor Design

21 FLOW THROUGH KED BED: : DEFINITIONS φ D p µ z VOLUME _ VOID TOTL _ BED _ VOLUME RESSURE (N/m ); INLET RESSURE (N/m ); OROSITY( ) OR DIMETER OF RTILE IN BED (m) VISOSITY OF GS SSING THROUGH BED (N/sm ) LENGTH DOWN THE KED BED OF IE (m) u SUERFIIL VELOITYVOLUMETRI FLOW OVER ρ ROSS SETIONL RE OF IE (m/s) GS DENSITY (kg/m 3 ); INLET GS DENSITY; ρ c SOLID DENSITY (kg/m 3 ); G ρu ( total _ mass _ flow _ rate) / (kg/m s) c TEMERTURE (K); INLET TEMERTURE (K) T FT F T c TOTL MOLR FLOW RTE (moles/s); INLET RTE ROSS SETIONL RE (m ) W MSS OF TLYST (kg) T ρ VOLUME _ OF _ SOLID ( 1 φ) TOTL _ BED _ VOLUME M. Lacroix Isothermal Reactor Design 1

22 FLOW THROUGH KED BED: : SEIL SE FOR ISOTHERML OERTION, WE HVE TWO EQUTIONS FOR TWO UNKNOWNS: X ND d dw F ( X, ) ND dx dw ε εx << 1 F ( X, 1 SEIL SE: OR, WE OBTIN N NLYTIL SOLUTION FOR THE RESSURE FOR ISOTHERML OERTION: ( 1 αw ) 1 ) M. Lacroix Isothermal Reactor Design

23 EXMLE No. 5: FLOW THROUGH KED BED LULTE THE TLYST MSS W NEESSRY TO HIEVE ONVERSION X WHEN ETHYLENE OXIDE IS TO BE MDE BY THE VOR-HSE TLYTI OXIDTION OF ETHYLENE WITH IR: H 4 +1/ O H H O + 1/ B ETHYLENE ND OXYGEN RE FED IN STOIHIOMETRI ROORTIONS TO KED-BED RETOR OERTED ISOTHERMLLY T 533K. ETHYLENE IS FED T RTE OF.136 kmole/s T RESSURE OF 1 atm. IT IS ROOSED TO USE 1 BNKS OF 1 TUBES ER BNK KED WITH TLYST. ONSEQUENTLY, THE MOLR FLOW RTE TO EH TUBE IS.136/1 kmoles/s. THE ROSS SETIONL RE OF EH TUBE IS.1313 m. THE ROERTIES OF THE RETING FLUID RE TO BE ONSIDERED IDENTIL TO THOSE OF IR T THIS TEMERTURE ND RESSURE. THE DENSITY OF THE.635 cm TLYST RTILES IS 19 kg/m 3 ND THE BED VOID IS.45. M. Lacroix Isothermal Reactor Design 3

24 FLOW THROUGH KED BED: : MODEL 1. MOLE BLNE: F. ROOSED RTE LW : dx dw r ' r k ' B 3. IDEL GS LW: j j RT 4. F (1 X ) STOIHIOMETRY: ; v 1+ εx 5. dx (1 X ) OMBINING: F.63k dw (1 + εx ) 6. RESSURE LOSS: d α (1 + εx ) dw / B F v B ( θ B X 1+ εx / ) 7. SOLUTION OF (5) ND (6) FOR X ND VERSUS W; INITIL ONDITIONS: T W, X ND M. Lacroix Isothermal Reactor Design 4

25 ODE Report (RKF45) FLOW THROUGH KED BED: OLYMTH OMUTER ROGRM Differential equations as entered by the user [1] d(x)/d(w) rate/fa [] d(y)/d(w) -alpha*(1+eps*x)//y Explicit equations as entered by the user [1] fa 49e- [] alpha 366e-4 [3] eps -15e- [4] kprime 66e-4 [5] f (1+eps*x)/y [6] rate kprime*((1-x)/(1+eps*x))*y Independent variable variable name : w initial value : final value : 5 5

26 FLOW THROUGH KED BED: : SOLUTION 6

27 FLOW THROUGH KED BED: : SOLUTION 7

ERT 316: REACTION ENGINEERING CHAPTER 3 RATE LAWS & STOICHIOMETRY

ERT 316: REACTION ENGINEERING CHAPTER 3 RATE LAWS & STOICHIOMETRY ER 316: REIO EGIEERIG HER 3 RE LWS & SOIHIOMERY 1 OULIE R 1: Rte Lws Reltive Rtes of Retion Retion Orer & Rte Lw Retion Rte onstnt, k R 2: Stoihiometry th System Stoihiometri le low System Stoihiometri

More information

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light.

1 This diagram represents the energy change that occurs when a d electron in a transition metal ion is excited by visible light. 1 This igrm represents the energy hnge tht ours when eletron in trnsition metl ion is exite y visile light. Give the eqution tht reltes the energy hnge ΔE to the Plnk onstnt, h, n the frequeny, v, of the

More information

CONVERSION AND REACTOR SIZING (2) Marcel Lacroix Université de Sherbrooke

CONVERSION AND REACTOR SIZING (2) Marcel Lacroix Université de Sherbrooke CONVERSION ND RECTOR SIZING (2) Marcel Lacroix Université de Sherbrooke CONVERSION ND RECTOR SIZING: OBJECTIVES 1. TO DEINE CONVERSION j. 2. TO REWRITE THE DESIGN EQUTIONS IN TERMS O CONVERSION j. 3. TO

More information

Chemical Equilibrium

Chemical Equilibrium Chpter 16 Questions 5, 7, 31, 33, 35, 43, 71 Chemil Equilibrium Exmples of Equilibrium Wter n exist simultneously in the gs nd liquid phse. The vpor pressure of H O t given temperture is property ssoited

More information

Electrical Circuits II (ECE233b)

Electrical Circuits II (ECE233b) Eletril Ciruits (ECE2) Polyhse Ciruits Anestis Dounis The Uniersity of Western Ontrio Fulty of Engineering Siene ThreePhse Ciruits Blned three hse iruit: ontins three oltge soures tht re equl in mgnitude

More information

ChE 548 Final Exam Spring, 2004

ChE 548 Final Exam Spring, 2004 . Keffer, eprtment of Chemil Engineering, University of ennessee ChE 58 Finl Em Spring, Problem. Consider single-omponent, inompressible flid moving down n ninslted fnnel. erive the energy blne for this

More information

Chemical Equilibrium. Problem Set: Chapter 16 questions 25, 27, 33, 35, 43, 71

Chemical Equilibrium. Problem Set: Chapter 16 questions 25, 27, 33, 35, 43, 71 Chemil Equilibrium roblem Set: Chpter 16 questions 5, 7, 33, 35, 43, 71 Exmples of Equilibrium Wter n exists simultneously in the gs nd liquid phse. The vpor pressure of H O t given temperture is property

More information

Chemical Reaction Engineering. Lecture 7

Chemical Reaction Engineering. Lecture 7 hemical Reaction Engineering Lecture 7 Home problem: nitroaniline synthesis the disappearance rate of orthonitrochlorobenzene [ ] d ONB ra k ONB NH dt Stoichiometric table: [ ][ ] 3 hange Remaining* oncentration**

More information

CALCULATING REACTING QUANTITIES

CALCULATING REACTING QUANTITIES MODULE 2 14 WORKSHEET WORKSHEET For multiple-hoie questions 1 5 irle the letter orresponding to the most orret nswer. 1 The lned eqution for the urning of utnol (C 4 H 9 OH) is given elow: C 4 H 9 OH(l)

More information

Solutions to Assignment 1

Solutions to Assignment 1 MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

More information

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points. Prole 3: Crnot Cyle of n Idel Gs In this prole, the strting pressure P nd volue of n idel gs in stte, re given he rtio R = / > of the volues of the sttes nd is given Finlly onstnt γ = 5/3 is given You

More information

Thermodynamics. Question 1. Question 2. Question 3 3/10/2010. Practice Questions PV TR PV T R

Thermodynamics. Question 1. Question 2. Question 3 3/10/2010. Practice Questions PV TR PV T R /10/010 Question 1 1 mole of idel gs is rought to finl stte F y one of three proesses tht hve different initil sttes s shown in the figure. Wht is true for the temperture hnge etween initil nd finl sttes?

More information

Subject: Modeling of Thermal Rocket Engines; Nozzle flow; Control of mass flow. p c. Thrust Chamber mixing and combustion

Subject: Modeling of Thermal Rocket Engines; Nozzle flow; Control of mass flow. p c. Thrust Chamber mixing and combustion 16.50 Leture 6 Subjet: Modeling of Thermal Roket Engines; Nozzle flow; Control of mass flow Though onetually simle, a roket engine is in fat hysially a very omlex devie and diffiult to reresent quantitatively

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Übungen zur Theoretischen Physik Fa WS 17/18

Übungen zur Theoretischen Physik Fa WS 17/18 Krlsruher Institut für ehnologie Institut für heorie der Kondensierten Mterie Übungen zur heoretishen Physik F WS 17/18 Prof Dr A Shnirmn Bltt 4 PD Dr B Nrozhny Lösungsvorshlg 1 Nihtwehselwirkende Spins:

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

More information

University of Sioux Falls. MAT204/205 Calculus I/II

University of Sioux Falls. MAT204/205 Calculus I/II University of Sioux Flls MAT204/205 Clulus I/II Conepts ddressed: Clulus Textook: Thoms Clulus, 11 th ed., Weir, Hss, Giordno 1. Use stndrd differentition nd integrtion tehniques. Differentition tehniques

More information

Type 2: Improper Integrals with Infinite Discontinuities

Type 2: Improper Integrals with Infinite Discontinuities mth imroer integrls: tye 6 Tye : Imroer Integrls with Infinite Disontinuities A seond wy tht funtion n fil to be integrble in the ordinry sense is tht it my hve n infinite disontinuity (vertil symtote)

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

(h+ ) = 0, (3.1) s = s 0, (3.2)

(h+ ) = 0, (3.1) s = s 0, (3.2) Chpter 3 Nozzle Flow Qusistedy idel gs flow in pipes For the lrge vlues of the Reynolds number typilly found in nozzles, the flow is idel. For stedy opertion with negligible body fores the energy nd momentum

More information

Electromagnetism Notes, NYU Spring 2018

Electromagnetism Notes, NYU Spring 2018 Eletromgnetism Notes, NYU Spring 208 April 2, 208 Ation formultion of EM. Free field desription Let us first onsider the free EM field, i.e. in the bsene of ny hrges or urrents. To tret this s mehnil system

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. oday s lecture Block 1: Mole

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Joule-Thomson effect TEP

Joule-Thomson effect TEP Joule-homson effect EP elted oics el gs; intrinsic energy; Gy-Lussc theory; throttling; n der Wls eqution; n der Wls force; inverse Joule- homson effect; inversion temerture. Princile A strem of gs is

More information

Chapter Direct Method of Interpolation More Examples Chemical Engineering

Chapter Direct Method of Interpolation More Examples Chemical Engineering hter 5. Direct Method of Interoltion More Exmles hemicl Engineering Exmle To find how much het is required to bring kettle of wter to its boiling oint, you re sked to clculte the secific het of wter t

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx, MATH3403: Green s Funtions, Integrl Equtions nd the Clulus of Vritions 1 Exmples 5 Qu.1 Show tht the extreml funtion of the funtionl I[y] = 1 0 [(y ) + yy + y ] dx, where y(0) = 0 nd y(1) = 1, is y(x)

More information

1 Find the volume of each solid, correct to one decimal place where necessary. 12 cm 14 m. 25 mm. p c 5 ffiffiffi

1 Find the volume of each solid, correct to one decimal place where necessary. 12 cm 14 m. 25 mm. p c 5 ffiffiffi 1 Find the volume of eh solid, orret to one deiml le where neessry. 8 m 6 m m 14 m 65 m 2 2 m d 7.6 mm 2 m 4 m 4 m 7 m 25 mm Stge 5.3 See Chter 1 See Chter 7 See Chter 9 See Chter 9 See Chter 13 2 Simlify

More information

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4. Mth 5 Tutoril Week 1 - Jnury 1 1 Nme Setion Tutoril Worksheet 1. Find ll solutions to the liner system by following the given steps x + y + z = x + y + z = 4. y + z = Step 1. Write down the rgumented mtrix

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 6 hemical Reaction Engineering (RE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 6 Tuesday 1/9/13 Block

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes.

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes. 1 This question is out men ond enthlpies nd their use in the lultion of enthlpy hnges. Define men ond enthlpy s pplied to hlorine. Explin why the enthlpy of tomistion of hlorine is extly hlf the men ond

More information

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable INTEGRATION NOTE: These notes re supposed to supplement Chpter 4 of the online textbook. 1 Integrls of Complex Vlued funtions of REAL vrible If I is n intervl in R (for exmple I = [, b] or I = (, b)) nd

More information

Mass balance in a fixed bed reactor is similar to that of a plugflow reactor (eq. 1.1): dx dv. r F (1.1) Recalling dw = B dv, then. r F. dx dw (2.

Mass balance in a fixed bed reactor is similar to that of a plugflow reactor (eq. 1.1): dx dv. r F (1.1) Recalling dw = B dv, then. r F. dx dw (2. Mass balance in a fixed bed reactor is similar to that of a plugflow reactor (eq..): d dv r (.) Recalling dw = B dv, then d dw r B (.) or a reaction: + bb c + dd Species eed Rate hange within Reactor Effluent

More information

Pressure-sensitivity Effects on Toughness Measurements of Compact Tension Specimens for Strain-hardening Solids

Pressure-sensitivity Effects on Toughness Measurements of Compact Tension Specimens for Strain-hardening Solids Amerin Journl of Alied Sienes (9): 19-195, 5 ISSN 1546-939 5 Siene ublitions ressure-sensitivity Effets on Toughness Mesurements of Comt Tension Seimens for Strin-hrdening Solids Abdulhmid A. Al-Abduljbbr

More information

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1 Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

More information

4.4 Areas, Integrals and Antiderivatives

4.4 Areas, Integrals and Antiderivatives . res, integrls nd ntiderivtives 333. Ares, Integrls nd Antiderivtives This section explores properties of functions defined s res nd exmines some connections mong res, integrls nd ntiderivtives. In order

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Individual Group. Individual Events I1 If 4 a = 25 b 1 1. = 10, find the value of.

Individual Group. Individual Events I1 If 4 a = 25 b 1 1. = 10, find the value of. Answers: (000-0 HKMO Het Events) Creted y: Mr. Frnis Hung Lst udted: July 0 00-0 33 3 7 7 5 Individul 6 7 7 3.5 75 9 9 0 36 00-0 Grou 60 36 3 0 5 6 7 7 0 9 3 0 Individul Events I If = 5 = 0, find the vlue

More information

7.6 The Use of Definite Integrals in Physics and Engineering

7.6 The Use of Definite Integrals in Physics and Engineering Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

More information

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions MEP: Demonstrtion Projet UNIT 4: Trigonometry UNIT 4 Trigonometry tivities tivities 4. Pythgors' Theorem 4.2 Spirls 4.3 linometers 4.4 Rdr 4.5 Posting Prels 4.6 Interloking Pipes 4.7 Sine Rule Notes nd

More information

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler) CHE 309: Chemicl Rection Engineering Lecture-8 Module 2: Rte Lw & Stoichiomtery (Chpter 3, Fogler) Topics to be covered in tody s lecture Thermodynmics nd Kinetics Rection rtes for reversible rections

More information

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM

Chem Homework 11 due Monday, Apr. 28, 2014, 2 PM Chem 44 - Homework due ondy, pr. 8, 4, P.. . Put this in eq 8.4 terms: E m = m h /m e L for L=d The degenery in the ring system nd the inresed sping per level (4x bigger) mkes the sping between the HOO

More information

8 THREE PHASE A.C. CIRCUITS

8 THREE PHASE A.C. CIRCUITS 8 THREE PHSE.. IRUITS The signls in hpter 7 were sinusoidl lternting voltges nd urrents of the so-lled single se type. n emf of suh type n e esily generted y rotting single loop of ondutor (or single winding),

More information

Week 10: Riemann integral and its properties

Week 10: Riemann integral and its properties Clculus nd Liner Algebr for Biomedicl Engineering Week 10: Riemnn integrl nd its properties H. Führ, Lehrstuhl A für Mthemtik, RWTH Achen, WS 07 Motivtion: Computing flow from flow rtes 1 We observe the

More information

2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3

2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3 GCE A Level Otober/November 008 Suggested Solutions Mthemtis H (970/0) version. MATHEMATICS (H) Pper Suggested Solutions. Topi: Definite Integrls From the digrm: Are A = y dx = x Are B = x dy = y dy dx

More information

ME 309 Fluid Mechanics Fall 2006 Solutions to Exam3. (ME309_Fa2006_soln3 Solutions to Exam 3)

ME 309 Fluid Mechanics Fall 2006 Solutions to Exam3. (ME309_Fa2006_soln3 Solutions to Exam 3) Fll 6 Solutions to Exm3 (ME39_F6_soln3 Solutions to Exm 3) Fll 6. ( pts totl) Unidirectionl Flow in Tringulr Duct (A Multiple-Choice Problem) We revisit n old friend, the duct with n equilterl-tringle

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

Line Integrals. Partitioning the Curve. Estimating the Mass

Line Integrals. Partitioning the Curve. Estimating the Mass Line Integrls Suppose we hve curve in the xy plne nd ssocite density δ(p ) = δ(x, y) t ech point on the curve. urves, of course, do not hve density or mss, but it my sometimes be convenient or useful to

More information

Energy Balance of Solar Collector

Energy Balance of Solar Collector Renewbe Energy Grou Gret Ides Grow Better Beow Zero! Wecome! Energy Bnce of Sor Coector Mohmd Khrseh E-mi:m.Khrseh@gmi.com Renewbe Energy Grou Gret Ides Grow Better Beow Zero! Liuid Ft Pte Coectors. Het

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

AP Calculus AB Unit 4 Assessment

AP Calculus AB Unit 4 Assessment Clss: Dte: 0-04 AP Clulus AB Unit 4 Assessment Multiple Choie Identify the hoie tht best ompletes the sttement or nswers the question. A lultor my NOT be used on this prt of the exm. (6 minutes). The slope

More information

Deriving (9.21) in Walsh (1998)

Deriving (9.21) in Walsh (1998) Deriving (9.21) in Wlsh (1998) Henrik Jensen April8,2003 Abstrt This note shows how to derive the nominl interest rte seuring tht the tul money supply lwys is equl to the vlue seuring the verge infltion

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x).

( ) 1. 1) Let f( x ) = 10 5x. Find and simplify f( 2) and then state the domain of f(x). Mth 15 Fettermn/DeSmet Gustfson/Finl Em Review 1) Let f( ) = 10 5. Find nd simplif f( ) nd then stte the domin of f(). ) Let f( ) = +. Find nd simplif f(1) nd then stte the domin of f(). ) Let f( ) = 8.

More information

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy First w of hermodynmics Reding Problems 3-3-7 3-0, 3-5, 3-05 5-5- 5-8, 5-5, 5-9, 5-37, 5-0, 5-, 5-63, 5-7, 5-8, 5-09 6-6-5 6-, 6-5, 6-60, 6-80, 6-9, 6-, 6-68, 6-73 Control Mss (Closed System) In this section

More information

MATH Final Review

MATH Final Review MATH 1591 - Finl Review November 20, 2005 1 Evlution of Limits 1. the ε δ definition of limit. 2. properties of limits. 3. how to use the diret substitution to find limit. 4. how to use the dividing out

More information

Interpreting Integrals and the Fundamental Theorem

Interpreting Integrals and the Fundamental Theorem Interpreting Integrls nd the Fundmentl Theorem Tody, we go further in interpreting the mening of the definite integrl. Using Units to Aid Interprettion We lredy know tht if f(t) is the rte of chnge of

More information

Section 3.6. Definite Integrals

Section 3.6. Definite Integrals The Clulus of Funtions of Severl Vribles Setion.6 efinite Integrls We will first define the definite integrl for funtion f : R R nd lter indite how the definition my be extended to funtions of three or

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

Solving Radical Equations

Solving Radical Equations Solving dil Equtions Equtions with dils: A rdil eqution is n eqution in whih vrible ppers in one or more rdinds. Some emples o rdil equtions re: Solution o dil Eqution: The solution o rdil eqution is the

More information

To increase the concentration of product formed in a PFR, what should we do?

To increase the concentration of product formed in a PFR, what should we do? To produce more moles of product per time in a flow reactor system, what can we do? a) Use less catalyst b) Make the reactor bigger c) Make the flow rate through the reactor smaller To increase the concentration

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

Section 6: Area, Volume, and Average Value

Section 6: Area, Volume, and Average Value Chpter The Integrl Applied Clculus Section 6: Are, Volume, nd Averge Vlue Are We hve lredy used integrls to find the re etween the grph of function nd the horizontl xis. Integrls cn lso e used to find

More information

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR .5 NMR spetrosopy Different types of NMR There re two min types of NMR. NMR. (proton) NMR There is only round % in orgni moleules ut modern NMR mhines re sensitive enough to give full spetr for The spetr

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

First Semester Review Calculus BC

First Semester Review Calculus BC First Semester Review lculus. Wht is the coordinte of the point of inflection on the grph of Multiple hoice: No lcultor y 3 3 5 4? 5 0 0 3 5 0. The grph of piecewise-liner function f, for 4, is shown below.

More information

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e Green s Theorem. Let be the boundry of the unit squre, y, oriented ounterlokwise, nd let F be the vetor field F, y e y +, 2 y. Find F d r. Solution. Let s write P, y e y + nd Q, y 2 y, so tht F P, Q. Let

More information

5. Every rational number have either terminating or repeating (recurring) decimal representation.

5. Every rational number have either terminating or repeating (recurring) decimal representation. CHAPTER NUMBER SYSTEMS Points to Rememer :. Numer used for ounting,,,,... re known s Nturl numers.. All nturl numers together with zero i.e. 0,,,,,... re known s whole numers.. All nturl numers, zero nd

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 4 hemical Reaction Engineering (RE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. hapter 4 Lecture 4 Block 1

More information

Flow in porous media

Flow in porous media Red: Ch 2. nd 2.2 PART 4 Flow in porous medi Drcy s lw Imgine point (A) in column of wter (figure below); the point hs following chrcteristics: () elevtion z (2) pressure p (3) velocity v (4) density ρ

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Joint distribution. Joint distribution. Marginal distributions. Joint distribution

Joint distribution. Joint distribution. Marginal distributions. Joint distribution Joint distribution To specify the joint distribution of n rndom vribles X 1,...,X n tht tke vlues in the smple spces E 1,...,E n we need probbility mesure, P, on E 1... E n = {(x 1,...,x n ) x i E i, i

More information

N=4 super Yang-Mills Plasma

N=4 super Yang-Mills Plasma N= suer Yng-Mills Plsm Alin Czjk Institute o Physis, Jn Kohnowski University, Kiele, Polnd bsed on: A. Czjk & St. Mrówzyński, rxiv: 10.1856 [he-th] A. Czjk & St. Mrówzyński, Physil Review D8 011 06501

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

CHAPTER 20: Second Law of Thermodynamics

CHAPTER 20: Second Law of Thermodynamics CHAER 0: Second Lw of hermodynmics Responses to Questions 3. kg of liquid iron will hve greter entropy, since it is less ordered thn solid iron nd its molecules hve more therml motion. In ddition, het

More information

5 Accumulated Change: The Definite Integral

5 Accumulated Change: The Definite Integral 5 Accumulted Chnge: The Definite Integrl 5.1 Distnce nd Accumulted Chnge * How To Mesure Distnce Trveled nd Visulize Distnce on the Velocity Grph Distnce = Velocity Time Exmple 1 Suppose tht you trvel

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Formula for Trapezoid estimate using Left and Right estimates: Trap( n) If the graph of f is decreasing on [a, b], then f ( x ) dx

Formula for Trapezoid estimate using Left and Right estimates: Trap( n) If the graph of f is decreasing on [a, b], then f ( x ) dx Fill in the Blnks for the Big Topis in Chpter 5: The Definite Integrl Estimting n integrl using Riemnn sum:. The Left rule uses the left endpoint of eh suintervl.. The Right rule uses the right endpoint

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Deriving (9.21) in Walsh (2003)

Deriving (9.21) in Walsh (2003) Deriving (9.21) in Wlsh (2003) "Monetry Eonomis: Mro Aspets" Institute of Eonomis, University of Copenhgen Henrik Jensen Mrh 24, 2004 Abstrt This note shows how to derive the nominl interest rte seuring

More information

Math 5440 Problem Set 3 Solutions

Math 5440 Problem Set 3 Solutions Mth 544 Mth 544 Problem Set 3 Solutions Aron Fogelson Fll, 25 1: Logn, 1.5 # 2) Repet the derivtion for the eqution of motion of vibrting string when, in ddition, the verticl motion is retrded by dmping

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

SPE Improved Permeability Prediction Relations for Low Permeability Sands

SPE Improved Permeability Prediction Relations for Low Permeability Sands SPE 07954 Imroved Permebility Prediction Reltions for Low Permebility Snds Frncois-Andre Florence, Texs A&M University T.A. Blsingme, Texs A&M University Dertment of Petroleum Engineering Texs A&M University

More information

Gauss Quadrature Rule of Integration

Gauss Quadrature Rule of Integration Guss Qudrture Rule o Integrtion Mjor: All Engineering Mjors Authors: Autr Kw, Chrlie Brker http://numerilmethods.eng.us.edu Trnsorming Numeril Methods Edution or STEM Undergrdutes /0/00 http://numerilmethods.eng.us.edu

More information

The Properties of Stars

The Properties of Stars 10/11/010 The Properties of Strs sses Using Newton s Lw of Grvity to Determine the ss of Celestil ody ny two prticles in the universe ttrct ech other with force tht is directly proportionl to the product

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106

18.06 Problem Set 4 Due Wednesday, Oct. 11, 2006 at 4:00 p.m. in 2-106 8. Problem Set Due Wenesy, Ot., t : p.m. in - Problem Mony / Consier the eight vetors 5, 5, 5,..., () List ll of the one-element, linerly epenent sets forme from these. (b) Wht re the two-element, linerly

More information