Population is often recorded in a form of data set. Population of Normal, Illinois

Size: px
Start display at page:

Download "Population is often recorded in a form of data set. Population of Normal, Illinois"

Transcription

1 Population is often recorded in a form of data set Population of Normal, Illinois 1

2 Population of Venezuela 2

3 Population of world up to

4 Population of world 4

5 Population of world (carton) 5

6 Population in laboratory: bacteria 6

7 Experiment data of yeast cells of G.F. Gause (1934) 7

8 Questions: Find mathematical rules governing the growth Set up mathematical models Analyze the models Fit the model to the original data Model number 1 Let N n be the n-th generation of population N n+1 = N n + bn n dn n = (1 + d b)n n = λn n b =per capita reproduction rate, d =per capita mortality rate Malthus Model Solution: N n = N 0 λ n exponential growth when λ > 1, exponential decay when 0 < λ < 1 8

9 First Matlab program: plotting the time-number data (a sequence) A sequence is a function with domain being positive integers, and we can use a 1, a 2, a 3,, a n or {a n } to represent it The sequence can be generated by a recursive formula (or a difference equation a n+1 a n = f(a n )) a n+1 = f(a n ) and an initial condition a 0 = A 0. Biological question: for an observed data set, can we find a formula for the population sequence? 9

10 Example Wildebeest population growth. The wildebeest (or gnu) is a dominant species in the Serengeti. The following data of wildebeest abundance was collected by the Serengeti Research Institute: year population (in thousands) Question: assuming N n+1 = λn n can be used to model the data. How do we find N 0 and λ? 10

11 Data fitting for Malthus model: (estimate λ and N 0 ) (a) Get a set of data: (t 1, P 1 ), (t 2, P 2 ),, (t n, P n ). (b) Take ln to P i, let Q i = ln(p i ), and get new data set (t 1, Q 1 ), (t 2, Q 2 ),, (t n, Q n ). (c) Put the data set (t i, Q i ) to your linear regression program and get the output slope k and intercept b. (d) In the solution of Malthus model: N n = N 0 λ n, we have ln N n = ln N 0 + n ln λ, so b = ln N 0, k = ln λ. Then N 0 = e b and λ = e k. So an exponential function which best fits the data is N n = e b+kn, where k and b are found in linear regression 11

12 Linear Regression: The goal of linear regression is to adjust the values of slope and intercept to find the line that best predicts Y from X. More precisely, the goal of regression is to minimize the sum of the squares of the vertical distances of the points from the line. Method of linear regression: (a) get a set of data: (x 1, y 1 ), (x 2, y 2 ),, (x n, y n ). (b) put it into a computer linear regression program Mechanism of linear regression: Data: (x 1, y 1 ), (x 2, y 2 ),, (x n, y n ). Goal: Find a line y = kx + b minimize the sum of the squares of the vertical distances of the points from the line. Vertical distance from (x i, y i ) to y = kx + b: kx i + b y i 12

13 Mathematical problem: Find k and b which minimize f k = n i=1 f(k, b) = n i=1 2(kx i + b y i )x i = 0, f b = So solve k and b from n x i i=1 n x 2 i i=1 k + nb = k + n i=1 n x i i=1 y i and b = n i=1 (kx i + b y i ) 2 x i y i. n i=1 2(kx i + b y i ) = 0. 13

14 Linear difference equation: a n+1 = λa n, what can happen? Solution: a n = a 0 λ n, and a n = 0 is an equilibrium. Qualitative behavior? λ = 0, 1, 1 λ = 0.5, 0.5, 2, 2 Inhomogeneous linear difference equation x n+1 = ax n + b (see homework) 14

15 Nonlinear model of population N n+1 = λn n S(N n ) S(N) is the survival rate of the population which depends on the size of population, and λs(n) is the per capita reproduction rate This is a density dependent population growth. Usually unlimited growth is unrealistic, as population grow the amount of resources available per individual decreases. How to determine S(N)? 1. From certain assumptions to derive the mathematical forms 2. Available data suggests the shape of function, then find functions with such shape. 15

16 The relationship between number of survivors and density for four stored product beetles. After Bellows, T. S The Descriptive Properties of Some Models for Density Dependence. Journal of Animal Ecology, Vol. 50, No. 1. pp

17 N n+1 = λn n S(N n ) Bellow s model: NS(N) = N 1 + (an) b, a > 0, b 1. A similar model: Hassel s model NS(N) = N (1 + an) b, a > 0, b > 0. Parasitoid fly b = 0.5 and λ = 3.2; Bug: Saccarosydne saccharivora b = 0.4 and λ = 13.5 Mosquito β = 1.9 and λ = 10.6 Potato beetle b = 3.4 and λ = 75.0 Blowfly b = 10 and λ 100 Hassell, M.P., Lawton, J.N. & May, R.M. (1976) Patterns of dynamical behaviour in single-species populations. Journal of Animal Ecology, 45,

18 Simplify the equation: (nondimensionalization) Bellow s equation: N n+1 = Let x n = an n. Then x n = λn n 1+(aN n ) b = N nf (N n ) = f(n n ).. λx n 1+x b n (The number of parameters reduces from 3 to 2.) Hypothesis: insect populations are regulated by intraspecific (within-species) competition for some resource in short supply. (growth rate per capita F (N) is decreasing, compensatory) under-compensation: if 0 < b < 1, lim N f(n) = over-compensation: if b > 1, lim N f(n) = 0 exact-compensatory: if b = 1, lim N f(n) = C > 0 If F (N) is increasing for some N, then the system exhibits depensation (Allee effect) 18

19 Now what to do? Let s do experiment using computer... x n+1 = λx n 1 + x b. n plot the sequence (time series) plot cobweb diagram more mathematics coming... 19

Math 345 Intro to Math Biology Lecture 1: Biological Models using Difference Equations

Math 345 Intro to Math Biology Lecture 1: Biological Models using Difference Equations Math 345 Intro to Math Biology Lecture 1: Biological Models using Difference Equations Junping Shi College of William and Mary, USA Population of James City County, Virginia Population is often recorded

More information

Math 345 Intro to Math Biology Lecture 7: Models of System of Nonlinear Difference Equations

Math 345 Intro to Math Biology Lecture 7: Models of System of Nonlinear Difference Equations Math 345 Intro to Math Biology Lecture 7: Models of System of Nonlinear Difference Equations Junping Shi College of William and Mary, USA Equilibrium Model: x n+1 = f (x n ), here f is a nonlinear function

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 3: Intraspecific Competition. Lecture summary: Definition. Characteristics. Scramble & contest. Density dependence k-values

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 7: Dynamics of Predation. Lecture summary: Categories of predation. Linked prey-predator cycles. Lotka-Volterra model. Density-dependence.

More information

Stability Analysis of a Population Dynamics Model with Allee Effect

Stability Analysis of a Population Dynamics Model with Allee Effect Stability Analysis of a Population Dynamics Model with Allee Effect Canan Celik Abstract In this study, we focus on the stability analysis of equilibrium points of population dynamics with delay when the

More information

Mathematical and Computational Methods for the Life Sciences

Mathematical and Computational Methods for the Life Sciences Mathematical and Computational Methods for the Life Sciences Preliminary Lecture Notes Adolfo J. Rumbos November 24, 2007 2 Contents 1 Preface 5 2 Introduction: An Example from Microbial Genetics 7 I Deterministic

More information

Discrete time mathematical models in ecology. Andrew Whittle University of Tennessee Department of Mathematics

Discrete time mathematical models in ecology. Andrew Whittle University of Tennessee Department of Mathematics Discrete time mathematical models in ecology Andrew Whittle University of Tennessee Department of Mathematics 1 Outline Introduction - Why use discrete-time models? Single species models Geometric model,

More information

population size at time t, then in continuous time this assumption translates into the equation for exponential growth dn dt = rn N(0)

population size at time t, then in continuous time this assumption translates into the equation for exponential growth dn dt = rn N(0) Appendix S1: Classic models of population dynamics in ecology and fisheries science Populations do not grow indefinitely. No concept is more fundamental to ecology and evolution. Malthus hypothesized that

More information

Difference Equations

Difference Equations Difference Equations Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Difference equations Math

More information

Lecture 3. Dynamical Systems in Continuous Time

Lecture 3. Dynamical Systems in Continuous Time Lecture 3. Dynamical Systems in Continuous Time University of British Columbia, Vancouver Yue-Xian Li November 2, 2017 1 3.1 Exponential growth and decay A Population With Generation Overlap Consider a

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 6: Population dynamics Ilya Potapov Mathematics Department, TUT Room TD325 Living things are dynamical systems Dynamical systems theory

More information

discrete variation (e.g. semelparous populations) continuous variation (iteroparous populations)

discrete variation (e.g. semelparous populations) continuous variation (iteroparous populations) Basic demographic models N t+1 = N t dn/dt = r N discrete variation (e.g. semelparous populations) continuous variation (iteroparous populations) Where r is the intrinsic per capita rate of increase of

More information

Mathematical Economics: Lecture 2

Mathematical Economics: Lecture 2 Mathematical Economics: Lecture 2 Yu Ren WISE, Xiamen University September 25, 2012 Outline 1 Number Line The number line, origin (Figure 2.1 Page 11) Number Line Interval (a, b) = {x R 1 : a < x < b}

More information

Recursive Sequences in the Life Sciences

Recursive Sequences in the Life Sciences Recursive Sequences in the Life Sciences Recursive sequences (or difference equations) are often used in biology to model, for example, cell division and insect populations. In this biological context

More information

BIOS 5445: Human Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5445: Human Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5445: Human Ecology Dr. Stephen Malcolm, Department of Biological Sciences Lecture 4. Population ecology: Lecture summary: Population growth: Growth curves. Rates of increase. Mortality & survivorship.

More information

2 One-dimensional models in discrete time

2 One-dimensional models in discrete time 2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

More information

Math 31S. Rumbos Fall Solutions to Exam 1

Math 31S. Rumbos Fall Solutions to Exam 1 Math 31S. Rumbos Fall 2011 1 Solutions to Exam 1 1. When people smoke, carbon monoxide is released into the air. Suppose that in a room of volume 60 m 3, air containing 5% carbon monoxide is introduced

More information

1 Mathematical models of the population growth

1 Mathematical models of the population growth 1 Mathematical models of the population growth 1.1 How many people can the Earth support? (Or a quick refresher on the least square method) I would like to start with a very simple and yet interesting

More information

A population is modeled by the differential equation

A population is modeled by the differential equation Math 2, Winter 2016 Weekly Homework #8 Solutions 9.1.9. A population is modeled by the differential equation dt = 1.2 P 1 P ). 4200 a) For what values of P is the population increasing? P is increasing

More information

Exam 3. Principles of Ecology. April 14, Name

Exam 3. Principles of Ecology. April 14, Name Exam 3. Principles of Ecology. April 14, 2010. Name Directions: Perform beyond your abilities. There are 100 possible points (+ 9 extra credit pts) t N t = N o N t = N o e rt N t+1 = N t + r o N t (1-N

More information

Chaos in Dynamical Systems. LIACS Natural Computing Group Leiden University

Chaos in Dynamical Systems. LIACS Natural Computing Group Leiden University Chaos in Dynamical Systems Overview Introduction: Modeling Nature! Example: Logistic Growth Fixed Points Bifurcation Diagrams Application Examples 2 INTRODUCTION 3 Linear and Non-linear dynamic systems

More information

Science One Math. October 23, 2018

Science One Math. October 23, 2018 Science One Math October 23, 2018 Today A general discussion about mathematical modelling A simple growth model Mathematical Modelling A mathematical model is an attempt to describe a natural phenomenon

More information

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A Calculus Topic: Integration of Rational Functions Section 8. # 0: Evaluate the integral (t + )(t ) Solution: The denominator of the integrand is already factored with the factors being distinct, so (t

More information

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( )

1. The growth of a cancerous tumor can be modeled by the Gompertz Law: dn. = an ln ( ) 1. The growth of a cancerous tumor can be modeled by the Gompertz Law: ( ) dn b = an ln, (1) dt N where N measures the size of the tumor. (a) Interpret the parameters a and b (both non-negative) biologically.

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

Interspecific Competition

Interspecific Competition Use Interspecific Competition 0.8 0.6 0.4 0. 0 0 0.5.5.5 3 Resource The niche and interspecific competition Species A Use Use 0.8 0.6 0.4 0. Species B 0 0 0.5.5.5 3 0.8 0.6 0.4 0. 0 0 0.5.5.5 3 Resource

More information

Introduction to Biomathematics. Problem sheet

Introduction to Biomathematics. Problem sheet Introction to Biomathematics Problem sheet 1. A model for population growth is given in non-dimensional units in the form = u1 u ) u0) > 0. a) Sketch the graph of the function fu) = u1 u ) against u for

More information

Mathematical Models of Biological Systems

Mathematical Models of Biological Systems Mathematical Models of Biological Systems CH924 November 25, 2012 Course outline Syllabus: Week 6: Stability of first-order autonomous differential equation, genetic switch/clock, introduction to enzyme

More information

More On Exponential Functions, Inverse Functions and Derivative Consequences

More On Exponential Functions, Inverse Functions and Derivative Consequences More On Exponential Functions, Inverse Functions and Derivative Consequences James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University January 10, 2019

More information

Natal versus breeding dispersal: Evolution in a model system

Natal versus breeding dispersal: Evolution in a model system Evolutionary Ecology Research, 1999, 1: 911 921 Natal versus breeding dispersal: Evolution in a model system Karin Johst 1 * and Roland Brandl 2 1 Centre for Environmental Research Leipzig-Halle Ltd, Department

More information

Assume closed population (no I or E). NB: why? Because it makes it easier.

Assume closed population (no I or E). NB: why? Because it makes it easier. What makes populations get larger? Birth and Immigration. What makes populations get smaller? Death and Emigration. B: The answer to the above?s are never things like "lots of resources" or "detrimental

More information

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences D. POPULATION & COMMUNITY DYNAMICS Week 10. Population models 1: Lecture summary: Distribution and abundance

More information

Objective. Single population growth models

Objective. Single population growth models Objective Single population growth models We are given a table with the population census at different time intervals between a date a and a date b, and want to get an expression for the population. This

More information

Population Ecology & Biosystematics

Population Ecology & Biosystematics Population Ecology & Biosystematics Population: a group of conspecific individuals occupying a particular place at a particular time This is an operational definition Compare with Deme: a population unevenly

More information

130 CHAPTER 4. SEQUENCES AND FUNCTIONS OF A DISCRETE VARIABLE

130 CHAPTER 4. SEQUENCES AND FUNCTIONS OF A DISCRETE VARIABLE 130 CHAPTER 4. SEQUENCES AND FUNCTIONS OF A DISCRETE VARIABLE Chapter 4 Sequences and functions of a discrete variable 4.1 Introduction In some instances, one may prefer to think of functions where the

More information

1.2. Introduction to Modeling

1.2. Introduction to Modeling G. NAGY ODE August 30, 2018 1 Section Objective(s): Population Models Unlimited Resources Limited Resources Interacting Species 1.2. Introduction to Modeling 1.2.1. Population Model with Unlimited Resources.

More information

Analysis of bacterial population growth using extended logistic Growth model with distributed delay. Abstract INTRODUCTION

Analysis of bacterial population growth using extended logistic Growth model with distributed delay. Abstract INTRODUCTION Analysis of bacterial population growth using extended logistic Growth model with distributed delay Tahani Ali Omer Department of Mathematics and Statistics University of Missouri-ansas City ansas City,

More information

Algebra II Through Competitions Chapter 7 Function Composition and Operations

Algebra II Through Competitions Chapter 7 Function Composition and Operations . FUNCTIONS. Definition A function is a relationship between the independent variable x and dependent variable y. Each value of x corresponds exactly one value of y. Note two different values of x can

More information

Interactions between predators and prey

Interactions between predators and prey Interactions between predators and prey What is a predator? Predator An organism that consumes other organisms and inevitably kills them. Predators attack and kill many different prey individuals over

More information

MA 777: Topics in Mathematical Biology

MA 777: Topics in Mathematical Biology MA 777: Topics in Mathematical Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma777/ Spring 2018 David Murrugarra (University of Kentucky) Lecture

More information

x y

x y (a) The curve y = ax n, where a and n are constants, passes through the points (2.25, 27), (4, 64) and (6.25, p). Calculate the value of a, of n and of p. [5] (b) The mass, m grams, of a radioactive substance

More information

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes

PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES. Notes PUTNAM PROBLEMS SEQUENCES, SERIES AND RECURRENCES Notes. x n+ = ax n has the general solution x n = x a n. 2. x n+ = x n + b has the general solution x n = x + (n )b. 3. x n+ = ax n + b (with a ) can be

More information

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material.

Lecture 1. Scott Pauls 1 3/28/07. Dartmouth College. Math 23, Spring Scott Pauls. Administrivia. Today s material. Lecture 1 1 1 Department of Mathematics Dartmouth College 3/28/07 Outline Course Overview http://www.math.dartmouth.edu/~m23s07 Matlab Ordinary differential equations Definition An ordinary differential

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

STABILITY IN A MODEL FOR GENETICALLY ALTERED MOSQUITOS WITH PERIODIC PARAMETERS

STABILITY IN A MODEL FOR GENETICALLY ALTERED MOSQUITOS WITH PERIODIC PARAMETERS STABILITY IN A MODEL FOR GENETICALLY ALTERED MOSQUITOS WITH PERIODIC PARAMETERS Hubertus F. von Bremen and Robert J. Sacker Department of Mathematics and Statistics, California State Polytechnic University,

More information

Chapter 54: Community Ecology

Chapter 54: Community Ecology Name Period Concept 54.1 Community interactions are classified by whether they help, harm, or have no effect on the species involved. 1. What is a community? List six organisms that would be found in your

More information

Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology

Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology 9-1 Population Dynamics & Carrying Capacity Populations change in response to enviromental stress or changes in evironmental conditions

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

Student Background Readings for Bug Dynamics: The Logistic Map

Student Background Readings for Bug Dynamics: The Logistic Map Student Background Readings for Bug Dynamics: The Logistic Map Figure 1 The population as a function of a growth rate parameter observed in the experiment of [Bugs]. Graphs such as this are called bifurcation

More information

Lesson 4. Exit Ticket Sample Solutions. explicit formula. b. for and

Lesson 4. Exit Ticket Sample Solutions. explicit formula. b. for and Exit icket Sample Solutions. Write the first three terms in the following geometric sequences. hen write the explicit formula. a. for and,, b. for and,, or,,.. Write an explicit formula for the geometric

More information

Density Dependence, Stability & Allee effects ECOL 4000/6000

Density Dependence, Stability & Allee effects ECOL 4000/6000 Density Dependence, Stability & Allee effects ECOL 4000/6000 Quiz1: For each statement, write True or False e.g. A: True, B: True A: intrinsic growth rate for gray populanon > intrinsic growth rate for

More information

Section I: Multiple Choice Select the best answer for each question.

Section I: Multiple Choice Select the best answer for each question. Chapter 3 AP Statistics Practice Test (TPS- 4 p200) Section I: Multiple Choice Select the best answer for each question. 1. A school guidance counselor examines the number of extracurricular activities

More information

A DISCRETE-TIME HOST-PARASITOID MODEL

A DISCRETE-TIME HOST-PARASITOID MODEL A DISCRETE-TIME HOST-PARASITOID MODEL SOPHIA R.-J. JANG AND JUI-LING YU We study a discrete-time host-parasitoid model proposed by May et al. In this model, the parasitoid attacks the host first then followed

More information

CME Project, Algebra Correlated to: Michigan High School Content Expectations, Algebra 1

CME Project, Algebra Correlated to: Michigan High School Content Expectations, Algebra 1 STRAND 1: QUANTITATIVE LITERACY AND LOGIC STANDARD L1: REASONING ABOUT NUMBERS, SYSTEMS, AND QUANTITATIVE SITUATIONS Based on their knowledge of the properties of arithmetic, students understand and reason

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live B. Etymology study of the origin and development of a word 1. Earliest - Haeckel (1869)

More information

Allee effects in stochastic populations

Allee effects in stochastic populations Allee effects in stochastic populations Brian Dennis Dept Fish and Wildlife Resources University of Idaho Moscow ID 83844-1136 USA brian@uidaho.edu ... what minimal numbers are necessary if a species is

More information

Write the equation of the given line in slope-intercept form and match with the correct alternate form. 10. A

Write the equation of the given line in slope-intercept form and match with the correct alternate form. 10. A Slope & y-intercept Class Work Identify the slope and y-intercept for each equation 1. y = 3x 4 2. y = 2x 3. y = 7 4. x = 5 5. y = 0 6. y 3 = 4(x + 6) 7. y + 2 = 1 (x + 6) 8. 2x + 3y = 9 9. 4x 7y = 14

More information

Functions in Tables 2.0

Functions in Tables 2.0 Ns Activate Prior Knowledge Function Table Game Topic: Functions Functions in Tables 2.0 Date: Objectives: SWBAT (Identify patterns in Tables) Main Ideas: Assignment: What is a relation? What is a function?

More information

Introduction to Decision Sciences Lecture 6

Introduction to Decision Sciences Lecture 6 Introduction to Decision Sciences Lecture 6 Andrew Nobel September 21, 2017 Functions Functions Given: Sets A and B, possibly different Definition: A function f : A B is a rule that assigns every element

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

Community Structure. Community An assemblage of all the populations interacting in an area

Community Structure. Community An assemblage of all the populations interacting in an area Community Structure Community An assemblage of all the populations interacting in an area Community Ecology The ecological community is the set of plant and animal species that occupy an area Questions

More information

3.9 Derivatives of Exponential and Logarithmic Functions

3.9 Derivatives of Exponential and Logarithmic Functions 322 Chapter 3 Derivatives 3.9 Derivatives of Exponential and Logarithmic Functions Learning Objectives 3.9.1 Find the derivative of exponential functions. 3.9.2 Find the derivative of logarithmic functions.

More information

Stabilization through spatial pattern formation in metapopulations with long-range dispersal

Stabilization through spatial pattern formation in metapopulations with long-range dispersal Stabilization through spatial pattern formation in metapopulations with long-range dispersal Michael Doebeli 1 and Graeme D. Ruxton 2 1 Zoology Institute, University of Basel, Rheinsprung 9, CH^4051 Basel,

More information

Continuous-Time Dynamical Systems: Sketching solution curves and bifurcations

Continuous-Time Dynamical Systems: Sketching solution curves and bifurcations Math 360 Winter 07 Section 0 HW#4 Continuous-Time Dynamical Systems: Sketching solution curves and bifurcations (Due in one week! Thursday Nov 9, 07) Materials contained in this assignment are of great

More information

Name: Page 1 Biology 217: Ecology Second Exam Spring 2009

Name: Page 1 Biology 217: Ecology Second Exam Spring 2009 Page 1 Biology 217: Ecology Second Exam Spring 2009 There should be 10 pages in this exam - take a moment and count them now. Put your name on the first page of the exam, and on each of the pages with

More information

MA 138: Calculus II for the Life Sciences

MA 138: Calculus II for the Life Sciences MA 138: Calculus II for the Life Sciences David Murrugarra Department of Mathematics, University of Kentucky. Spring 2016 David Murrugarra (University of Kentucky) MA 138: Section 11.4.2 Spring 2016 1

More information

Essential Questions. What factors are most significant in structuring a community?

Essential Questions. What factors are most significant in structuring a community? Community Ecology Essential Questions What factors are most significant in structuring a community? What determines a communities species composition and the relative amount of species present? What is

More information

Lecture 8 Insect ecology and balance of life

Lecture 8 Insect ecology and balance of life Lecture 8 Insect ecology and balance of life Ecology: The term ecology is derived from the Greek term oikos meaning house combined with logy meaning the science of or the study of. Thus literally ecology

More information

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm.

Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. 1 competing species Math 1280 Notes 4 Last section revised, 1/31, 9:30 pm. This section and the next deal with the subject of population biology. You will already have seen examples of this. Most calculus

More information

Characteristics of Fish Populations. Unexploited Populations. Exploited Populations. Recruitment - Birth Mortality (natural) Growth

Characteristics of Fish Populations. Unexploited Populations. Exploited Populations. Recruitment - Birth Mortality (natural) Growth Characteristics of Fish Populations Unexploited Populations Recruitment - Birth Mortality (natural) Growth Exploited Populations Recruitment and Yield Fishing and Natural Mortality Compensatory Growth

More information

Topic 5: The Difference Equation

Topic 5: The Difference Equation Topic 5: The Difference Equation Yulei Luo Economics, HKU October 30, 2017 Luo, Y. (Economics, HKU) ME October 30, 2017 1 / 42 Discrete-time, Differences, and Difference Equations When time is taken to

More information

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale BIOS 3010: ECOLOGY Dr Stephen Malcolm Laboratory 6: Lotka-Volterra, the logistic equation & Isle Royale This is a computer-based activity using Populus software (P), followed by EcoBeaker analyses of moose

More information

Write the equation of the given line in slope-intercept form and match with the correct alternate form. 10. A

Write the equation of the given line in slope-intercept form and match with the correct alternate form. 10. A Slope & y-intercept Class Work Identify the slope and y-intercept for each equation 1. y = 3x 4 2. y = 2x 3. y = 7 m = 3 b = 4 m = 2 b = 0 m = 0 b = 7 4. x = 5 5. y = 0 6. y 3 = 4(x + 6) m = undef b =

More information

SEMELPAROUS PERIODICAL INSECTS

SEMELPAROUS PERIODICAL INSECTS SEMELPROUS PERIODICL INSECTS BRENDN FRY Honors Thesis Spring 2008 Chapter Introduction. History Periodical species are those whose life cycle has a fixed length of n years, and whose adults do not appear

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Project Two. James K. Peterson. March 26, Department of Biological Sciences and Department of Mathematical Sciences Clemson University Project Two James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 26, 2019 Outline 1 Cooling Models 2 Estimating the Cooling Rate k 3 Typical

More information

A SUMMARY OF RECURSION SOLVING TECHNIQUES

A SUMMARY OF RECURSION SOLVING TECHNIQUES A SUMMARY OF RECURSION SOLVING TECHNIQUES KIMMO ERIKSSON, KTH These notes are meant to be a complement to the material on recursion solving techniques in the textbook Discrete Mathematics by Biggs. In

More information

Lecture 48 Sections Mon, Nov 16, 2009

Lecture 48 Sections Mon, Nov 16, 2009 and and Lecture 48 Sections 13.4-13.5 Hampden-Sydney College Mon, Nov 16, 2009 Outline and 1 2 3 4 5 6 Outline and 1 2 3 4 5 6 and Exercise 13.4, page 821. The following data represent trends in cigarette

More information

A.P. Biology CH Population Ecology. Name

A.P. Biology CH Population Ecology. Name 1 A.P. Biology CH. 53 - Population Ecology Name How many ants (shown below - 6 ants / cm 2 ) would there be in an ant colony that is flat and one meter long on each side? Dispersion Patterns Matching A

More information

Chapter 2 Lecture. Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly. Spring 2013

Chapter 2 Lecture. Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly. Spring 2013 Chapter 2 Lecture Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly Spring 2013 2.1 Density dependence, logistic equation and carrying capacity dn = rn K-N Dt K Where

More information

Math 142-2, Homework 2

Math 142-2, Homework 2 Math 142-2, Homework 2 Your name here April 7, 2014 Problem 35.3 Consider a species in which both no individuals live to three years old and only one-year olds reproduce. (a) Show that b 0 = 0, b 2 = 0,

More information

Discrete Difference Equations

Discrete Difference Equations 1 Discrete Difference Equations from Mathematics for the Life Sciences, book by Bodine, Lenhart and Gross These notes discuss how we can use sequences from data or from theory to determine how biologically

More information

PULSE-SEASONAL HARVESTING VIA NONLINEAR DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS IN FISHERY MANAGEMENT. Lev V. Idels

PULSE-SEASONAL HARVESTING VIA NONLINEAR DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS IN FISHERY MANAGEMENT. Lev V. Idels PULSE-SEASONAL HARVESTING VIA NONLINEAR DELAY DIFFERENTIAL EQUATIONS AND APPLICATIONS IN FISHERY MANAGEMENT Lev V. Idels University-College Professor Mathematics Department Malaspina University-College

More information

The struggle for existence

The struggle for existence Module BIO- M1- S06 Evolu3onary ecology The struggle for existence David Claessen! Institut de Biologie de l ENS! Equipe Eco-Evolution Mathématique Thomas Robert Malthus The increase of popula0on is necessarily

More information

Part 4: Exponential and Logarithmic Functions

Part 4: Exponential and Logarithmic Functions Part 4: Exponential and Logarithmic Functions Chapter 5 I. Exponential Functions (5.1) II. The Natural Exponential Function (5.2) III. Logarithmic Functions (5.3) IV. Properties of Logarithms (5.4) V.

More information

Homework 2 Modeling complex systems, Stability analysis, Discrete-time dynamical systems, Deterministic chaos

Homework 2 Modeling complex systems, Stability analysis, Discrete-time dynamical systems, Deterministic chaos Homework 2 Modeling complex systems, Stability analysis, Discrete-time dynamical systems, Deterministic chaos (Max useful score: 100 - Available points: 125) 15-382: Collective Intelligence (Spring 2018)

More information

Chapter 2: Growth & Decay

Chapter 2: Growth & Decay Chapter 2: Growth & Decay 107/226 Introduction In this chapter, model biological systems whose population is so large or where growth is so fine-grained that continuity can be assumed. These continuous

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form 0 Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points P 1 Biology 217: Ecology Second Exam Fall 2004 There should be 7 ps in this exam - take a moment and count them now. Put your name on the first p of the exam, and on each of the ps with short answer questions.

More information

Spring /30/2013

Spring /30/2013 MA 138 - Calculus 2 for the Life Sciences FINAL EXAM Spring 2013 4/30/2013 Name: Sect. #: Answer all of the following questions. Use the backs of the question papers for scratch paper. No books or notes

More information

Physical Science: Find the following function which represents the map, as shown in figure cos sin

Physical Science: Find the following function which represents the map, as shown in figure cos sin 24 www.mathbunch.com FUNCTIONS FORMING USING THE GRAPHS OF DIFFERENT FUNCTIONS: The graphs of many different functions are given. To form a design using some graphs a function can be formed combining these

More information

Topics. Estimation. Regression Through the Origin. Basic Econometrics in Transportation. Bivariate Regression Discussion

Topics. Estimation. Regression Through the Origin. Basic Econometrics in Transportation. Bivariate Regression Discussion 1/24 Topics Basic Econometrics in Transportation Bivariate Regression Discussion Amir Samimi Civil Engineering Department Sharif University of Technology First we consider the case of regression through

More information

7.1 Exponential Functions

7.1 Exponential Functions 7.1 Exponential Functions 1. What is 16 3/2? Definition of Exponential Functions Question. What is 2 2? Theorem. To evaluate a b, when b is irrational (so b is not a fraction of integers), we approximate

More information

Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle.

Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle. Theory of Evolution Darwin s Voyage What did Darwin observe? Charles Darwin became a naturalist, a scientist who studies nature, during a voyage on the British ship HMS Beagle. On his journey, Darwin observed

More information

Grand-daughters, Great Granddaughters, Daughters. : Σ lx m x e r (Tmax - x )

Grand-daughters, Great Granddaughters, Daughters. : Σ lx m x e r (Tmax - x ) Basic reproductive rate, R o = Σ l x m x umber of offspring produced by an individual female in her lifetime, can be used as multiplier to compute population growth rate if generations don t overlap. If

More information

Mathematical Ecology

Mathematical Ecology Mathematical Ecology Joachim Hermisson, Claus Rueffler & Meike Wittmann January 14, 2016 Literature and Software Sarah P. Otto, Troy Day: A Biologist s Guide to Mathematical Modeling in Ecology and Evolution,

More information

MODELS ONE ORDINARY DIFFERENTIAL EQUATION:

MODELS ONE ORDINARY DIFFERENTIAL EQUATION: MODELS ONE ORDINARY DIFFERENTIAL EQUATION: opulation Dynamics (e.g. Malthusian, Verhulstian, Gompertz, Logistic with Harvesting) Harmonic Oscillator (e.g. pendulum) A modified normal distribution curve

More information

7.2. Differential Equations. Phase Plots. Example 1 The logistic equation. Phase Plots. Phase Plots. Phase Plots, Equilibria, and Stability

7.2. Differential Equations. Phase Plots. Example 1 The logistic equation. Phase Plots. Phase Plots. Phase Plots, Equilibria, and Stability Differential Equations 7 7.2, Equilibria, and Stability Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Phase plots provide a way to visualize the dynamics

More information

Non-Linear Dynamics Homework Solutions Week 1

Non-Linear Dynamics Homework Solutions Week 1 Non-Linear Dynamics Homework Solutions Week 1 Chris Small March, 007 Please email me at smachr09@evergreen.edu with any corrections or concerns reguarding these solutions..3. We are given that ẋ = k 1

More information

MATH 53H - Solutions to Problem Set III

MATH 53H - Solutions to Problem Set III MATH 53H - Solutions to Problem Set III. Fix λ not an eigenvalue of L. Then det(λi L) 0 λi L is invertible. We have then p L+N (λ) = det(λi L N) = det(λi L) det(i (λi L) N) = = p L (λ) det(i (λi L) N)

More information