The Bounded L 2 curvature conjecture in general relativity

Size: px
Start display at page:

Download "The Bounded L 2 curvature conjecture in general relativity"

Transcription

1 The Bounded L 2 curvature conjecture in general relativity Jérémie Szeftel Département de Mathématiques et Applications, Ecole Normale Supérieure (Joint work with Sergiu Klainerman and Igor Rodnianski) 1

2 Cauchy Problem for EE (M, g) Lorentzian, R curvature tensor of g Einstein Vacuum equations: Ric αβ = 0 Wave coordinates: g x α = 1 β (g βγ g γ )x α = 0, α = 0, 1, 2, 3 g g g αβ = N αβ (g, g), α, β = 0, 1, 2, 3, with N αβ quadratic w.r.t g Cauchy data: (Σ 0, g 0, k) where Σ 0 = {t = 0}, g(0,.) = g 0, t g(0,.) = k Question: Under which regularity do we have local existence for EE? 2

3 Semilinear Wave Equations φ = N (φ, φ), (t, x) R 1+3 φ(0,.) = φ 0 H s (R 3 ), t φ(0,.) = φ 1 H s 1 (R 3 ) where N is quadratic w.r.t φ Question: For which s is it locally well posed? Sobolev embedding in R 3 : WP for s > 5/2 Strichartz for φ = 0 WP for s > 2 (Ponce-Sideris) Ill-posed for s = 2 in general (Cex of Lindblad) If N = Q ij with Q ij (φ, ψ) = i φ j ψ i ψ j φ Bilinear estimates for Q ij WP for s > 3/2 (Klainerman-Machedon) 3

4 Quasilinear Wave Equations g(φ) φ = N (φ, φ), (t, x) R 1+3 φ(0,.) = φ 0 H s (R 3 ), t φ(0,.) = φ 1 H s 1 (R 3 ) Using Sobolev embedding: WP for s > 5/2 Strichartz for g φ = 0 requires g C 1,1 (Smith) Strichartz with loss enough: WP for s>2+1/4 (Bahouri-Chemin) WP for s>2 (Klainerman-Rodnianski for EE, Smith-Tataru for general quasilinear wave equations) Interesting geometrical hyperbolic equations satisfy the null structure Goal: prove that EE are WP in H 2 4

5 Bounded L 2 curvature conjecture Conjecture. Let (Σ 0, g 0, k) with R L 2 (Σ 0 ), k L 2 (Σ 0 ). Then, EE are WP Motivations: First WP result for a quasilinear wave equation below H 2+ɛ The assumptions R L 2 (Σ 0 ), k L 2 (Σ 0 ) are natural from the point of view of geometry Rather than a WP result, it can be viewed as a continuation argument: as long as R L 2 and k L 2 along a spacelike hypersurface, one may extend the solution of EE The control of the Eikonal equation g αβ α u β u = 0 requires R L 2 5

6 Strategy for a proof A Recast the EE as a quasilinear Yang-Mills theory B Prove appropriate bilinear estimates for solutions to g φ = 0 C Construct a parametrix for g φ = 0, and obtain the control of the parametrix and of its error term D Prove a sharp L 4 (M) Strichartz estimate for the parametrix Goal: take inspiration from the proof of Klainerman-Machedon for the WP of Yang-Mills in H 1 (R 3 ) Achieve Steps B, C and D only assuming L 2 bounds on R 6

7 WP of Yang-Mills in H 1 (R 3 ) (Klainerman-Machedon) A + t,x ( t,x A) = [A, t,x A] + A 3, A = (A 0, A 1, A 2, A 3 ) Gauge freedom. Choosing the Coulomb gauge i A i = 0: A + t,x ( 0 A 0 ) = [A, t,x A] + A 3 P = projector on divergence free vectofields: (A 0 ) = l.o.t (A i ) = ( P ( Q jl ( 1 A, A) + 1 (Q jl (A, A)) )) i + l.o.t A L t L 2 (R 3 ) Q jl ( 1 A, A) L 2 t L 2 (R 3 )+ 1 (Q jl (A, A)) L 2 t L 2 (R 3 )+l.o.t. Prove two bilinear estimates to conclude 7

8 Step A: EE as a quasilinear Yang-Mills theory Let e α an orthonormal frame on M, i.e. g(e α, e β ) = m αβ Let (A µ ) αβ := (A) αβ ( µ ) = g(d µ e β, e α ) The definition of R yields: R(e α, e β, µ, ν ) = µ (A ν ) αβ ν (A µ ) αβ +(A ν ) λ α (A µ ) λβ (A µ ) λ α (A ν ) λβ D µ R αβµν = 0 yields the tensorial wave equation: ( g A) ν D ν (D µ A µ ) = D µ ([A µ, A ν ]) + [A µ, D µ A ν D ν A µ ] + A 3 In view of the Klainerman-Machedon proof, we need in particular a procedure to scalarize the tensorial wave equation and to project on divergence free vectorfields without destroying the null strucure 8

9 Scalarization and projection procedure Scalarization: compute [X, g ] for any vectorfield X and use it with X = e α, α = 0, 1, 2, 3 Projection: compute [P, g ] where P = projector on divergence free vectofields These commutators generate numerous dangerous terms which need to satisfy the null structure We check this using the symmetries of R, the Bianchi identities, the link between A and R, the fact that A 0 is better than A 1, A 2, A 3, and the Coulomb gauge 9

10 The energy estimate for the wave equation The proof reduces to the control of a scalar function φ satisfying g (φ) = null forms + l.o.t Let φ a scalar function and Q αβ its energy momentum tensor: Q αβ = Q αβ [φ] = α φ β φ 1 2 g αβ (g µν µ φ ν φ) Σ t Q T T = Σ 0 Q T T + R g φt (φ) + R Q αβ D α T β Last term in RHS is dangerous needs to display the null structure and requires to prove the corresponding trilinear estimate 10

11 Step B: the bilinear estimates We need to estimate the following null forms Q ij (φ, A) L 2 (M) and ( g ) 1 2 (Qij ( φ, A)) L 2 (M) where φ is a scalar function φ satisfying g (φ) = null forms + l.o.t To prove these bilinear estimates in a quasilinear setting: write φ by iterating the basic parametrix of step C (construction and control of the parametrix) Rethink the proof of bilinear estimates in the quasilinear setting For the second type of bilinear estimate, rely on the structure of Q ij and a sharp L 4 (M) Strichartz estimate for the parametrix 11

12 Step C: construction and control of the parametrix S(t, x) = ± S e iλu ±(t,x,ω) f ± (λω)λ 2 dλdω where g αβ α u ± β u ± = 0 on M such that u ± (0, x, ω) x.ω when x + on Σ 0 Construction: for any (φ 0, φ 1 ) there exists f ± such that S(0,.) = φ 0, D T S(0,.) = φ 1 and λf ± L2 (R 3 ) φ 0 L2 (Σ 0 ) + φ 1 L2 (Σ 0 ) E(t, x) = g S(t, x) = i ± S e iλu ±(t,x,ω) g u ± (t, x, ω)f ± (λω)λ 3 dλdω Control of the error term: Ef L 2 (M) λf + L 2 (R 3 ) + λf L 2 (R 3 ) 12

13 Step C: construction and control of the parametrix C1 Choice of u(0, x, ω) and control of the foliation of Σ 0 by u(0, x, ω). C2 Construction of the parametrix using the control of u(0, x, ω) obtained in Step C1 C3 Control the geometry of the foliation of M by u solution of the Eikonal equation g αβ α u β u = 0. C4 Control the error term using the control of u(t, x, ω) obtained in Step C3 Goal: Achieve Steps C1-C4 only assuming L 2 bounds on R Steps C1 and C3 rely on the full structure of Einstein equations 13

14 Step C: construction and control of the parametrix The regularity in ω of u obtained in Steps C1 and C3 is limited In step C1: a careful choice of u(0, x, ω) (related to the mean curvature flow) allows us to "squeeze" as much regularity in x and ω as possible In step C3: R L 2 is minimal to obtain a lower bound on the radius of injectivity of level surfaces of the phase u Steps C2 and C4 require L 2 bounds for Fourier integral operators, and in turn several integration by parts. Classical proofs (T T and T T arguments) would fail by far. 14

15 Thank you! 15

Overview of the proof of the Bounded L 2 Curvature Conjecture. Sergiu Klainerman Igor Rodnianski Jeremie Szeftel

Overview of the proof of the Bounded L 2 Curvature Conjecture. Sergiu Klainerman Igor Rodnianski Jeremie Szeftel Overview of the proof of the Bounded L 2 Curvature Conjecture Sergiu Klainerman Igor Rodnianski Jeremie Szeftel Department of Mathematics, Princeton University, Princeton NJ 8544 E-mail address: seri@math.princeton.edu

More information

arxiv: v3 [math.ap] 10 Oct 2014

arxiv: v3 [math.ap] 10 Oct 2014 THE BOUNDED L 2 CURVATURE CONJECTURE arxiv:1204.1767v3 [math.ap] 10 Oct 2014 SERGIU KLAINERMAN, IGOR RODNIANSKI, AND JEREMIE SZEFTEL Abstract. This is the main paper in a sequence in which we give a complete

More information

arxiv: v1 [math.ap] 8 Apr 2012

arxiv: v1 [math.ap] 8 Apr 2012 Parametrix for wave equations on a rough background I: regularity of the phase at initial time Jérémie Szeftel DMA, Ecole Normale Supérieure, 45 rue d Ulm, 755 Paris, jeremie.szeftel@ens.fr arxiv:124.1768v1

More information

A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS

A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS A REMARK ON AN EQUATION OF WAVE MAPS TYPE WITH VARIABLE COEFFICIENTS DAN-ANDREI GEBA Abstract. We obtain a sharp local well-posedness result for an equation of wave maps type with variable coefficients.

More information

arxiv:math/ v1 [math.ap] 24 Apr 2003

arxiv:math/ v1 [math.ap] 24 Apr 2003 ICM 2002 Vol. III 1 3 arxiv:math/0304397v1 [math.ap] 24 Apr 2003 Nonlinear Wave Equations Daniel Tataru Abstract The analysis of nonlinear wave equations has experienced a dramatic growth in the last ten

More information

Null Cones to Infinity, Curvature Flux, and Bondi Mass

Null Cones to Infinity, Curvature Flux, and Bondi Mass Null Cones to Infinity, Curvature Flux, and Bondi Mass Arick Shao (joint work with Spyros Alexakis) University of Toronto May 22, 2013 Arick Shao (University of Toronto) Null Cones to Infinity May 22,

More information

Qualitative properties of some nonlinear partial differential equations

Qualitative properties of some nonlinear partial differential equations Mémoire présenté à l Université Paris-Nord pour l obtention de l habilitation à diriger des recherches Spécialité : Mathématiques Qualitative properties of some nonlinear partial differential equations

More information

FORMATION OF TRAPPED SURFACES II. 1. Introduction

FORMATION OF TRAPPED SURFACES II. 1. Introduction FORMATION OF TRAPPED SURFACES II SERGIU KLAINERMAN, JONATHAN LUK, AND IGOR RODNIANSKI 1. Introduction. Geometry of a null hypersurface As in [?] we consider a region D = D(u, u ) of a vacuum spacetime

More information

Stability and Instability of Black Holes

Stability and Instability of Black Holes Stability and Instability of Black Holes Stefanos Aretakis September 24, 2013 General relativity is a successful theory of gravitation. Objects of study: (4-dimensional) Lorentzian manifolds (M, g) which

More information

The stability of Kerr-de Sitter black holes

The stability of Kerr-de Sitter black holes The stability of Kerr-de Sitter black holes András Vasy (joint work with Peter Hintz) July 2018, Montréal This talk is about the stability of Kerr-de Sitter (KdS) black holes, which are certain Lorentzian

More information

The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant

The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant The Stability of the Irrotational Euler-Einstein System with a Positive Cosmological Constant Jared Speck & Igor Rodnianski jspeck@math.princeton.edu University of Cambridge & Princeton University October

More information

Rigidity of Black Holes

Rigidity of Black Holes Rigidity of Black Holes Sergiu Klainerman Princeton University February 24, 2011 Rigidity of Black Holes PREAMBLES I, II PREAMBLE I General setting Assume S B two different connected, open, domains and

More information

Non-existence of time-periodic dynamics in general relativity

Non-existence of time-periodic dynamics in general relativity Non-existence of time-periodic dynamics in general relativity Volker Schlue University of Toronto University of Miami, February 2, 2015 Outline 1 General relativity Newtonian mechanics Self-gravitating

More information

Singularity formation in black hole interiors

Singularity formation in black hole interiors Singularity formation in black hole interiors Grigorios Fournodavlos DPMMS, University of Cambridge Heraklion, Crete, 16 May 2018 Outline The Einstein equations Examples Initial value problem Large time

More information

RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON

RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN Abstract. We prove a black hole rigidity result for slowly rotating stationary

More information

Global stability problems in General Relativity

Global stability problems in General Relativity Global stability problems in General Relativity Peter Hintz with András Vasy Murramarang March 21, 2018 Einstein vacuum equations Ric(g) + Λg = 0. g: Lorentzian metric (+ ) on 4-manifold M Λ R: cosmological

More information

Non-linear stability of Kerr de Sitter black holes

Non-linear stability of Kerr de Sitter black holes Non-linear stability of Kerr de Sitter black holes Peter Hintz 1 (joint with András Vasy 2 ) 1 Miller Institute, University of California, Berkeley 2 Stanford University Geometric Analysis and PDE Seminar

More information

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY SAM KAUFMAN Abstract. The (Cauchy) initial value formulation of General Relativity is developed, and the maximal vacuum Cauchy development theorem is

More information

Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations

Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations arxiv:407.6320v [math.ap] 23 Jul 204 Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations JARED SPECK July 24, 204 Massachusetts Institute of Technology, Department of Mathematics.

More information

Strauss conjecture on asymptotically Euclidean manifolds

Strauss conjecture on asymptotically Euclidean manifolds Strauss conjecture on asymptotically Euclidean manifolds Xin Yu (Joint with Chengbo Wang) Department of Mathematics, Johns Hopkins University Baltimore, Maryland 21218 xinyu@jhu.edu Mar 12-Mar 13, 2010

More information

DYNAMICAL FORMATION OF BLACK HOLES DUE TO THE CONDENSATION OF MATTER FIELD

DYNAMICAL FORMATION OF BLACK HOLES DUE TO THE CONDENSATION OF MATTER FIELD DYNAMICAL FORMATION OF BLACK HOLES DUE TO THE CONDENSATION OF MATTER FIELD PIN YU Abstract. The purpose of the paper is to understand a mechanism of evolutionary formation of trapped surfaces when there

More information

Mathematical Research Letters 5, (1998) COUNTEREXAMPLES TO LOCAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS. Hans Lindblad

Mathematical Research Letters 5, (1998) COUNTEREXAMPLES TO LOCAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS. Hans Lindblad Mathematical Research Letters 5, 65 622 1998) COUNTEREXAMPLES TO LOCAL EXISTENCE FOR QUASILINEAR WAVE EQUATIONS Hans Lindblad 1. Introduction and themain argument In this paper, we study quasilinear wave

More information

Global properties of solutions to the Einstein-matter equations

Global properties of solutions to the Einstein-matter equations Global properties of solutions to the Einstein-matter equations Makoto Narita Okinawa National College of Technology 12/Nov./2012 @JGRG22, Tokyo Singularity theorems and two conjectures Theorem 1 (Penrose)

More information

FINITE-TIME DEGENERATION OF HYPERBOLICITY WITHOUT BLOWUP FOR QUASILINEAR WAVE EQUATIONS

FINITE-TIME DEGENERATION OF HYPERBOLICITY WITHOUT BLOWUP FOR QUASILINEAR WAVE EQUATIONS FINITE-TIME DEGENERATION OF HYPERBOLICITY WITHOUT BLOWUP FOR QUASILINEAR WAVE EQUATIONS JARED SPECK Abstract. In 3D, we study the Cauchy problem for the wave equation 2 t Ψ + (1 + Ψ) P Ψ = 0 for P {1,

More information

The Chern-Simons-Schrödinger equation

The Chern-Simons-Schrödinger equation The Chern-Simons-Schrödinger equation Low regularity local wellposedness Baoping Liu, Paul Smith, Daniel Tataru University of California, Berkeley July 16, 2012 Paul Smith (UC Berkeley) Chern-Simons-Schrödinger

More information

Integration of non linear conservation laws?

Integration of non linear conservation laws? Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian

More information

Title. On the stability of the wave-map equation in Kerr spaces. Alexandru D. Ionescu

Title. On the stability of the wave-map equation in Kerr spaces. Alexandru D. Ionescu Title On the stability of the wave-map equation in Kerr spaces Alexandru D. Ionescu We are interested in the question of the global stability of a stationary axially-symmetric solution of the wave map

More information

Myths, Facts and Dreams in General Relativity

Myths, Facts and Dreams in General Relativity Princeton university November, 2010 MYTHS (Common Misconceptions) MYTHS (Common Misconceptions) 1 Analysts prove superfluous existence results. MYTHS (Common Misconceptions) 1 Analysts prove superfluous

More information

Initial-Value Problems in General Relativity

Initial-Value Problems in General Relativity Initial-Value Problems in General Relativity Michael Horbatsch March 30, 2006 1 Introduction In this paper the initial-value formulation of general relativity is reviewed. In section (2) domains of dependence,

More information

Class Meeting # 13: Geometric Energy Estimates

Class Meeting # 13: Geometric Energy Estimates MATH 18.15 COURSE NOTES - CLASS MEETING # 13 18.15 Introduction to PDEs, Fall 011 Professor: Jared Speck Class Meeting # 13: Geometric Energy Estimates 1. m, the energy-momentum tensor, and compatible

More information

Energy method for wave equations

Energy method for wave equations Energy method for wave equations Willie Wong Based on commit 5dfb7e5 of 2017-11-06 13:29 Abstract We give an elementary discussion of the energy method (and particularly the vector field method) in the

More information

The weak null condition, global existence and the asymptotic behavior of solutions to Einstein s equations

The weak null condition, global existence and the asymptotic behavior of solutions to Einstein s equations The weak null condition, global existence and the asymptotic behavior of solutions to Einstein s equations The Einstein vacuum equations determine a 4-d manifold M with a Lorentzian metric g, sign( 1,

More information

A Brief Introduction to Mathematical Relativity

A Brief Introduction to Mathematical Relativity A Brief Introduction to Mathematical Relativity Arick Shao Imperial College London Arick Shao (Imperial College London) Mathematical Relativity 1 / 31 Special Relativity Postulates and Definitions Einstein

More information

PAPER 52 GENERAL RELATIVITY

PAPER 52 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 1 June, 2015 9:00 am to 12:00 pm PAPER 52 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

arxiv:gr-qc/ v2 22 Mar 1999

arxiv:gr-qc/ v2 22 Mar 1999 On the existence of Killing vector fields arxiv:gr-qc/9811031v2 22 Mar 1999 István Rácz Yukawa Institute for Theoretical Physics Kyoto University, Kyoto 606-01, Japan September 27, 2018 Abstract In covariant

More information

Causality, hyperbolicity, and shock formation in Lovelock theories

Causality, hyperbolicity, and shock formation in Lovelock theories Causality, hyperbolicity, and shock formation in Lovelock theories Harvey Reall DAMTP, Cambridge University HSR, N. Tanahashi and B. Way, arxiv:1406.3379, 1409.3874 G. Papallo, HSR arxiv:1508.05303 Lovelock

More information

Rough solutions of the Einstein-vacuum equations

Rough solutions of the Einstein-vacuum equations Annals of Mathematics, 6 005, 43 93 Rough solutions of the Einstein-vacuum equations By Sergiu Klainerman and Igor Rodnianski To Y. Choquet-Bruhat in honour of the 50 th anniversary of her fundamental

More information

Geometric Methods in Hyperbolic PDEs

Geometric Methods in Hyperbolic PDEs Geometric Methods in Hyperbolic PDEs Jared Speck jspeck@math.princeton.edu Department of Mathematics Princeton University January 24, 2011 Unifying mathematical themes Many physical phenomena are modeled

More information

arxiv:gr-qc/ v4 28 Apr 2006

arxiv:gr-qc/ v4 28 Apr 2006 THE GLOBAL EXISTENCE PROBLEM IN GENERAL RELATIVITY LARS ANDERSSON 1 arxiv:gr-qc/9911032v4 28 Apr 2006 Abstract. We survey some known facts and open questions concerning the global properties of 3+1 dimensional

More information

arxiv: v2 [gr-qc] 24 Apr 2017

arxiv: v2 [gr-qc] 24 Apr 2017 TRAPPED SURFACES IN VACUUM ARISING DYNAMICALLY FROM MILD INCOMING RADIATION XINLIANG AN AND JONATHAN LUK arxiv:409.670v [gr-qc] 4 Apr 07 Abstract. In this paper, we study the minimal requirement on the

More information

Web of Knowledge Page 1 (Articles ) [ 1 ]

Web of Knowledge Page 1 (Articles ) [ 1 ] 1 of 8 20/11/2011 19:12 Web of Knowledge Page 1 (Articles 1 -- 50) [ 1 ] Record 1 of 50 Title: The Euler equations of compressible fluid flow Author(s): Christodoulou, D (Christodoulou, Demetrios) Source:

More information

Recent developments on the global behavior to critical nonlinear dispersive equations. Carlos E. Kenig

Recent developments on the global behavior to critical nonlinear dispersive equations. Carlos E. Kenig Recent developments on the global behavior to critical nonlinear dispersive equations Carlos E. Kenig In the last 25 years or so, there has been considerable interest in the study of non-linear partial

More information

LOCAL EXISTENCE THEORY OF THE VACUUM EINSTEIN EQUATIONS

LOCAL EXISTENCE THEORY OF THE VACUUM EINSTEIN EQUATIONS LOCAL EXISTENCE THEORY OF THE VACUUM EINSTEIN EQUATIONS TSZ KIU AARON CHOW Abstract. In this paper, we treat the vacuum Einstein equations as a local Cauchy problem. We show that it reduces to a system

More information

The causal structure of microlocalized rough Einstein metrics

The causal structure of microlocalized rough Einstein metrics Annals of Mathematics, 6 005, 95 43 The causal structure of microlocalized rough Einstein metrics By Sergiu Klainerman and Igor Rodnianski Abstract This is the second in a series of three papers in which

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu CMS and UCLA August 20, 2007, Dong Conference Page 1 of 51 Outline: Joint works with D. Kong and W. Dai Motivation Hyperbolic geometric flow Local existence and nonlinear

More information

The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge

The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge Imperial College London Mathematical Relativity Seminar, Université Pierre et Marie Curie,

More information

Strichartz Estimates for the Schrödinger Equation in Exterior Domains

Strichartz Estimates for the Schrödinger Equation in Exterior Domains Strichartz Estimates for the Schrödinger Equation in University of New Mexico May 14, 2010 Joint work with: Hart Smith (University of Washington) Christopher Sogge (Johns Hopkins University) The Schrödinger

More information

LECTURE 3: Quantization and QFT

LECTURE 3: Quantization and QFT LECTURE 3: Quantization and QFT Robert Oeckl IQG-FAU & CCM-UNAM IQG FAU Erlangen-Nürnberg 14 November 2013 Outline 1 Classical field theory 2 Schrödinger-Feynman quantization 3 Klein-Gordon Theory Classical

More information

Solving Einstein s Equation Numerically III

Solving Einstein s Equation Numerically III Solving Einstein s Equation Numerically III Lee Lindblom Center for Astrophysics and Space Sciences University of California at San Diego Mathematical Sciences Center Lecture Series Tsinghua University

More information

An introduction to General Relativity and the positive mass theorem

An introduction to General Relativity and the positive mass theorem An introduction to General Relativity and the positive mass theorem National Center for Theoretical Sciences, Mathematics Division March 2 nd, 2007 Wen-ling Huang Department of Mathematics University of

More information

The X-ray transform for a non-abelian connection in two dimensions

The X-ray transform for a non-abelian connection in two dimensions The X-ray transform for a non-abelian connection in two dimensions David Finch Department of Mathematics Oregon State University Corvallis, OR, 97331, USA Gunther Uhlmann Department of Mathematics University

More information

Electromagnetic spikes

Electromagnetic spikes Electromagnetic spikes Ernesto Nungesser (joint work with Woei Chet Lim) Trinity College Dublin ANZAMP, 29th of November, 2013 Overview Heuristic picture of initial singularity What is a Bianchi spacetime?

More information

Graceful exit from inflation for minimally coupled Bianchi A scalar field models

Graceful exit from inflation for minimally coupled Bianchi A scalar field models Graceful exit from inflation for minimally coupled Bianchi A scalar field models Florian Beyer Reference: F.B. and Leon Escobar (2013), CQG, 30(19), p.195020. University of Otago, Dunedin, New Zealand

More information

Strauss conjecture for nontrapping obstacles

Strauss conjecture for nontrapping obstacles Chengbo Wang Joint work with: Hart Smith, Christopher Sogge Department of Mathematics Johns Hopkins University Baltimore, Maryland 21218 wangcbo@jhu.edu November 3, 2010 1 Problem and Background Problem

More information

ALMOST OPTIMAL LOCAL WELL-POSEDNESS FOR THE (3+1)-DIMENSIONAL MAXWELL KLEIN GORDON EQUATIONS

ALMOST OPTIMAL LOCAL WELL-POSEDNESS FOR THE (3+1)-DIMENSIONAL MAXWELL KLEIN GORDON EQUATIONS JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 7, Number, Pages 97 359 S 0894-03470300445-4 Article electronically published on November 3, 003 ALMOST OPTIMAL LOCAL WELL-POSEDNESS FOR THE 3+-DIMENSIONAL

More information

Quasi-local mass and isometric embedding

Quasi-local mass and isometric embedding Quasi-local mass and isometric embedding Mu-Tao Wang, Columbia University September 23, 2015, IHP Recent Advances in Mathematical General Relativity Joint work with Po-Ning Chen and Shing-Tung Yau. The

More information

Stability in Exponential Time of Minkowski Space Time with a Translation Space-Like Killing Field

Stability in Exponential Time of Minkowski Space Time with a Translation Space-Like Killing Field Ann. PDE 6 :7 DOI.7/s488-6--6 Stability in Exponential Time of Minkowski Space Time with a Translation Space-Like Killing Field Cécile Huneau Received: 6 February 5 / Accepted: 6 April 6 / Published online:

More information

HAWKING S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY

HAWKING S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY HAWKING S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY S. ALEXAKIS, A. D. IONESCU, AND S. KLAINERMAN Abstract. We prove the existence of a Hawking Killing vector-field in a full neighborhood of a local,

More information

Asymptotic Decay Rates of Electromagnetic and Spin-2 Fields in Minkowski Space. Marius Beceanu

Asymptotic Decay Rates of Electromagnetic and Spin-2 Fields in Minkowski Space. Marius Beceanu Asymptotic Decay Rates of Electromagnetic and Spin-2 Fields in Minkowski Space Marius Beceanu May, 24 Abstract This paper considers the decay rates of electromagnetic and spin-2 fields in Minkowski space.

More information

Hyperbolic Geometric Flow

Hyperbolic Geometric Flow Hyperbolic Geometric Flow Kefeng Liu Zhejiang University UCLA Page 1 of 41 Outline Introduction Hyperbolic geometric flow Local existence and nonlinear stability Wave character of metrics and curvatures

More information

An Introduction to Kaluza-Klein Theory

An Introduction to Kaluza-Klein Theory An Introduction to Kaluza-Klein Theory A. Garrett Lisi nd March Department of Physics, University of California San Diego, La Jolla, CA 993-39 gar@lisi.com Introduction It is the aim of Kaluza-Klein theory

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

Non-existence of time-periodic vacuum spacetimes

Non-existence of time-periodic vacuum spacetimes Non-existence of time-periodic vacuum spacetimes Volker Schlue (joint work with Spyros Alexakis and Arick Shao) Université Pierre et Marie Curie (Paris 6) Dynamics of self-gravitating matter workshop,

More information

Stability and Instability of Extremal Black Holes

Stability and Instability of Extremal Black Holes Stability and Instability of Extremal Black Holes Stefanos Aretakis Department of Pure Mathematics and Mathematical Statistics, University of Cambridge s.aretakis@dpmms.cam.ac.uk December 13, 2011 MIT

More information

THE WAVE MAPS EQUATION. 1. The equations Let us begin with the Laplace equation, R n

THE WAVE MAPS EQUATION. 1. The equations Let us begin with the Laplace equation, R n THE WAVE MAPS EQUATION DANIEL TATARU Abstract. The wave maps equation has become a very popular topic in recent years. The aim of these expository notes is to present a non-technical survey of the ideas

More information

General Relativity in a Nutshell

General Relativity in a Nutshell General Relativity in a Nutshell (And Beyond) Federico Faldino Dipartimento di Matematica Università degli Studi di Genova 27/04/2016 1 Gravity and General Relativity 2 Quantum Mechanics, Quantum Field

More information

Geometric inequalities for black holes

Geometric inequalities for black holes Geometric inequalities for black holes Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET, Argentina. 3 August, 2012 Einstein equations (vacuum) The spacetime is a four dimensional manifold M with

More information

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = CALCULUS ON MANIFOLDS 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M = a M T am, called the tangent bundle, is itself a smooth manifold, dim T M = 2n. Example 1.

More information

Solving Einstein s Equations: PDE Issues

Solving Einstein s Equations: PDE Issues Solving Einstein s Equations: PDE Issues Lee Lindblom Theoretical Astrophysics, Caltech Mathematical and Numerical General Relativity Seminar University of California at San Diego 22 September 2011 Lee

More information

A Geometric Method for Constructing A Priori Estimates for Regularly Hyperbolic PDEs

A Geometric Method for Constructing A Priori Estimates for Regularly Hyperbolic PDEs A Geometric Method for Constructing A Priori Estimates for Regularly Hyperbolic PDEs Senior Thesis John Stogin May 1, 2011 Abstract This paper is an overview of a geometric technique for constructing a

More information

Cosmology on Simplicial Complexes

Cosmology on Simplicial Complexes Gravitation and Regge Calculus Astro Coee, Frankfurt, April 2015 Outline Gravitation and Regge Calculus 1 Gravitation and Regge Calculus Foundations of General Relativity Geometric Structure of Regge Calculus

More information

Inverse problems for hyperbolic PDEs

Inverse problems for hyperbolic PDEs Inverse problems for hyperbolic PDEs Lauri Oksanen University College London Example: inverse problem for the wave equation Let c be a smooth function on Ω R n and consider the wave equation t 2 u c 2

More information

arxiv: v1 [math.ap] 1 May 2017

arxiv: v1 [math.ap] 1 May 2017 LOW REGULARITY LOCAL WELL-POSEDNESS FOR THE (N+1)-DIMENSIONAL MAXWELL-KLEIN-GORDON EQUATIONS IN LORENZ GAUGE arxiv:1705.00599v1 [math.ap] 1 May 017 HARTMUT PECHER FACHBEREICH MATHEMATIK UND NATURWISSENSCHAFTEN

More information

Entanglement entropy in a holographic model of the Kondo effect

Entanglement entropy in a holographic model of the Kondo effect Entanglement entropy in a holographic model of the Kondo effect Mario Flory Max-Planck-Institut für Physik University of Oxford 05.05.2015 Mario Flory Entanglement entropy & Kondo 1 / 30 Overview Part

More information

Local foliations and optimal regularity of Einstein spacetimes

Local foliations and optimal regularity of Einstein spacetimes Local foliations and optimal regularity of Einstein spacetimes Bing-Long Chen 1 and Philippe G. LeFloch 2 October 2, 2008 Abstract We investigate the local regularity of pointed spacetimes, that is, timeoriented

More information

Lectures on Non-Linear Wave Equations

Lectures on Non-Linear Wave Equations Lectures on Non-Linear Wave Equations Second Edition Christopher D. Sogge Department of Mathematics Johns Hopkins University International Press www.intlpress.com Lectures on Non-Linear Wave Equations,

More information

Quasi-local Mass and Momentum in General Relativity

Quasi-local Mass and Momentum in General Relativity Quasi-local Mass and Momentum in General Relativity Shing-Tung Yau Harvard University Stephen Hawking s 70th Birthday University of Cambridge, Jan. 7, 2012 I met Stephen Hawking first time in 1978 when

More information

Strichartz Estimates in Domains

Strichartz Estimates in Domains Department of Mathematics Johns Hopkins University April 15, 2010 Wave equation on Riemannian manifold (M, g) Cauchy problem: 2 t u(t, x) gu(t, x) =0 u(0, x) =f (x), t u(0, x) =g(x) Strichartz estimates:

More information

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations

Outline. 1 Relativistic field theory with variable space-time. 3 Extended Hamiltonians in field theory. 4 Extended canonical transformations Outline General Relativity from Basic Principles General Relativity as an Extended Canonical Gauge Theory Jürgen Struckmeier GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany j.struckmeier@gsi.de,

More information

Global solutions for the cubic non linear wave equation

Global solutions for the cubic non linear wave equation Global solutions for the cubic non linear wave equation Nicolas Burq Université Paris-Sud, Laboratoire de Mathématiques d Orsay, CNRS, UMR 8628, FRANCE and Ecole Normale Supérieure Oxford sept 12th, 2012

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Equations of Motion from Field Equations and a Gauge-invariant Variational Principle for the Motion of Charged Particles

Equations of Motion from Field Equations and a Gauge-invariant Variational Principle for the Motion of Charged Particles Equations of Motion from Field Equations and a Gauge-invariant Variational Principle for the Motion of Charged Particles Dariusz Chruściński Institute of Physics, Nicholas Copernicus University ul. Grudzi

More information

Observer dependent background geometries arxiv:

Observer dependent background geometries arxiv: Observer dependent background geometries arxiv:1403.4005 Manuel Hohmann Laboratory of Theoretical Physics Physics Institute University of Tartu DPG-Tagung Berlin Session MP 4 18. März 2014 Manuel Hohmann

More information

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES CLAUS GERHARDT Abstract. We prove that the mean curvature τ of the slices given by a constant mean curvature foliation can be used

More information

LECTURE NOTES IN GENERAL RELATIVITY: Spring Sergiu Klainerman

LECTURE NOTES IN GENERAL RELATIVITY: Spring Sergiu Klainerman LECTURE NOTES IN GENERAL RELATIVITY: Spring 2009 Sergiu Klainerman Department of Mathematics, Princeton University, Princeton NJ 08544 E-mail address: seri@math.princeton.edu CHAPTER 1 Special Relativity

More information

Dispersive Equations and Nonlinear Waves

Dispersive Equations and Nonlinear Waves Herbert Koch Daniel Tataru Monica Vi an Dispersive Equations and Nonlinear Waves Generalized Korteweg-de Vries, Nonlinear Schrodinger, Wave and Schrodinger Maps ^ Birkhauser Contents Preface xi Nonlinear

More information

Brane Gravity from Bulk Vector Field

Brane Gravity from Bulk Vector Field Brane Gravity from Bulk Vector Field Merab Gogberashvili Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 380077, Georgia E-mail: gogber@hotmail.com September 7, 00 Abstract It is shown

More information

Math 593: Problem Set 10

Math 593: Problem Set 10 Math 593: Problem Set Feng Zhu, edited by Prof Smith Hermitian inner-product spaces (a By conjugate-symmetry and linearity in the first argument, f(v, λw = f(λw, v = λf(w, v = λf(w, v = λf(v, w. (b We

More information

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are. GRAVITATION F0 S. G. RAJEEV Lecture. Maxwell s Equations in Curved Space-Time.. Recall that Maxwell equations in Lorentz covariant form are. µ F µν = j ν, F µν = µ A ν ν A µ... They follow from the variational

More information

A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION

A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION TERENCE TAO Abstract. Let d 1, and let u, v : R R d C be Schwartz space solutions to the Schrödinger

More information

arxiv: v2 [gr-qc] 25 Apr 2018

arxiv: v2 [gr-qc] 25 Apr 2018 Decay of weakly charged solutions for the spherically symmetric Maxwell-Charged-Scalar-Field equations on a Reissner Nordström exterior space-time Maxime Van de Moortel a a University of Cambridge, Department

More information

PAPER 311 BLACK HOLES

PAPER 311 BLACK HOLES MATHEMATICAL TRIPOS Part III Friday, 8 June, 018 9:00 am to 1:00 pm PAPER 311 BLACK HOLES Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

THE BONDI-SACHS FORMALISM JEFF WINICOUR UNIVERSITY OF PITTSBURGH. Scholarpedia 11(12):33528 (2016) with Thomas Mädler

THE BONDI-SACHS FORMALISM JEFF WINICOUR UNIVERSITY OF PITTSBURGH. Scholarpedia 11(12):33528 (2016) with Thomas Mädler THE BONDI-SACHS FORMALISM JEFF WINICOUR UNIVERSITY OF PITTSBURGH Scholarpedia 11(12):33528 (2016) with Thomas Mädler NULL HYPERSURFACES u = const Normal co-vector @ u is null g @ u @ u =0 Normal vector

More information

arxiv: v1 [gr-qc] 4 Oct 2017

arxiv: v1 [gr-qc] 4 Oct 2017 The interior of dynamical vacuum black holes I: The C 0 -stability of the err Cauchy horizon Mihalis Dafermos 1 and Jonathan Luk 1 Department of Mathematics, Princeton University, Washington Road, Princeton

More information

The BKL proposal and cosmic censorship

The BKL proposal and cosmic censorship - 1 - The BKL proposal and cosmic censorship Lars Andersson University of Miami and Albert Einstein Institute (joint work with Henk van Elst, Claes Uggla and Woei-Chet Lim) References: Gowdy phenomenology

More information

Predictability of subluminal and superluminal wave equations

Predictability of subluminal and superluminal wave equations Predictability of subluminal and superluminal wave equations Felicity C. Eperon and Harvey S. Reall Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road,

More information

arxiv: v2 [math.ap] 28 Jul 2016

arxiv: v2 [math.ap] 28 Jul 2016 arxiv:1507.02715v2 [math.ap] 28 Jul 2016 Abstract The global nonlinear stability of Minkowski space for the Einstein equations in presence of a massive field Philippe G. LeFloch a and Yue Ma b a Laboratoire

More information

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Spring 207 Professor: Jared Speck Class Meeting # 2: Kirchhoff s Formula and Minkowskian Geometry. Kirchhoff s Formula We are now ready

More information

On Black Hole Structures in Scalar-Tensor Theories of Gravity

On Black Hole Structures in Scalar-Tensor Theories of Gravity On Black Hole Structures in Scalar-Tensor Theories of Gravity III Amazonian Symposium on Physics, Belém, 2015 Black holes in General Relativity The types There are essentially four kind of black hole solutions

More information