Tema Tendências em Matemática Aplicada e Computacional, 18, N. 2 (2017),

Size: px
Start display at page:

Download "Tema Tendências em Matemática Aplicada e Computacional, 18, N. 2 (2017),"

Transcription

1 Tema Tendências em Matemática Aplicada e Computacional, 18, N ), Sociedade Brasileira de Matemática Aplicada e Computacional wwwscielobr/tema doi: /tema New Extension for Sub Equation Method and its Application to the Time-fractional Burgers Equation by using of Fractional Derivative A NEIRAMEH Received on August 20, 2016 / Accepted on February 17, 2017 ABSTRACT In this paper, we use the new fractional complex transform and the sub-equation method to study the nonlinear fractional differential equations and find the exact solutions These solitary wave solutions demonstrate the fact that solutions to the perturbed nonlinear Schrodinger equation with power law nonlinearity model can exhibit a variety of behaviors Keywords: Time-fractional Burgers equation, Fractional calculus, sub-equation method 1 INTRODUCTION With the availability of symbolic computation packages like Maple or Mathematica, direct searching for exact solutions of nonlinear systems of partial differential equations PDEs) has become more and more attractive Having exact solutions of nonlinear systems of PDEs makes it possible to study nonlinear physical phenomena thoroughly and facilitates testing the numerical solvers as well as aiding the stability analysis of solutions Wide classes of analytical methods have been proposed for solving the fractional differential equations, such as the fractional subequation method [1 3], the first integral method [4], and the G /G)-expansion method [5, 6], which can be used to construct the exact solutions for some time and space fractional differential equations Based on these methods, a variety of fractional differential equations have been investigated and solved In this present paper we applied the new extension of sub-equation method for finding new exact solitary wave solutions for time-fractional Burgers equation in the following form, u q εu t x v 2 u = 0, 0 < 1, t > 0 11) x2 Recently, a new modification of Riemann-Liouville derivative is proposed by Jumarie [7]: Dx a f x) = 1 d Ɣ1 ) dx x 0 x ε) f ε) f 0)) dε, 0 <<1 Department of Mathematics, Faculty of Sciences, Gonbad Kavous University, Gonbad, Iran s: aneirameh@gonbadacir; aneirameh@gmailcom

2 226 NEW EXTENSION FOR SUB EQUATION METHOD and gave some basic fractional calculus formulae, for example, formulae 4 12) and 4 13) in [7]: Dx u x)vx)) = vx) D x u x)) u x) D x v x)), Dx f u x))) = f u u) D x u x)) = D x u x) f u), 12) The last formula has been applied to solve the exact solutions to some nonlinear fractional order differential equations If this formula were true, then we could take the transformation kt ξ = x Ɣ1 ) and reduce the partial derivative U x, t) t to U ξ) Therefore the corresponding fractional differential equations become the ordinary differential equations which are easy to study But we must point out that Jumarie s basic formulae and are not correct, and therefore the corresponding results on differential equations are not true [8] Fractional derivative is as old as calculus The most popular definitions are [9 12]: i) Riemann-Liouville definition: If n is a positive integer and [n 1, n) the th derivative of f is given by d n Da f t) = 1 Ɣn ) dt n t a f x) t x) n1 dx ii) Caputo Definition For [n 1, n) the derivative of f is Da f t) = 1 t Ɣn ) a f n x) t x) n1 dx Now, all definitions are attempted to satisfy the usual properties of the standard derivative The only property inherited by all definitions of fractional derivative is the linearity property However, the following are the setbacks of one definition or another: i) The Riemann-Liouville derivative does not satisfy D a 1) = 0 D a 1)) = 0fortheCaputo derivative), if is not a natural number ii) All fractional derivatives do not satisfy the known product rule D a fg) = fd a g) gd a f ) iii) All fractional derivatives do not satisfy the known product rule ) f Da = fd a g) gd a f ) g g 2 Tend Mat Apl Comput, 18, N )

3 NEIRAMEH 227 iv) All fractional derivatives do not satisfy the known quotient rule: D a fog)t) = f g t)) g t) v) All fractional derivatives do not satisfy the chain rule: D D β f = D β f in general vi) Caputo definition assumes that the function f is differentiable Authors introduced a new definition of fractional derivative as follows [16]: For [0, 1), and f : [0, ) Rlet f t ξ t 1 ) f t) T f )t) = lim ξ 0 ξ For t > 0, 0, 1) T is called the conformable fractional derivative of f of order [17 18] Definition 11 Let f t) stands for T f )t) Hence f f t ξ t 1 ) f t) t) = lim ξ 0 ξ Iffis-differentiable in some 0, a),a> 0, and lim f t) exists, then by definition t 0 f 0) = lim f t) t 0 We should remark that T t μ ) = μt μ Further, this definition coincides with the classical definitions of R-L and of Caputo on polynomials up to a constant multiple) One can easily show that T satisfies all the properties in the theorem [15 16] Theorem 11 Let [0, 1) and f, gbe-differentiable at a point t Then: i) T af bg) = at f ) bt g),for all a, b R; ii) T t μ ) = μt μ, for all μ R; iii) T fg) = ft g) gt f ); ) f iv) T = ft g) gt f ) g g 2 If, in addition, f is differentiable, then T f )t) = t 1 df dt Theorem 12 Let f : [0, ) R be a function such that f is differentiable and also differentiable Let g be a function defined in the range of f and also differentiable; then, one has the following rule [17]: T fog)t) = t 1 g t) f g t)) The above rule is referred to as Atangana beta-rule We will present new derivative for some special functions Tend Mat Apl Comput, 18, N )

4 228 NEW EXTENSION FOR SUB EQUATION METHOD i) T e cx ) = cx 1 e cx, c R ii) T sin bx) = bx 1 cos bx, b R iii) T cos bx) =bx 1 sin bx, b R iv) T 1 x ) = 1 However, it is worth noting the following fractional derivatives of certain functions: i) T e 1 t ) = e 1 t ii) T sin 1 t ) = cos 1 t iii) T cos 1 t ) =sin 1 t Definition 12 Fractional Integral) Let a 0 and t a Also, let f be a function defined on a, t] and fthenthe-fractional integral of f is defined by, I a f )t) = t a f x) dx x1 if the Riemann improper integral exists It is interesting to observe that the -fractional derivative [15 16] Theorem 13 Inverse property) Let a 0, and 0, 1) Also, let f be a continuous function such that Ia f exists Then T I a f ) t) = f t), for t a In this paper, we obtain the exact solution of the fractional perturbed nonlinear Schrodinger equation with power law nonlinearity by means of the sub-equation method The sub-equation method is a powerful solution method for the computation of exact traveling wave solutions This method is one of the most direct and effective algebraic methods for finding exact solutions of nonlinear fractional partial differential equations FPDEs) The method is based on the homogeneous balance principle and the Jumarie s modified Riemann-Liouville derivative of fractional order 2 METHOD APPLIED Suppose that nonlinear fractional partial differential equations, say, in three independent variable x, y and t is given by ) G u, Dt u, D x u, D y u, D2 t u, Dx 2, D t D x u, = 0, 0 < 1 21) where Dx u, D y u and D t u are comformable fractional derivatives of u, u x, y, t) is an unknown function, G is a polynomial in u and its various partial derivatives, in which the highest order derivatives and nonlinear terms are involved This method consists of the following steps: Tend Mat Apl Comput, 18, N )

5 NEIRAMEH 229 Step 21 Using a wave transformation u = uξ ), ξ = k x l y c t, 22) Where k and c are real constants This enables us to use the following changes: D t ) = c d dξ, D x ) = k d dξ, D y ) = l d dξ, D2 x d2 ) = k2 dξ 2 Under the transformation 22), Eq21) becomes an ordinary differential equation where u = du dξ Nu, u, u, u,)= 0, 23) Step 22 We assume that the solution of Eq 23) is of the form uξ ) = m a i m Fξ )) i i=0 2m i=m1 a i m Fξ )) mi, 24) where a i i = 1, 2,,n) are real constants to be determined later Fξ ) expresses the solution of the auxiliary ordinary differential equation F ξ ) = γt) F 2 ξ ) βt) F ξ ) t), 25) Eq 25) admits the following solutions: { b tanh bξ), b < 0 9a) Fξ ) = b coth bξ), b < 0 9b) Fξ ) = { b tan bξ), b > 0 9c) b cot bξ), b > 0 9d) 26) Fξ ) = 1 ξξ 0, ξ 0 = const, b = 0 9e) Integer m in 24) can be determined by considering homogeneous balance between the nonlinear terms and the highest derivatives of uξ )in Eq 23) polynomial in Fξ ), equating each coefficient of the polynomial to zero yields a set of algebraic equations for a i, k, c Step 23 Solving the algebraic equations obtained in Step 3, and substituting the results into 23), then we obtain the exact traveling wave solutions for Eq 21) Tend Mat Apl Comput, 18, N )

6 230 NEW EXTENSION FOR SUB EQUATION METHOD 3 APPLICATION TO THE TIME-FRACTIONAL BURGERS EQUATAION Using a wave transformation ux, t) = Uξ ), ξ = kx ct, 31) by substituting Eq 31), into Eq 11) is reduced into an ODE by integrating once, we find Balancing U with U 2 in Eq 32) give cu UU k 2 vu = 0, ξ 0 cu 1 2 U 2 k 2 vu = 0 32) m 1 = 2m m = 1 We then assume that Eq 32) has the following formal solution: Uξ ) = a 0 a 1 h F) a 2 h F) 1, 33) by considering the F ξ) h = in Eq 33) we have and U ξ) = a 0 a 1 a 2 1, 34) = γ 2 β 2γ h) γ h 2 βh 35) Substituting Eqs 34) 35) into Eq 32) and collecting all terms with the same order of ψ j together, we convert the left-hand side of Eq 32) into a polynomial in F j Setting each coefficient of each polynomial to zero, we derive a set of algebraic equations for a 0, a 1, a 2 and h By solving these algebraic equations we have a 1 = 2kvγ ε a 0 = c k2 vβ 2k 2 vγ h a 2 = 2kv γ h2 βh) ε h = 1 β 2 γ, c = 2ξ 0 16k 4 v 2 γ 4k 4 v 2 β 2 So from 31) we have solitary wave solutions of Eq 11) as follows Tend Mat Apl Comput, 18, N )

7 NEIRAMEH 231 If b < 0 and If b > 0 and u 1 x, t) = ck2 vβ2k 2 vγ h 2kvγ 1 β ε 2 γ [ b b tanh kx 2kvγ h 2 βh) 1 β ε 2 γ [ b b tanh kx u 2 x, t) = ck2 vβ2k 2 vγ h 2kvγ 1 β ε 2 γ [ b b coth kx 2kvγ h 2 βh) 1 β ε 2 γ [ b b coth kx u 3 x, t) = ck2 vβ2k 2 vγ h [ 2kvγ 1 β b ε 2 γ b tan kx 2kvγ h 2 βh) 1 β ε 2 γ b tan 2ξ0 k16k 4 v 2 γ4k 4 v 2 β 2 t )]) 2ξ0 k16k 4 v 2 γ4k 4 v 2 β 2 t 2ξ0 k16k 4 v 2 γ4k 4 v 2 β 2 t 2ξ0 k16k 4 v 2 γ4k 4 v 2 β 2 t [ b kx u 4 x, t) = ck2 vβ2k 2 vγ h 2kvγ 1 β ε 2 γ [ b b cot kx 2kvγ h 2 βh) 1 β ε 2 γ [ b b cot kx If b = 0 we have solution of Eq 11) as follow u 5 x, t) = ck2 vβ2k 2 vγ h 2kvγ ε 4 CONCLUSION )]) 2ξ0 k16k 4 v 2 γ4k 4 v 2 β 2 t 2ξ0 k16k 4 v 2 γ4k 4 v 2 β 2 t 2ξ0 k16k 4 v 2 γ4k 4 v 2 β 2 t 1 β 2 γ kx 2ξ 0 16k 4 v 2 γ4k 4 v 2 β 2 t ξ 0 2kvγ h 2 βh) ε )]) )]) 2ξ0 k16k 4 v 2 γ4k 4 v 2 β 2 t ) 1 β 2 γ kx 2ξ 0 16k 4 v 2 γ4k 4 v 2 β 2 t ξ 0 ) 1 )]) 1, )]) 1 )]) 1, )]) 1 Now, we briefly summarize the results in this paper Firstly, the fractional complex transform is extremely simple but effective for solving nonlinear fractional differential equations Secondly, the sub-equation method for nonlinear fractional differential equations with fractional complex transform has its own advantages: direct, succinct, and basic; and it can be used for many other nonlinear equations Thirdly, to our knowledge, the solutions obtained in this paper have not been reported in the literature so far Tend Mat Apl Comput, 18, N )

8 232 NEW EXTENSION FOR SUB EQUATION METHOD 5 ACKNOWLEDGEMENTS I would like to express thanks to the editor and anonymous referees for their useful and valuable comments and suggestions RESUMO Neste artigo usamos uma nova transformação fracional complexa e o método da sub-equação para estudar equações diferenciais não lineares e encontrar soluções exatas As soluções de onda encontradas mostram que as soluções da equação não linear de Schrodinger perturbada com um modelo não linear de lei das potências pode apresentar diversos comportamentos diferentes Palavras-chave: Equação de Burgers, cálculo fracionário, método sub-equação REFERENCES [1] S Zhang & HQ Zhang Phys Lett A, ), 1069 [2] B Tong, Y He, L Wei & X Zhang Phys Lett A, ), 2588 [3] S Guo, L Mei, Y Li & Y Sun Phys Lett A, ), 407 [4] B Lu J Math Anal Appl, ), [5] B Zheng Commun Theor Phys, ), 623 [6] KA Gepreel & S Omran Chin Phys B, ), [7] G Jumarie Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results Computers and Mathematics with Applications, ), [8] C-s Liu Counter examples on Jumarie s two basic fractional calculus formulae Communications in Nonlinear Science and Numerical Simulation, 223) 2015), 9294 [9] I Podlubny Fractional Diferential Equations, Academic Press, 1999) [10] SG Samko, AA Kilbas & OI Marichev Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, 1993) [11] AA Kilbas, MH Srivastava & JJ Trujillo Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006) [12] AA Kilbas & M Saigo On solution of integral equation of Abel-Volterra type Diff Integr Equat, 85) 1995), [13] T Abdeljawad On conformable fractional calculus Journal of Computational and Applied Mathematics, ), [14] T Abdeljawad, M Al Horani & R Khalil Conformable fractional semigroup operators Journal of Semigroup Theory and Applications, 2015), Article 7, 1 9 [15] M Abu Hammad & R Khalil Conformable heat differential equation International Journal of Pure and Applied Mathematics, 942) 2014), [16] R Khalil, M Al Horani, A Yousef & M Sababheh A new definition of fractional derivative Journal of Computational and Applied Mathematics, ), Tend Mat Apl Comput, 18, N )

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD

EXACT TRAVELING WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USING THE IMPROVED (G /G) EXPANSION METHOD Jan 4. Vol. 4 No. 7-4 EAAS & ARF. All rights reserved ISSN5-869 EXACT TRAVELIN WAVE SOLUTIONS FOR NONLINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS USIN THE IMPROVED ( /) EXPANSION METHOD Elsayed M.

More information

Soliton Solutions of the Time Fractional Generalized Hirota-satsuma Coupled KdV System

Soliton Solutions of the Time Fractional Generalized Hirota-satsuma Coupled KdV System Appl. Math. Inf. Sci. 9, No., 17-153 (015) 17 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.1/amis/090 Soliton Solutions of the Time Fractional Generalized Hirota-satsuma

More information

Exact Solutions For Fractional Partial Differential Equations By A New Generalized Fractional Sub-equation Method

Exact Solutions For Fractional Partial Differential Equations By A New Generalized Fractional Sub-equation Method Exact Solutions For Fractional Partial Differential Equations y A New eneralized Fractional Sub-equation Method QINHUA FEN Shandong University of Technology School of Science Zhangzhou Road 12, Zibo, 255049

More information

Application of fractional sub-equation method to the space-time fractional differential equations

Application of fractional sub-equation method to the space-time fractional differential equations Int. J. Adv. Appl. Math. and Mech. 4(3) (017) 1 6 (ISSN: 347-59) Journal homepage: www.ijaamm.com IJAAMM International Journal of Advances in Applied Mathematics and Mechanics Application of fractional

More information

The solutions of time and space conformable fractional heat equations with conformable Fourier transform

The solutions of time and space conformable fractional heat equations with conformable Fourier transform Acta Univ. Sapientiae, Mathematica, 7, 2 (25) 3 4 DOI:.55/ausm-25-9 The solutions of time and space conformable fractional heat equations with conformable Fourier transform Yücel Çenesiz Department of

More information

THE FRACTIONAL (Dξ α G/G)-EXPANSION METHOD AND ITS APPLICATIONS FOR SOLVING FOUR NONLINEAR SPACE-TIME FRACTIONAL PDES IN MATHEMATICAL PHYSICS

THE FRACTIONAL (Dξ α G/G)-EXPANSION METHOD AND ITS APPLICATIONS FOR SOLVING FOUR NONLINEAR SPACE-TIME FRACTIONAL PDES IN MATHEMATICAL PHYSICS italian journal of pure and applied mathematics n. 34 015 (463 48 463 THE FRACTIONAL (Dξ /-EXPANSION METHOD AND ITS APPLICATIONS FOR SOLVIN FOUR NONLINEAR SPACE-TIME FRACTIONAL PDES IN MATHEMATICAL PHYSICS

More information

Conformable variational iteration method

Conformable variational iteration method NTMSCI 5, No. 1, 172-178 (217) 172 New Trends in Mathematical Sciences http://dx.doi.org/1.2852/ntmsci.217.135 Conformable variational iteration method Omer Acan 1,2 Omer Firat 3 Yildiray Keskin 1 Galip

More information

New structure for exact solutions of nonlinear time fractional Sharma- Tasso-Olver equation via conformable fractional derivative

New structure for exact solutions of nonlinear time fractional Sharma- Tasso-Olver equation via conformable fractional derivative Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 192-9466 Vol. 12, Issue 1 (June 2017), pp. 405-414 Applications and Applied Mathematics: An International Journal (AAM) New structure for exact

More information

arxiv: v2 [math.ca] 8 Nov 2014

arxiv: v2 [math.ca] 8 Nov 2014 JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0894-0347(XX)0000-0 A NEW FRACTIONAL DERIVATIVE WITH CLASSICAL PROPERTIES arxiv:1410.6535v2 [math.ca] 8 Nov 2014 UDITA

More information

New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations

New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations Volume 28, N. 1, pp. 1 14, 2009 Copyright 2009 SBMAC ISSN 0101-8205 www.scielo.br/cam New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations HASSAN A. ZEDAN Mathematics

More information

arxiv: v1 [math.ca] 28 Feb 2014

arxiv: v1 [math.ca] 28 Feb 2014 Communications in Nonlinear Science and Numerical Simulation. Vol.18. No.11. (213) 2945-2948. arxiv:142.7161v1 [math.ca] 28 Feb 214 No Violation of the Leibniz Rule. No Fractional Derivative. Vasily E.

More information

EXP-FUNCTION AND -EXPANSION METHODS

EXP-FUNCTION AND -EXPANSION METHODS SOLVIN NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS USIN EXP-FUNCTION AND -EXPANSION METHODS AHMET BEKIR 1, ÖZKAN ÜNER 2, ALI H. BHRAWY 3,4, ANJAN BISWAS 3,5 1 Eskisehir Osmangazi University, Art-Science

More information

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations

Research Article The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2012, Article ID 924956, 11 pages doi:10.1155/2012/924956 Research Article The Extended Fractional Subequation Method for Nonlinear

More information

EXACT SOLUTION TO TIME FRACTIONAL FIFTH-ORDER KORTEWEG-DE VRIES EQUATION BY USING (G /G)-EXPANSION METHOD. A. Neamaty, B. Agheli, R.

EXACT SOLUTION TO TIME FRACTIONAL FIFTH-ORDER KORTEWEG-DE VRIES EQUATION BY USING (G /G)-EXPANSION METHOD. A. Neamaty, B. Agheli, R. Acta Universitatis Apulensis ISSN: 1582-5329 http://wwwuabro/auajournal/ No 44/2015 pp 21-37 doi: 1017114/jaua20154403 EXACT SOLUTION TO TIME FRACTIONAL FIFTH-ORDER KORTEWEG-DE VRIES EQUATION BY USING

More information

Handling the fractional Boussinesq-like equation by fractional variational iteration method

Handling the fractional Boussinesq-like equation by fractional variational iteration method 6 ¹ 5 Jun., COMMUN. APPL. MATH. COMPUT. Vol.5 No. Å 6-633()-46-7 Handling the fractional Boussinesq-like equation by fractional variational iteration method GU Jia-lei, XIA Tie-cheng (College of Sciences,

More information

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation

New explicit solitary wave solutions for (2 + 1)-dimensional Boussinesq equation and (3 + 1)-dimensional KP equation Physics Letters A 07 (00) 107 11 www.elsevier.com/locate/pla New explicit solitary wave solutions for ( + 1)-dimensional Boussinesq equation and ( + 1)-dimensional KP equation Yong Chen, Zhenya Yan, Honging

More information

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients International Journal of Difference Equations ISSN 0973-6069, Volume 0, Number, pp. 9 06 205 http://campus.mst.edu/ijde Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

More information

EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD

EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD THERMAL SCIENCE, Year 15, Vol. 19, No. 4, pp. 139-144 139 EXACT SOLUTIONS OF NON-LINEAR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS BY FRACTIONAL SUB-EQUATION METHOD by Hong-Cai MA a,b*, Dan-Dan YAO a, and

More information

Hyperbolic Tangent ansatz method to space time fractional modified KdV, modified EW and Benney Luke Equations

Hyperbolic Tangent ansatz method to space time fractional modified KdV, modified EW and Benney Luke Equations Hyperbolic Tangent ansatz method to space time fractional modified KdV, modified EW and Benney Luke Equations Ozlem Ersoy Hepson Eskişehir Osmangazi University, Department of Mathematics & Computer, 26200,

More information

A truncation regularization method for a time fractional diffusion equation with an in-homogeneous source

A truncation regularization method for a time fractional diffusion equation with an in-homogeneous source ITM Web of Conferences, 7 18) ICM 18 https://doi.org/1.151/itmconf/187 A truncation regularization method for a time fractional diffusion equation with an in-homogeneous source Luu Vu Cam Hoan 1,,, Ho

More information

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation International Differential Equations Volume 2010, Article ID 764738, 8 pages doi:10.1155/2010/764738 Research Article He s Variational Iteration Method for Solving Fractional Riccati Differential Equation

More information

Exact Solutions for Generalized Klein-Gordon Equation

Exact Solutions for Generalized Klein-Gordon Equation Journal of Informatics and Mathematical Sciences Volume 4 (0), Number 3, pp. 35 358 RGN Publications http://www.rgnpublications.com Exact Solutions for Generalized Klein-Gordon Equation Libo Yang, Daoming

More information

THE MODIFIED SIMPLE EQUATION METHOD FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

THE MODIFIED SIMPLE EQUATION METHOD FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS THE MODIFIED SIMPLE EQUATION METHOD FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS MELIKE KAPLAN 1,a, AHMET BEKIR 1,b, ARZU AKBULUT 1,c, ESIN AKSOY 2 1 Eskisehir Osmangazi University, Art-Science Faculty,

More information

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

A new method for solving nonlinear fractional differential equations

A new method for solving nonlinear fractional differential equations NTMSCI 5 No 1 225-233 (2017) 225 New Trends in Mathematical Sciences http://dxdoiorg/1020852/ntmsci2017141 A new method for solving nonlinear fractional differential equations Serife Muge Ege and Emine

More information

British Journal of Applied Science & Technology 10(2): 1-11, 2015, Article no.bjast ISSN:

British Journal of Applied Science & Technology 10(2): 1-11, 2015, Article no.bjast ISSN: British Journal of Applied Science & Technology 10(2): 1-11, 2015, Article no.bjast.18590 ISSN: 2231-0843 SCIENCEDOMAIN international www.sciencedomain.org Solutions of Sequential Conformable Fractional

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS

A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS U.P.B. Sci. Bull., Series A, Vol. 76, Iss., 014 ISSN 1-707 A NEW VARIABLE-COEFFICIENT BERNOULLI EQUATION-BASED SUB-EQUATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS Bin Zheng 1 In this paper,

More information

Elsayed M. E. Zayed 1 + (Received April 4, 2012, accepted December 2, 2012)

Elsayed M. E. Zayed 1 + (Received April 4, 2012, accepted December 2, 2012) ISSN 746-7659, England, UK Journal of Information and Computing Science Vol. 8, No., 03, pp. 003-0 A modified (G'/G)- expansion method and its application for finding hyperbolic, trigonometric and rational

More information

Department of Applied Mathematics, Dalian University of Technology, Dalian , China

Department of Applied Mathematics, Dalian University of Technology, Dalian , China Commun Theor Phys (Being, China 45 (006 pp 199 06 c International Academic Publishers Vol 45, No, February 15, 006 Further Extended Jacobi Elliptic Function Rational Expansion Method and New Families of

More information

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations

New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.008) No.1,pp.4-5 New Exact Travelling Wave Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Euations

More information

Applied Mathematics Letters. A reproducing kernel method for solving nonlocal fractional boundary value problems

Applied Mathematics Letters. A reproducing kernel method for solving nonlocal fractional boundary value problems Applied Mathematics Letters 25 (2012) 818 823 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml A reproducing kernel method for

More information

THE NEW SUB-EQUATION METHOD FOR GENERAL KAUP-KUPERSHMIDT EQUATION FROM CAPILLARY GRAVITY WAVES WITH CONFORMABLE DERIVATIVE

THE NEW SUB-EQUATION METHOD FOR GENERAL KAUP-KUPERSHMIDT EQUATION FROM CAPILLARY GRAVITY WAVES WITH CONFORMABLE DERIVATIVE Acia Pac J Math 019 6:3 THE NEW SUB-EQUATION METHOD FOR GENERAL KAUP-KUPERSHMIDT EQUATION FROM CAPILLARY GRAVITY WAVES WITH CONFORMABLE DERIVATIVE HADI REZAZADEH 1 ALI KURT MOSTAFA ESLAMI 3 MOHAMMAD MIRZAZADEH

More information

The Solitary Wave Solutions of Zoomeron Equation

The Solitary Wave Solutions of Zoomeron Equation Applied Mathematical Sciences, Vol. 5, 011, no. 59, 943-949 The Solitary Wave Solutions of Zoomeron Equation Reza Abazari Deparment of Mathematics, Ardabil Branch Islamic Azad University, Ardabil, Iran

More information

Some New Results on the New Conformable Fractional Calculus with Application Using D Alambert Approach

Some New Results on the New Conformable Fractional Calculus with Application Using D Alambert Approach Progr. Fract. Differ. Appl. 2, No. 2, 115-122 (2016) 115 Progress in Fractional Differentiation and Applications An International Journal http://dx.doi.org/10.18576/pfda/020204 Some New Results on the

More information

AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 215 (215), No. 95, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu AN EXTENSION OF THE

More information

A Legendre Computational Matrix Method for Solving High-Order Fractional Differential Equations

A Legendre Computational Matrix Method for Solving High-Order Fractional Differential Equations Mathematics A Legendre Computational Matrix Method for Solving High-Order Fractional Differential Equations Mohamed Meabed KHADER * and Ahmed Saied HENDY Department of Mathematics, Faculty of Science,

More information

PRAMANA c Indian Academy of Sciences Vol. 83, No. 3 journal of September 2014 physics pp

PRAMANA c Indian Academy of Sciences Vol. 83, No. 3 journal of September 2014 physics pp PRAMANA c Indian Academy of Sciences Vol. 83, No. 3 journal of September 204 physics pp. 37 329 Exact travelling wave solutions of the (3+)-dimensional mkdv-zk equation and the (+)-dimensional compound

More information

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method

Travelling Wave Solutions for the Gilson-Pickering Equation by Using the Simplified G /G-expansion Method ISSN 1749-3889 (print, 1749-3897 (online International Journal of Nonlinear Science Vol8(009 No3,pp368-373 Travelling Wave Solutions for the ilson-pickering Equation by Using the Simplified /-expansion

More information

The local fractional Hilbert transform in fractal space

The local fractional Hilbert transform in fractal space The local fractional ilbert transform in fractal space Guang-Sheng Chen Department of Computer Engineering, Guangxi Modern Vocational Technology College, echi,guangxi, 547000, P.. China E-mail address:

More information

Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method

Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method Solution of Conformable Fractional Ordinary Differential Equations via Differential Transform Method Emrah Ünal a, Ahmet Gödoğan b a Department of Elementary Mathematics Education, Artvin Çoruh University,

More information

Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation

Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation Applied Mathematics & Information Sciences 4(2) (2010), 253 260 An International Journal c 2010 Dixie W Publishing Corporation, U. S. A. Periodic and Solitary Wave Solutions of the Davey-Stewartson Equation

More information

A Generalized Extended F -Expansion Method and Its Application in (2+1)-Dimensional Dispersive Long Wave Equation

A Generalized Extended F -Expansion Method and Its Application in (2+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 6 (006) pp. 580 586 c International Academic Publishers Vol. 6, No., October 15, 006 A Generalized Extended F -Expansion Method and Its Application in (+1)-Dimensional

More information

EXACT TRAVELLING WAVE SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS

EXACT TRAVELLING WAVE SOLUTIONS FOR NONLINEAR SCHRÖDINGER EQUATION WITH VARIABLE COEFFICIENTS Journal of Applied Analysis and Computation Volume 7, Number 4, November 2017, 1586 1597 Website:http://jaac-online.com/ DOI:10.11948/2017096 EXACT TRAVELLIN WAVE SOLUTIONS FOR NONLINEAR SCHRÖDINER EQUATION

More information

DIfferential equations of fractional order have been the

DIfferential equations of fractional order have been the Multistage Telescoping Decomposition Method for Solving Fractional Differential Equations Abdelkader Bouhassoun Abstract The application of telescoping decomposition method, developed for ordinary differential

More information

The Modified (G /G)-Expansion Method for Nonlinear Evolution Equations

The Modified (G /G)-Expansion Method for Nonlinear Evolution Equations The Modified ( /-Expansion Method for Nonlinear Evolution Equations Sheng Zhang, Ying-Na Sun, Jin-Mei Ba, and Ling Dong Department of Mathematics, Bohai University, Jinzhou 11000, P. R. China Reprint requests

More information

Abstract We paid attention to the methodology of two integral

Abstract We paid attention to the methodology of two integral Comparison of Homotopy Perturbation Sumudu Transform method and Homotopy Decomposition method for solving nonlinear Fractional Partial Differential Equations 1 Rodrigue Batogna Gnitchogna 2 Abdon Atangana

More information

Positive solutions for a class of fractional boundary value problems

Positive solutions for a class of fractional boundary value problems Nonlinear Analysis: Modelling and Control, Vol. 21, No. 1, 1 17 ISSN 1392-5113 http://dx.doi.org/1.15388/na.216.1.1 Positive solutions for a class of fractional boundary value problems Jiafa Xu a, Zhongli

More information

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation

An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson Equation Commun. Theor. Phys. (Beijing, China) 50 (008) pp. 309 314 c Chinese Physical Society Vol. 50, No., August 15, 008 An Improved F-Expansion Method and Its Application to Coupled Drinfel d Sokolov Wilson

More information

Exact Solutions of Space-time Fractional EW and modified EW equations

Exact Solutions of Space-time Fractional EW and modified EW equations arxiv:1601.01294v1 [nlin.si] 6 Jan 2016 Exact Solutions of Space-time Fractional EW and modified EW equations Alper Korkmaz Department of Mathematics, Çankırı Karatekin University, Çankırı, TURKEY January

More information

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics

The (G'/G) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics Vol.3, Issue., Jan-Feb. 3 pp-369-376 ISSN: 49-6645 The ('/) - Expansion Method for Finding Traveling Wave Solutions of Some Nonlinear Pdes in Mathematical Physics J.F.Alzaidy Mathematics Department, Faculty

More information

Exact traveling wave solutions of nonlinear variable coefficients evolution equations with forced terms using the generalized.

Exact traveling wave solutions of nonlinear variable coefficients evolution equations with forced terms using the generalized. Exact traveling wave solutions of nonlinear variable coefficients evolution equations with forced terms using the generalized expansion method ELSAYED ZAYED Zagazig University Department of Mathematics

More information

New Exact Solutions for MKdV-ZK Equation

New Exact Solutions for MKdV-ZK Equation ISSN 1749-3889 (print) 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.3pp.318-323 New Exact Solutions for MKdV-ZK Equation Libo Yang 13 Dianchen Lu 1 Baojian Hong 2 Zengyong

More information

A New Generalized Riccati Equation Rational Expansion Method to Generalized Burgers Fisher Equation with Nonlinear Terms of Any Order

A New Generalized Riccati Equation Rational Expansion Method to Generalized Burgers Fisher Equation with Nonlinear Terms of Any Order Commun. Theor. Phys. Beijing China) 46 006) pp. 779 786 c International Academic Publishers Vol. 46 No. 5 November 15 006 A New Generalized Riccati Equation Rational Expansion Method to Generalized Burgers

More information

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions

Boundary value problems for fractional differential equations with three-point fractional integral boundary conditions Sudsutad and Tariboon Advances in Difference Equations 212, 212:93 http://www.advancesindifferenceequations.com/content/212/1/93 R E S E A R C H Open Access Boundary value problems for fractional differential

More information

Exact Solutions of Kuramoto-Sivashinsky Equation

Exact Solutions of Kuramoto-Sivashinsky Equation I.J. Education and Management Engineering 01, 6, 61-66 Published Online July 01 in MECS (http://www.mecs-press.ne DOI: 10.5815/ijeme.01.06.11 Available online at http://www.mecs-press.net/ijeme Exact Solutions

More information

Analytic solution of fractional integro-differential equations

Analytic solution of fractional integro-differential equations Annals of the University of Craiova, Mathematics and Computer Science Series Volume 38(1), 211, Pages 1 1 ISSN: 1223-6934 Analytic solution of fractional integro-differential equations Fadi Awawdeh, E.A.

More information

New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics

New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics Commun. Theor. Phys. 6 (014) 689 696 Vol. 6 No. 5 November 1 014 New Solutions of Three Nonlinear Space- Time-Fractional Partial Differential Equations in Mathematical Physics YAO Ruo-Xia ( ) 1 WANG Wei

More information

Critical exponents for a nonlinear reaction-diffusion system with fractional derivatives

Critical exponents for a nonlinear reaction-diffusion system with fractional derivatives Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume Number 6 (06 pp. 5343 535 Research India Publications http://www.ripublication.com/gjpam.htm Critical exponents f a nonlinear reaction-diffusion

More information

The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations

The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equations MM Research Preprints, 275 284 MMRC, AMSS, Academia Sinica, Beijing No. 22, December 2003 275 The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear

More information

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method

Exact Travelling Wave Solutions of the Coupled Klein-Gordon Equation by the Infinite Series Method Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 6, Issue (June 0) pp. 3 3 (Previously, Vol. 6, Issue, pp. 964 97) Applications and Applied Mathematics: An International Journal (AAM)

More information

Solvability of Neumann boundary value problem for fractional p-laplacian equation

Solvability of Neumann boundary value problem for fractional p-laplacian equation Zhang Advances in Difference Equations 215) 215:76 DOI 1.1186/s13662-14-334-1 R E S E A R C H Open Access Solvability of Neumann boundary value problem for fractional p-laplacian equation Bo Zhang * *

More information

Tema Tendências em Matemática Aplicada e Computacional, 15, N. 3 (2014),

Tema Tendências em Matemática Aplicada e Computacional, 15, N. 3 (2014), Tema Tendências em Matemática Aplicada e Computacional, 15, N. 3 (2014), 293-299 2014 Sociedade Brasileira de Matemática Aplicada e Computacional www.scielo.br/tema doi: 10.5540/tema.2014.015.03.0293 Log-Conformation

More information

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods.

Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric and Hyperbolic Function Methods. ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.14(01) No.,pp.150-159 Soliton and Periodic Solutions to the Generalized Hirota-Satsuma Coupled System Using Trigonometric

More information

Exp-function Method for Fractional Differential Equations

Exp-function Method for Fractional Differential Equations From the SelectedWorks of Ji-Huan He 2013 Exp-function Method for Fractional Differential Equations Ji-Huan He Available at: https://works.bepress.com/ji_huan_he/73/ Citation Information: He JH. Exp-function

More information

Differential equations with fractional derivative and universal map with memory

Differential equations with fractional derivative and universal map with memory IOP PUBLISHING JOURNAL OF PHYSIS A: MATHEMATIAL AND THEORETIAL J. Phys. A: Math. Theor. 42 (29) 46512 (13pp) doi:1.188/1751-8113/42/46/46512 Differential equations with fractional derivative and universal

More information

New Exact Traveling Wave Solutions of Nonlinear Evolution Equations with Variable Coefficients

New Exact Traveling Wave Solutions of Nonlinear Evolution Equations with Variable Coefficients Studies in Nonlinear Sciences (: 33-39, ISSN -39 IDOSI Publications, New Exact Traveling Wave Solutions of Nonlinear Evolution Equations with Variable Coefficients M.A. Abdou, E.K. El-Shewy and H.G. Abdelwahed

More information

A generalized Gronwall inequality and its application to fractional differential equations with Hadamard derivatives

A generalized Gronwall inequality and its application to fractional differential equations with Hadamard derivatives A generalized Gronwall inequality and its application to fractional differential equations with Hadamard derivatives Deliang Qian Ziqing Gong Changpin Li Department of Mathematics, Shanghai University,

More information

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD International Journal of Pure and Applied Mathematics Volume 84 No. 4 2013, 307-319 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v84i4.1

More information

Hongliang Zhang 1, Dianchen Lu 2

Hongliang Zhang 1, Dianchen Lu 2 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(010) No.,pp.5-56 Exact Solutions of the Variable Coefficient Burgers-Fisher Equation with Forced Term Hongliang

More information

Iterative scheme to a coupled system of highly nonlinear fractional order differential equations

Iterative scheme to a coupled system of highly nonlinear fractional order differential equations Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 3, No. 3, 215, pp. 163-176 Iterative scheme to a coupled system of highly nonlinear fractional order differential equations

More information

Variational Iteration Method for Solving Nonlinear Coupled Equations in 2-Dimensional Space in Fluid Mechanics

Variational Iteration Method for Solving Nonlinear Coupled Equations in 2-Dimensional Space in Fluid Mechanics Int J Contemp Math Sciences Vol 7 212 no 37 1839-1852 Variational Iteration Method for Solving Nonlinear Coupled Equations in 2-Dimensional Space in Fluid Mechanics A A Hemeda Department of Mathematics

More information

Research Article Application of the Cole-Hopf Transformation for Finding Exact Solutions to Several Forms of the Seventh-Order KdV Equation

Research Article Application of the Cole-Hopf Transformation for Finding Exact Solutions to Several Forms of the Seventh-Order KdV Equation Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 21, Article ID 194329, 14 pages doi:1.1155/21/194329 Research Article Application of the Cole-Hopf Transformation for Finding

More information

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS

MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS MULTISTAGE HOMOTOPY ANALYSIS METHOD FOR SOLVING NON- LINEAR RICCATI DIFFERENTIAL EQUATIONS Hossein Jafari & M. A. Firoozjaee Young Researchers club, Islamic Azad University, Jouybar Branch, Jouybar, Iran

More information

Cubic B-spline collocation method for solving time fractional gas dynamics equation

Cubic B-spline collocation method for solving time fractional gas dynamics equation Cubic B-spline collocation method for solving time fractional gas dynamics equation A. Esen 1 and O. Tasbozan 2 1 Department of Mathematics, Faculty of Science and Art, Inönü University, Malatya, 44280,

More information

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation

New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation New Jacobi Elliptic Function Solutions for Coupled KdV-mKdV Equation Yunjie Yang Yan He Aifang Feng Abstract A generalized G /G-expansion method is used to search for the exact traveling wave solutions

More information

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders

Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders Homotopy Analysis Method for Nonlinear Differential Equations with Fractional Orders Yin-Ping Liu and Zhi-Bin Li Department of Computer Science, East China Normal University, Shanghai, 200062, China Reprint

More information

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (+2-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION ALI FILIZ ABDULLAH SONMEZOGLU MEHMET EKICI and DURGUN DURAN Communicated by Horia Cornean In this

More information

The Traveling Wave Solutions for Nonlinear Partial Differential Equations Using the ( G. )-expansion Method

The Traveling Wave Solutions for Nonlinear Partial Differential Equations Using the ( G. )-expansion Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.8(009) No.4,pp.435-447 The Traveling Wave Solutions for Nonlinear Partial Differential Equations Using the ( )-expansion

More information

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 212 (212), No. 234, pp. 1 11. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions

On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions On The Leibniz Rule And Fractional Derivative For Differentiable And Non-Differentiable Functions Xiong Wang Center of Chaos and Complex Network, Department of Electronic Engineering, City University of

More information

Kink, singular soliton and periodic solutions to class of nonlinear equations

Kink, singular soliton and periodic solutions to class of nonlinear equations Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 193-9466 Vol. 10 Issue 1 (June 015 pp. 1 - Applications and Applied Mathematics: An International Journal (AAM Kink singular soliton and periodic

More information

Positive solutions for a class of fractional 3-point boundary value problems at resonance

Positive solutions for a class of fractional 3-point boundary value problems at resonance Wang and Liu Advances in Difference Equations (217) 217:7 DOI 1.1186/s13662-16-162-5 R E S E A R C H Open Access Positive solutions for a class of fractional 3-point boundary value problems at resonance

More information

New Exact Solutions of the Modified Benjamin-Bona-Mahony Equation Yun-jie YANG and Li YAO

New Exact Solutions of the Modified Benjamin-Bona-Mahony Equation Yun-jie YANG and Li YAO 06 International Conference on Artificial Intelligence and Computer Science (AICS 06) ISBN: 978--60595-4-0 New Exact Solutions of the Modified Benamin-Bona-Mahony Equation Yun-ie YANG and Li YAO Department

More information

Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional Differential Equations

Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional Differential Equations Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 7, Number 1, pp. 31 4 (212) http://campus.mst.edu/adsa Existence of Solutions for Nonlocal Boundary Value Problems of Nonlinear Fractional

More information

ON A TWO-VARIABLES FRACTIONAL PARTIAL DIFFERENTIAL INCLUSION VIA RIEMANN-LIOUVILLE DERIVATIVE

ON A TWO-VARIABLES FRACTIONAL PARTIAL DIFFERENTIAL INCLUSION VIA RIEMANN-LIOUVILLE DERIVATIVE Novi Sad J. Math. Vol. 46, No. 2, 26, 45-53 ON A TWO-VARIABLES FRACTIONAL PARTIAL DIFFERENTIAL INCLUSION VIA RIEMANN-LIOUVILLE DERIVATIVE S. Etemad and Sh. Rezapour 23 Abstract. We investigate the existence

More information

On the Finite Caputo and Finite Riesz Derivatives

On the Finite Caputo and Finite Riesz Derivatives EJTP 3, No. 1 (006) 81 95 Electronic Journal of Theoretical Physics On the Finite Caputo and Finite Riesz Derivatives A. M. A. El-Sayed 1 and M. Gaber 1 Faculty of Science University of Alexandria, Egypt

More information

Infinite Sequence Soliton-Like Exact Solutions of (2 + 1)-Dimensional Breaking Soliton Equation

Infinite Sequence Soliton-Like Exact Solutions of (2 + 1)-Dimensional Breaking Soliton Equation Commun. Theor. Phys. 55 (0) 949 954 Vol. 55, No. 6, June 5, 0 Infinite Sequence Soliton-Like Exact Solutions of ( + )-Dimensional Breaking Soliton Equation Taogetusang,, Sirendaoerji, and LI Shu-Min (Ó

More information

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract

SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS. Kai Diethelm. Abstract SMOOTHNESS PROPERTIES OF SOLUTIONS OF CAPUTO- TYPE FRACTIONAL DIFFERENTIAL EQUATIONS Kai Diethelm Abstract Dedicated to Prof. Michele Caputo on the occasion of his 8th birthday We consider ordinary fractional

More information

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation Journal of Applied Mathematics & Bioinformatics, vol.1, no.2, 2011, 1-12 ISSN: 1792-6602 (print), 1792-6939 (online) International Scientific Press, 2011 An Efficient Numerical Method for Solving the Fractional

More information

Generalized Differential Transform Method to Space- Time Fractional Non-linear Schrodinger Equation

Generalized Differential Transform Method to Space- Time Fractional Non-linear Schrodinger Equation International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 455-737 Volume, Issue, December 7, PP 7-3 Generalized Differential Transform Method to Space- Time Fractional Non-linear

More information

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi Opuscula Math. 37, no. 2 27), 265 28 http://dx.doi.org/.7494/opmath.27.37.2.265 Opuscula Mathematica FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

More information

Upper and lower solutions method and a fractional differential equation boundary value problem.

Upper and lower solutions method and a fractional differential equation boundary value problem. Electronic Journal of Qualitative Theory of Differential Equations 9, No. 3, -3; http://www.math.u-szeged.hu/ejqtde/ Upper and lower solutions method and a fractional differential equation boundary value

More information

Ahmet Bekir 1, Ömer Ünsal 2. (Received 5 September 2012, accepted 5 March 2013)

Ahmet Bekir 1, Ömer Ünsal 2. (Received 5 September 2012, accepted 5 March 2013) ISSN 749-3889 print, 749-3897 online International Journal of Nonlinear Science Vol503 No,pp99-0 Exact Solutions for a Class of Nonlinear Wave Equations By Using First Integral Method Ahmet Bekir, Ömer

More information

Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations

Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 7 (2011) No. 1, pp. 52-57 Fibonacci tan-sec method for construction solitary wave solution to differential-difference equations

More information

The cosine-function method and the modified extended tanh method. to generalized Zakharov system

The cosine-function method and the modified extended tanh method. to generalized Zakharov system Mathematica Aeterna, Vol. 2, 2012, no. 4, 287-295 The cosine-function method and the modified extended tanh method to generalized Zakharov system Nasir Taghizadeh Department of Mathematics, Faculty of

More information

Fractional Calculus for Solving Abel s Integral Equations Using Chebyshev Polynomials

Fractional Calculus for Solving Abel s Integral Equations Using Chebyshev Polynomials Applied Mathematical Sciences, Vol. 5, 211, no. 45, 227-2216 Fractional Calculus for Solving Abel s Integral Equations Using Chebyshev Polynomials Z. Avazzadeh, B. Shafiee and G. B. Loghmani Department

More information

ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION

ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION Romanian Reports in Physics, Vol. 64, No. 4, P. 95 9, ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION GHODRAT EBADI, NAZILA YOUSEFZADEH, HOURIA TRIKI, AHMET YILDIRIM,4,

More information

A variety of explicit exact and soliton type solutions of conformable fractional Equal-Width equations

A variety of explicit exact and soliton type solutions of conformable fractional Equal-Width equations A variety of explicit exact and soliton type solutions of conformable fractional Equal-Width equations Asim Zafar 1, Alper Korkmaz,, Hadi Rezazadeh 3 1 Department of Mathematics, COMSATS University Islamabad,

More information

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30]

2. The generalized Benjamin- Bona-Mahony (BBM) equation with variable coefficients [30] ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.12(2011) No.1,pp.95-99 The Modified Sine-Cosine Method and Its Applications to the Generalized K(n,n) and BBM Equations

More information