Dot Product Between Vectors

Size: px
Start display at page:

Download "Dot Product Between Vectors"

Transcription

1 Dot Product etween Vectors Consider two vectors A = A x î + A y ĵ + A zˆk and = x î + y ĵ + zˆk. A = A cos φ = A A = A. A = A. A = A if A. A = 0 if A. A = (A x î + A y ĵ + A zˆk) (x î + y ĵ + zˆk) = A x x (î î) + A x y (î ĵ) + A x z (î ˆk) +A y x (ĵ î) + A y y (ĵ ĵ) + A y z (ĵ ˆk) +A z x (ˆk î) + A z y (ˆk ĵ) + A z z (ˆk ˆk). Use î î = ĵ ĵ = ˆk ˆk = 1, î ĵ = ĵ ˆk = ˆk î = 0. A = A x x + A y y + A z z. 7/10/2015 [tsl229 1/19]

2 Cross Product etween Vectors Consider two vectors A = A x î + A y ĵ + A zˆk and = x î + y ĵ + zˆk. A = A sin φ ˆn. A = A. A A = 0. A = A ˆn if A. A = 0 if A. A = (A x î + A y ĵ + A zˆk) (x î + y ĵ + zˆk) = A x x (î î) + A x y (î ĵ) + A x z (î ˆk) +A y x (ĵ î) + A y y (ĵ ĵ) + A y z (ĵ ˆk) +A z x (ˆk î) + A z y (ˆk ĵ) + A z z (ˆk ˆk). Use î î = ĵ ĵ = ˆk ˆk = 0, î ĵ = ˆk, ĵ ˆk = î, ˆk î = ĵ. A = (A y z A z y )î + (A z x A x z )ĵ + (A x y A y x )ˆk. 7/10/2015 [tsl230 2/19]

3 Magnetic Dipole Moment of Current Loop N: number of turns : current through wire A: area of loop ˆn: unit vector perpendicular to plane of loop µ = N Aˆn: magnetic dipole moment : magnetic field τ = µ : torque acting on current loop 7/10/2015 [tsl475 3/19]

4 Magnetic Moment of a Rotating Disk Consider a nonconducting disk of radius R with a uniform surface charge density σ. The disk rotates with angular velocity ω. Calculation of the magnetic moment µ: Total charge on disk: Q = σ(πr 2 ). Divide the disk into concentric rings of width dr. Period of rotation: T = 2π ω. Current within ring: d = dq T = σ(2πrdr) ω 2π = σωrdr. Magnetic moment of ring: dµ = d(πr 2 ) = πσωr 3 dr. Magnetic moment of disk: µ = Z R Vector relation: µ = π 4 σr4 ω = 1 4 QR2 ω. 0 πσωr 3 dr = π 4 σr4 ω. 7/10/2015 [tsl199 4/19]

5 Torque on Current Loop magnetic field: (horizontal) area of loop: A = ab unit vector to plane of loop: ˆn right-hand rule: ˆn points up. forces on sides a: F = a (vertical) forces on sides b: F = b (horizontal, not shown) torque: τ = Fbsin θ = A sin θ magnetic moment: µ = Aˆn torque (vector): τ = µ 7/10/2015 [tsl196 5/19]

6 Direct-Current Motor 7/10/2015 [tsl408 6/19]

7 Galvanometer Measuring direct currents. magnetic moment µ (along needle) magnetic field (toward right) torque τ = µ (into plane) 7/10/2015 [tsl409 7/19]

8 Electric Dipole in Uniform Electric Field Electric dipole moment: p = ql Torque exerted by electric field: τ = p E Potential energy: U = p E U(θ) = Z θ π/2 τ(θ)dθ = pe Z θ π/2 Note: τ(θ) and dθ have opposite sign. sin θdθ = pe cos θ q L p = ql +q τ E θ p 7/10/2015 [tsl197 8/19]

9 Magnetic Dipole in Uniform Magnetic Field Magnetic dipole moment: µ = Aˆn Torque exerted by magnetic field: τ = µ Potential energy: U = µ U(θ) = Z θ π/2 τ(θ)dθ = µ Z θ π/2 Note: τ(θ) and dθ have opposite sign. sin θdθ = µ cos θ n^ µ = An^. τ µ θ 7/10/2015 [tsl198 9/19]

10 Magnetic Force Application (7) The rectangular 20-turn loop of wire is 10cm high and 5cm wide. t carries a current = 0.1A and is hinged along one long side. t is mounted with its plane at an angle of 30 to the direction of a uniform magnetic field of magnitude = 0.50T. Calculate the magnetic moment µ of the loop. Calculate the torque τ acting on the loop about the hinge line. 30 o a = 10cm b = 5cm 7/10/2015 [tsl202 10/19]

11 Magnetic Force Application (4) A negatively charged basketball is thrown vertically up against the gravitational field g. Which direction of (a) a uniform electric field E, (b) a uniform magnetic field will give the ball a chance to find its way into the basket? (up/down/left/right/back/front) g V 7/10/2015 [tsl191 11/19]

12 Magnetic Force Application (6) An electric current flows through each of the letter-shaped wires in a region of uniform magnetic field pointing into the plane. Find the direction of the resultant magnetic force on each letter. NW W N NE E SW S SE 7/10/2015 [tsl193 12/19]

13 Magnetic Force Application (10) A triangular current loop is free to rotate around the vertical axis PQ. f a uniform magnetic field is switched on, will the corner R of the triangle start to move out of the plane, into the plane, or will it not move at all? Find the answer for a field pointing (a) up, (b) to the right, (c) into the plane. P R (a) (b) Q (c) 7/10/2015 [tsl205 13/19]

14 Hall Effect Method for dermining whether charge carriers are positively or negatively charged. Magnetic field pulls charge carriers to one side of conducting strip. Accumulation of charge carriers on that side and depletion on opposite side produce transverse electric field E. Transverse forces on charge carrier: F E = qe and F = qv d. n steady state forces are balanced: F E = F. Hall voltage in steady state: V H = Ew = v d w. positive charge carriers negative charge carriers 7/10/2015 [tsl201 14/19]

15 Charged Particle in Crossed Electric and Magnetic Fields (1) Release particle from rest. y Force: F = q( E + v ) E (1) F x = m dv x dt (2) F y = m dv y dt = qv y dv x dt = qv x + qe dv y dt = q m v y = q m v x + qe m Ansatz: v x (t) = w x cos(ω 0 t) + u x, v y (t) = w y sin(ω 0 t) + u y z m q x Substitute ansatz into (1) and (2) to find w x, w y, u x, u y, ω 0. (1) ω 0 w x sin(ω 0 t) = q m w y sin(ω 0 t) q m u y (2) ω 0 w y cos(ω 0 t) = q m w x cos(ω 0 t) + q m u x + qe m u y = 0, u x = E, ω 0 = q m, w x = w y w nitial condition: v x (0) = v y (0) = 0 w = E 7/10/2015 [tsl208 15/19]

16 Charged Particle in Crossed Electric and Magnetic Fields (2) Solution for velocity of particle: v x (t) = E» «qt cos 1, v y (t) = E «qt m sin m Solution for position of particle: x(t) = E Z t» «qt cos 1 dt = Em «qt 0 m q 2 sin m y(t) = E Z t «qt sin dt = Em» «qt m q 2 1 cos m 0 Et Path of particle in (x, y)-plane: cycloid t = 2πm q y 2mE q 2 m E q x 2πmE q 2 7/10/2015 [tsl209 16/19]

17 ntermediate Exam : Problem #1 (Spring 07) Consider a rectangular conducting loop in the xy-plane with a counterclockwise current = 7A in a uniform magnetic field = 3Tî. (a) Find the magnetic moment µ (magnitude and direction) of the loop. (b) Find the force F (magnitude and direction) acting on the side ab of the rectangle. (c) Find the torque τ (magnitude and direction) acting on the loop. y 9m b 5m a x z 7/10/2015 [tsl365 17/19]

18 ntermediate Exam : Problem #1 (Spring 07) Consider a rectangular conducting loop in the xy-plane with a counterclockwise current = 7A in a uniform magnetic field = 3Tî. (a) Find the magnetic moment µ (magnitude and direction) of the loop. (b) Find the force F (magnitude and direction) acting on the side ab of the rectangle. (c) Find the torque τ (magnitude and direction) acting on the loop. y 9m b 5m Solution: (a) µ = (7A)(45m 2 )ˆk = 315Am 2ˆk. z a x 7/10/2015 [tsl365 17/19]

19 ntermediate Exam : Problem #1 (Spring 07) Consider a rectangular conducting loop in the xy-plane with a counterclockwise current = 7A in a uniform magnetic field = 3Tî. (a) Find the magnetic moment µ (magnitude and direction) of the loop. (b) Find the force F (magnitude and direction) acting on the side ab of the rectangle. (c) Find the torque τ (magnitude and direction) acting on the loop. y 9m b 5m Solution: (a) µ = (7A)(45m 2 )ˆk = 315Am 2ˆk. z a x (b) F = L = (7A)(5mĵ) (3Tî) = 105Nˆk. 7/10/2015 [tsl365 17/19]

20 ntermediate Exam : Problem #1 (Spring 07) Consider a rectangular conducting loop in the xy-plane with a counterclockwise current = 7A in a uniform magnetic field = 3Tî. (a) Find the magnetic moment µ (magnitude and direction) of the loop. (b) Find the force F (magnitude and direction) acting on the side ab of the rectangle. (c) Find the torque τ (magnitude and direction) acting on the loop. y 9m b 5m Solution: (a) µ = (7A)(45m 2 )ˆk = 315Am 2ˆk. z a x (b) F = L = (7A)(5mĵ) (3Tî) = 105Nˆk. (c) τ = µ = (315Am 2ˆk) (3Tî) = 945Nmĵ 7/10/2015 [tsl365 17/19]

21 Unit Exam : Problem #1 (Spring 08) Consider two circular currents 1 = 3A at radius r 1 = 2m and 2 = 5A at radius r 2 = 4m in the directions shown. (a) Find magnitude and direction (, ) of the resultant magnetic field at the center. (b) Find magnitude µ and direction (, ) of the magnetic dipole moment generated by the two currents. 2 1 r 2 r 1 7/10/2015 [tsl381 18/19]

22 Unit Exam : Problem #1 (Spring 08) Consider two circular currents 1 = 3A at radius r 1 = 2m and 2 = 5A at radius r 2 = 4m in the directions shown. (a) Find magnitude and direction (, ) of the resultant magnetic field at the center. (b) Find magnitude µ and direction (, ) of the magnetic dipole moment generated by the two currents. Solution: (a) = µ 0(3A) 2(2m) µ 0(5A) 2(4m) = ( ) 10 7 T = T r 2 r /10/2015 [tsl381 18/19]

23 Unit Exam : Problem #1 (Spring 08) Consider two circular currents 1 = 3A at radius r 1 = 2m and 2 = 5A at radius r 2 = 4m in the directions shown. (a) Find magnitude and direction (, ) of the resultant magnetic field at the center. (b) Find magnitude µ and direction (, ) of the magnetic dipole moment generated by the two currents. Solution: (a) = µ 0(3A) 2(2m) µ 0(5A) 2(4m) = ( ) 10 7 T = T (b) µ = π(4m) 2 (5A) π(2m) 2 (3A) = (251 38)Am 2 µ = 213Am 2 r 2 r /10/2015 [tsl381 18/19]

24 Unit Exam : Problem #1 (Spring 09) A triangular conducting loop in the yz-plane with a counterclockwise current = 3A is free to rotate about the axis PQ. A uniform magnetic field = 0.5Tˆk is present. (a) Find the magnetic moment µ (magnitude and direction) of the triangle. (b) Find the magnetic torque τ (magnitude and direction) acting on the triangle. (c) Find the magnetic force F H (magnitude and direction) acting on the long side (hypotenuse) of the triangle. (d) Find the force F R (magnitude and direction) that must be applied to the corner R to keep the triangle from rotating. z 8m P Q 8m x R y 7/10/2015 [tsl395 19/19]

25 Unit Exam : Problem #1 (Spring 09) A triangular conducting loop in the yz-plane with a counterclockwise current = 3A is free to rotate about the axis PQ. A uniform magnetic field = 0.5Tˆk is present. (a) Find the magnetic moment µ (magnitude and direction) of the triangle. (b) Find the magnetic torque τ (magnitude and direction) acting on the triangle. (c) Find the magnetic force F H (magnitude and direction) acting on the long side (hypotenuse) of the triangle. (d) Find the force F R (magnitude and direction) that must be applied to the corner R to keep the triangle from rotating. z 8m P Q 8m Solution: (a) µ = (3A)(32m 2 )î = 96Am 2 î. x R y 7/10/2015 [tsl395 19/19]

26 Unit Exam : Problem #1 (Spring 09) A triangular conducting loop in the yz-plane with a counterclockwise current = 3A is free to rotate about the axis PQ. A uniform magnetic field = 0.5Tˆk is present. (a) Find the magnetic moment µ (magnitude and direction) of the triangle. (b) Find the magnetic torque τ (magnitude and direction) acting on the triangle. (c) Find the magnetic force F H (magnitude and direction) acting on the long side (hypotenuse) of the triangle. (d) Find the force F R (magnitude and direction) that must be applied to the corner R to keep the triangle from rotating. z 8m P Q 8m Solution: (a) µ = (3A)(32m 2 )î = 96Am 2 î. (b) τ = µ = (96Am 2 î) (0.5Tˆk) = 48Nmĵ. x R y 7/10/2015 [tsl395 19/19]

27 Unit Exam : Problem #1 (Spring 09) A triangular conducting loop in the yz-plane with a counterclockwise current = 3A is free to rotate about the axis PQ. A uniform magnetic field = 0.5Tˆk is present. (a) Find the magnetic moment µ (magnitude and direction) of the triangle. (b) Find the magnetic torque τ (magnitude and direction) acting on the triangle. (c) Find the magnetic force F H (magnitude and direction) acting on the long side (hypotenuse) of the triangle. (d) Find the force F R (magnitude and direction) that must be applied to the corner R to keep the triangle from rotating. z 8m P Q 8m Solution: (a) µ = (3A)(32m 2 )î = 96Am 2 î. (b) τ = µ = (96Am 2 î) (0.5Tˆk) = 48Nmĵ. (c) F H = (3A)(8 2m)(0.5T)(sin45 ) = 12N. x R y 7/10/2015 [tsl395 19/19]

28 Unit Exam : Problem #1 (Spring 09) A triangular conducting loop in the yz-plane with a counterclockwise current = 3A is free to rotate about the axis PQ. A uniform magnetic field = 0.5Tˆk is present. (a) Find the magnetic moment µ (magnitude and direction) of the triangle. (b) Find the magnetic torque τ (magnitude and direction) acting on the triangle. (c) Find the magnetic force F H (magnitude and direction) acting on the long side (hypotenuse) of the triangle. (d) Find the force F R (magnitude and direction) that must be applied to the corner R to keep the triangle from rotating. z 8m P Q 8m Solution: (a) µ = (3A)(32m 2 )î = 96Am 2 î. (b) τ = µ = (96Am 2 î) (0.5Tˆk) = 48Nmĵ. (c) F H = (3A)(8 2m)(0.5T)(sin45 ) = 12N. x R y (d) ( 8mˆk) F R = τ = 48Nmĵ F R = 6Nî. 7/10/2015 [tsl395 19/19]

13. Magnetic Field II

13. Magnetic Field II University of Rhode sland DigitalCommons@UR PHY 204: Elementary Physics Physics Course Materials 2015 13. Magnetic Field Gerhard Müller University of Rhode sland, gmuller@uri.edu Creative Commons License

More information

W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2

W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2 W07D1 Magnetic Dipoles, Force and Torque on a Dipole, Experiment 2 W07D1 Magnetic Dipoles, Torque and Force on a Dipole, Experiment 2: Magnetic Dipole in a Helmholtz Coil http://web.mit.edu/8.02t/www/materials/experiments/expmagforcesdipolehelmholtz.pdf

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 12. Magnetic Field I Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

14. Magnetic Field III

14. Magnetic Field III University of Rhode sland DigitalCommons@UR PHY 204: Elementary Physics Physics Course Materials 2015 14. Magnetic Field Gerhard Müller University of Rhode sland, gmuller@uri.edu Creative Commons License

More information

Exam 2 Solutions. ε 3. ε 1. Problem 1

Exam 2 Solutions. ε 3. ε 1. Problem 1 Exam 2 Solutions Problem 1 In the circuit shown, R1=100 Ω, R2=25 Ω, and the ideal batteries have EMFs of ε1 = 6.0 V, ε2 = 3.0 V, and ε3 = 1.5 V. What is the magnitude of the current flowing through resistor

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Q1. A wave travelling along a string is described by

Q1. A wave travelling along a string is described by Coordinator: Saleem Rao Wednesday, May 24, 2017 Page: 1 Q1. A wave travelling along a string is described by y( x, t) = 0.00327 sin(72.1x 2.72t) In which all numerical constants are in SI units. Find the

More information

Electromagnetic Induction! March 11, 2014 Chapter 29 1

Electromagnetic Induction! March 11, 2014 Chapter 29 1 Electromagnetic Induction! March 11, 2014 Chapter 29 1 Notes! Exam 4 next Tuesday Covers Chapters 27, 28, 29 in the book Magnetism, Magnetic Fields, Electromagnetic Induction Material from the week before

More information

Phys102 Final-132 Zero Version Coordinator: A.A.Naqvi Wednesday, May 21, 2014 Page: 1

Phys102 Final-132 Zero Version Coordinator: A.A.Naqvi Wednesday, May 21, 2014 Page: 1 Coordinator: A.A.Naqvi Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R =105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? A).3 V

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 2 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Part of a long, straight insulated wire carrying current i is bent into a circular

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010

PHYSICS 221, FALL 2010 EXAM #1 Solutions WEDNESDAY, SEPTEMBER 29, 2010 PHYSICS 1, FALL 010 EXAM 1 Solutions WEDNESDAY, SEPTEMBER 9, 010 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In

More information

Physics 2135 Exam 2 October 20, 2015

Physics 2135 Exam 2 October 20, 2015 Exam Total / 200 Physics 2135 Exam 2 October 20, 2015 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A straight wire segment

More information

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane MATH 100 WORKSHEET 1.1 & 1. Vectors in the Plane Find the vector v where u =, 1 and w = 1, given the equation v = u w. Solution. v = u w =, 1 1, =, 1 +, 4 =, 1 4 = 0, 5 Find the magnitude of v = 4, 3 Solution.

More information

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01 Final Exam: Physics2331 - Spring, 2017 May 8, 2017 Version 01 NAME (Please Print) Your exam should have 11 pages. This exam consists of 18 multiple-choice questions (2 points each, worth 36 points), and

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1 This print-out should have 35 questions. Multiple-choice questions may continue on the next column or page find all choices before answering.

More information

Electric Potential of Charged Rod

Electric Potential of Charged Rod Electric Potential of Charged Rod Charge per unit length: λ = Q/L y dq = λ d Charge on slice d: dq = λd dv d L Electric potential generated by slice d: dv = kdq = kλd Electric potential generated by charged

More information

Physics 1308 Exam 2 Summer 2015

Physics 1308 Exam 2 Summer 2015 Physics 1308 Exam 2 Summer 2015 E2-01 2. The direction of the magnetic field in a certain region of space is determined by firing a test charge into the region with its velocity in various directions in

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic or Indian origin 800 BC Greeks Discovered magnetite

More information

11/13/2018. The Hall Effect. The Hall Effect. The Hall Effect. Consider a magnetic field perpendicular to a flat, currentcarrying

11/13/2018. The Hall Effect. The Hall Effect. The Hall Effect. Consider a magnetic field perpendicular to a flat, currentcarrying The Hall Effect Consider a magnetic field perpendicular to a flat, currentcarrying conductor. As the charge carriers move at the drift speed v d, they will experience a magnetic force F B = ev d B perpendicular

More information

Consider a magnetic field perpendicular to a flat, currentcarrying

Consider a magnetic field perpendicular to a flat, currentcarrying The Hall Effect Consider a magnetic field perpendicular to a flat, currentcarrying conductor. As the charge carriers move at the drift speed v d, they will experience a magnetic force F B = ev d B perpendicular

More information

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc.

Chapter 27 Magnetism. Copyright 2009 Pearson Education, Inc. Chapter 27 Magnetism 27-1 Magnets and Magnetic Fields Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. 27-1 Magnets and Magnetic Fields However, if you cut a

More information

2. Evaluate C. F d r if F = xyî + (x + y)ĵ and C is the curve y = x 2 from ( 1, 1) to (2, 4).

2. Evaluate C. F d r if F = xyî + (x + y)ĵ and C is the curve y = x 2 from ( 1, 1) to (2, 4). Exam 3 Study Guide Math 223 Section 12 Fall 2015 Instructor: Dr. Gilbert 1. Which of the following vector fields are conservative? If you determine that a vector field is conservative, find a valid potential

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Ch 29 - Magnetic Fields & Sources

Ch 29 - Magnetic Fields & Sources Ch 29 - Magnetic Fields & Sources Magnets......are made of ferromagnetic elements: iron, cobalt, nickel, gadolinium... Magnets have a north pole and a south pole. Magnetic Fields 1. The magnetic field

More information

m e = m/s. x = vt = t = x v = m

m e = m/s. x = vt = t = x v = m 5. (a) The textbook uses geomagnetic north to refer to Earth s magnetic pole lying in the northern hemisphere. Thus, the electrons are traveling northward. The vertical component of the magnetic field

More information

The Calculus of Vec- tors

The Calculus of Vec- tors Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 3 1 The Calculus of Vec- Summary: tors 1. Calculus of Vectors: Limits and Derivatives 2. Parametric representation of Curves r(t) = [x(t), y(t),

More information

week 8 The Magnetic Field

week 8 The Magnetic Field week 8 The Magnetic Field General Principles General Principles Applications Start with magnetic forces on moving charges and currents A positive charge enters a uniform magnetic field as shown. What is

More information

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: PHYS 102 Exams Exam 2 PRINT (A) The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d: It is connected to a battery with constant emf V.

More information

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields

Chapter 27 Magnetism 1/20/ Magnets and Magnetic Fields Magnets and Magnetic Fields Magnets and Magnetic Fields Chapter 27 Magnetism Magnets have two ends poles called north and south. Like poles repel; unlike poles attract. However, if you cut a magnet in half, you don t get a north pole and a south pole you get

More information

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 13, 17

Physics 169. Luis anchordoqui. Kitt Peak National Observatory. Monday, March 13, 17 Physics 169 Kitt Peak National Observatory Luis anchordoqui 1 6.1 Magnetic Field Stationary charges experienced an electric force in an electric field Moving charges experienced a magnetic force in a magnetic

More information

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule.

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Hint: pay attention to how

More information

Phys 270 Final Exam. Figure 1: Question 1

Phys 270 Final Exam. Figure 1: Question 1 Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating

More information

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II Physics Course Materials 2015 16. Faraday's Law Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons

More information

Physics 2135 Exam 2 March 22, 2016

Physics 2135 Exam 2 March 22, 2016 Exam Total Physics 2135 Exam 2 March 22, 2016 Key Printed Name: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. B 1. An air-filled

More information

ragsdale (zdr82) HW7 ditmire (58335) 1 The magnetic force is

ragsdale (zdr82) HW7 ditmire (58335) 1 The magnetic force is ragsdale (zdr8) HW7 ditmire (585) This print-out should have 8 questions. Multiple-choice questions ma continue on the net column or page find all choices efore answering. 00 0.0 points A wire carring

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields When moving through a magnetic field, a charged particle experiences a magnetic force This force has a maximum value when the charge moves perpendicularly to the magnetic

More information

Lecture 14: Magnetic Forces on Currents.

Lecture 14: Magnetic Forces on Currents. Lecture 14: Magnetic Forces on Currents. Outline: Magnetic Force on a Wire Segment. Hall Effect. Torque on a Current-Carrying Loop. Lecture 13 review: Magnetic Forces on Moving Charges F = q v B Iclicker

More information

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #7. Benjamin Stahl. March 3, 2015

UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS 110A. Homework #7. Benjamin Stahl. March 3, 2015 UNIVERSITY OF CALIFORNIA - SANTA CRUZ DEPARTMENT OF PHYSICS PHYS A Homework #7 Benjamin Stahl March 3, 5 GRIFFITHS, 5.34 It will be shown that the magnetic field of a dipole can written in the following

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface MATH 280 Multivariate Calculus Fall 2011 Definition Integrating a vector field over a surface We are given a vector field F in space and an oriented surface in the domain of F as shown in the figure below

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 013 Exam 3 Equation Sheet Force Law: F q = q( E ext + v q B ext ) Force on Current Carrying Wire: F = Id s " B # wire ext Magnetic

More information

Physics 1308 Exam 2 Summer Instructions

Physics 1308 Exam 2 Summer Instructions Name: Date: Instructions All Students at SMU are under the jurisdiction of the Honor Code, which you have already signed a pledge to uphold upon entering the University. For this particular exam, you may

More information

PHYS102 Previous Exam Problems. Induction

PHYS102 Previous Exam Problems. Induction PHYS102 Previous Exam Problems CHAPTER 30 Induction Magnetic flux Induced emf (Faraday s law) Lenz law Motional emf 1. A circuit is pulled to the right at constant speed in a uniform magnetic field with

More information

Queen s University at Kingston. Faculty of Arts and Science. Department of Physics PHYSICS 106. Final Examination.

Queen s University at Kingston. Faculty of Arts and Science. Department of Physics PHYSICS 106. Final Examination. Page 1 of 5 Queen s University at Kingston Faculty of Arts and Science Department of Physics PHYSICS 106 Final Examination April 16th, 2009 Professor: A. B. McLean Time allowed: 3 HOURS Instructions This

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Q ( q(m, t 0 ) n) S t.

Q ( q(m, t 0 ) n) S t. THE HEAT EQUATION The main equations that we will be dealing with are the heat equation, the wave equation, and the potential equation. We use simple physical principles to show how these equations are

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16

The Direction of Magnetic Field. Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 16 The Direction of Magnetic Field Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 16 The Magnetic Field We introduced electric field to explain-away long-range electric

More information

Induction and Inductance

Induction and Inductance Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th: - Reading: Chapter 30.6-30.8 - Watch Videos:

More information

F = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Right Hand Rule. Lorentz. The Magnetic Force. More on Magnetic Force DEMO: 6B-02.

F = q v B. F = q E + q v B. = q v B F B. F = q vbsinφ. Right Hand Rule. Lorentz. The Magnetic Force. More on Magnetic Force DEMO: 6B-02. Lorentz = q E + q Right Hand Rule Direction of is perpendicular to plane containing &. If q is positie, has the same sign as x. If q is negatie, has the opposite sign of x. = q = q sinφ is neer parallel

More information

Magnetic Force Acting on a Current- Carrying Conductor IL B

Magnetic Force Acting on a Current- Carrying Conductor IL B Magnetic Force Acting on a Current- Carrying Conductor A segment of a current-carrying wire in a magnetic field. The magnetic force exerted on each charge making up the current is qvd and the net force

More information

Answer. How much current is flowing in a wire 4.80 m long if the maximum force on it is N when placed in a uniform T field? Answer 1.

Answer. How much current is flowing in a wire 4.80 m long if the maximum force on it is N when placed in a uniform T field? Answer 1. 1 A horseshoe magnet is held vertically with the north pole on the left and south pole on the right. A wire passing between the poles, equidistant from them, carries a current directly away from you. In

More information

Physics 2135 Exam 2 October 18, 2016

Physics 2135 Exam 2 October 18, 2016 Exam Total / 200 Physics 2135 Exam 2 October 18, 2016 Printed Name: Rec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. A light bulb having

More information

Chapter 27: Magnetic Field and Magnetic Forces

Chapter 27: Magnetic Field and Magnetic Forces Chapter 27: Magnetic Field and Magnetic Forces Iron ore found near Magnesia Compass needles align N-S: magnetic Poles North (South) Poles attracted to geographic North (South) Like Poles repel, Opposites

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS Instructor: Kazumi Tolich Lecture 22 2! Reading chapter 22.5 to 22.7! Magnetic torque on current loops! Magnetic field due to current! Ampere s law! Current

More information

Forces & Magnetic Dipoles. Phys 122 Lecture 18 D. Hertzog

Forces & Magnetic Dipoles. Phys 122 Lecture 18 D. Hertzog orces & Magnetic Dipoles µ = τ U AI = µ = µ θ θ. Phys 122 Lecture 18 D. Hertzog µ usiness Regrade requests by 4 pm riday (no eceptions) Solutions/Key posted on home page Last Time: The Lorentz orce and

More information

Phys102 Lecture 16/17 Magnetic fields

Phys102 Lecture 16/17 Magnetic fields Phys102 Lecture 16/17 Magnetic fields Key Points Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on an Electric Charge Moving in a Magnetic

More information

2R R R 2R. Phys Test 1

2R R R 2R. Phys Test 1 Group test. You want to calculate the electric field at position (x o, 0, z o ) due to a charged ring. The ring is centered at the origin, and lies on the xy plane. ts radius is and its charge density

More information

Transmission line demo to illustrate why voltage along transmission lines is high

Transmission line demo to illustrate why voltage along transmission lines is high Transmission line demo to illustrate why voltage along transmission lines is high Connect to step down transformer 120V to 12V to lightbulb 12 V 6.5 A Lights up brightly Connect it to long fat wires Lights

More information

Exam 2: Tuesday, March 21, 5:00-6:00 PM

Exam 2: Tuesday, March 21, 5:00-6:00 PM Exam 2: Tuesday, March 21, 5:00-6:00 PM Test rooms: Instructor Sections Room Dr. Hale F, H 104 Physics Dr. Kurter, N 125 CH Dr. Madison K, M 199 Toomey Dr. Parris J, L -10 ertelsmeyer* Mr. Upshaw A, C,

More information

Physics 2135 Exam 3 April 18, 2017

Physics 2135 Exam 3 April 18, 2017 Physics 2135 Exam 3 April 18, 2017 Exam Total / 200 Printed Name: Rec. Sec. Letter: Solutions for problems 6 to 10 must start from official starting equations. Show your work to receive credit for your

More information

Questions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω

Questions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω Questions 4-41 36. Three 1/ µf capacitors are connected in series as shown in the diagram above. The capacitance of the combination is (A).1 µf (B) 1 µf (C) /3 µf (D) ½ µf (E) 1/6 µf 37. A hair dryer is

More information

Magnetic field and magnetic poles

Magnetic field and magnetic poles Magnetic field and magnetic poles Magnetic Field B is analogically similar to Electric Field E Electric charges (+ and -)are in analogy to magnetic poles(north:n and South:S). Paramagnetism, Diamagnetism,

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

Chapter 29 The Magnetic Field

Chapter 29 The Magnetic Field Chapter 9 The Magnetic Field y analogy with electrostatics, why don t we study magnetostatics first? Due to complicated mathematics (lack of magnetic monopole). In 80, Oersted established the link between

More information

PHYS 1444 Section 02 Review #2

PHYS 1444 Section 02 Review #2 PHYS 1444 Section 02 Review #2 November 9, 2011 Ian Howley 1 1444 Test 2 Eq. Sheet Terminal voltage Resistors in series Resistors in parallel Magnetic field from long straight wire Ampére s Law Force on

More information

Physics 202, Lecture 12. Today s Topics

Physics 202, Lecture 12. Today s Topics Physics 202, Lecture 12 Today s Topics Magnetic orces (Ch. 27) Review: magnetic force, magnetic dipoles Motion of charge in uniform field: Applications: cyclotron, velocity selector, Hall effect Sources

More information

Chapter 27 Magnetic Fields and Magnetic Forces

Chapter 27 Magnetic Fields and Magnetic Forces Chapter 27 Magnetic Fields and Magnetic Forces In this chapter we investigate forces exerted by magnetic fields. In the next chapter we will study the sources of magnetic fields. The force produced by

More information

Cyclotron Motion. We can also work-out the frequency of the cyclotron motion. f cyc =

Cyclotron Motion. We can also work-out the frequency of the cyclotron motion. f cyc = Cyclotron Motion We can also work-out the frequency of the cyclotron motion f cyc = qb 2πm Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 1 Cyclotron Motion We

More information

PHY 114 Summer Midterm 2 Solutions

PHY 114 Summer Midterm 2 Solutions PHY 114 Summer 009 - Midterm Solutions Conceptual Question 1: Can an electric or a magnetic field, each constant in space and time, e used to accomplish the actions descried elow? Explain your answers.

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x

More information

PHY Fall HW6 Solutions

PHY Fall HW6 Solutions PHY249 - Fall 216 - HW6 Solutions Allen Majewski Department Of Physics, University of Florida 21 Museum Rd. Gainesville, FL 32611 October 11, 216 These are solutions to Halliday, Resnick, Walker Chapter

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges

More information

PH 222-2C Fall Magnetic Field. Lecture 13. Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Magnetic Field. Lecture 13. Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 2012 Magnetic Field Lecture 13 Chapter 28 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 28 Magnetic Fields In this chapter we will cover the following topics:

More information

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 29 Lecture RANDALL D. KNIGHT Chapter 29 The Magnetic Field IN THIS CHAPTER, you will learn about magnetism and the magnetic field.

More information

Faraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents

Faraday s Law. Faraday s Law of Induction Motional emf. Lenz s Law. Motors and Generators. Eddy Currents Faraday s Law Faraday s Law of Induction Motional emf Motors and Generators Lenz s Law Eddy Currents Induced EMF A current flows through the loop when a magnet is moved near it, without any batteries!

More information

Exam One Solutions. Problem 1 (25 points): answers without work shown will not be given any credit.

Exam One Solutions. Problem 1 (25 points): answers without work shown will not be given any credit. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Exam One Solutions Problem 1 (25 points): answers without work shown will not be given any credit. Four point-like objects of

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th

Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy

More information

The force F on a charge q moving with velocity v through a region of space with electric field E and magnetic field B is given by: F qe qv B

The force F on a charge q moving with velocity v through a region of space with electric field E and magnetic field B is given by: F qe qv B Lorentz Forces The force F on a charge q moving with velocity v through a region of space with electric field E and magnetic field B is given by: F qe qv B F qv B B F q vbsin 2/20/2018 1 Right Hand Rule

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2 First Name: Last Name: Section: n 1 March 26, 2003 Physics 202 EXAM 2 Print your name and section clearly on all five pages. (If you do not know your section number, write your TA s name.) Show all work

More information

PHYSICS 218 Exam 3 Fall, 2013

PHYSICS 218 Exam 3 Fall, 2013 PHYSICS 218 Exam 3 Fall, 2013 Wednesday, November 20, 2013 Please read the information on the cover page BUT DO NOT OPEN the exam until instructed to do so! Name: Signature: Student ID: E-mail: Section

More information

Questions Chapter 22 Electric Fields

Questions Chapter 22 Electric Fields Questions Chapter 22 Electric Fields 22-1 What is Physics? 22-2 The Electric Field 22-3 Electric Field Lines 22-4 Electric Field due to a Point Charge 22-5 Electric Field due to an Electric Dipole 22-6

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces Lecture by Dr. Hebin Li Goals for Chapter 27 To study magnets and the forces they exert on each other To calculate the force that a magnetic field exerts on

More information

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I Physics 12 Unit 8 Magnetic Field and Electromagnetism Part I 1. Basics about magnets Magnets have been known by ancient people since long time ago, referring to the iron-rich rocks, called magnetite or

More information

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5 AP Physics C Fall, 2016 Work-Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. (12 pts ) 1. Consider the vectors A = 2 î + 3

More information

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively.

More information

Physics Lecture 07

Physics Lecture 07 Physics 2113 Jonathan Dowling Physics 2113 Lecture 07 Electric Fields III Charles-Augustin de Coulomb (1736-1806) Electric Charges and Fields First: Given Electric Charges, We Calculate the Electric Field

More information

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field Exam 3 Topics Faraday s Law Self Inductance Energy Stored in Inductor/Magnetic Field Circuits LR Circuits Undriven (R)LC Circuits Driven RLC Circuits Displacement Current Poynting Vector NO: B Materials,

More information