DO PHYSICS ONLINE MOTORS AND GENERATORS MAGNETIC FIELDS

Size: px
Start display at page:

Download "DO PHYSICS ONLINE MOTORS AND GENERATORS MAGNETIC FIELDS"

Transcription

1 DO PHYSICS ONLINE MOTORS AND GENERATORS MAGNETIC FIELDS Powerful magnets are essential components in motors and generators. Some electric motors and generators rely upon a combination of a permanent and an electromagnet. An electric motor converts electrical energy into mechanical energy by the torque acting on a conductor carrying an electric current in a magnetic field. A generator converts mechanical into electrical energy by moving a conductor through a magnetic field. ut, what is a magnet and what is meant by a magnetic field? Magnetic phenomena have been known for thousands of years. Certain elements are magnetic such as iron, cobalt and nickel. Strong magnets can now be made from certain alloys including (neodymium iron boron) and (alnico - aluminium, iron, cobalt and nickel). Flexible magnets can be made from ceramic material. Magnets can attract ferromagnetic materials such as iron. Magnets can attract or repel other magnets as shown in figure (1). N S N S opposite poles attract each other N S S N S N N S similar poles repel each other Fig. 1. Forces between a pair of bar magnets. 1

2 To explain these magnetic forces, we introduce the concept of magnetic field. A field is a region of influence. For example, an object because of its mass experiences a force in a gravitational field. A charged object experiences a force in an electric field. A field for a vector quantity is shown by a pattern of lines. The lines indicate the field pattern and the density of the lines indicates the strength of the field. The closer the field lines are together, then the stronger the field and hence the stronger the force. A magnet has a north pole and south pole. The magnetic field of a magnet can be shown by a set of continuous loops that exit from the north pole of the magnet and enter at the south pole as shown in figure (2), (3) and (4). The - field lines indicate how a small magnet (or compass) will align itself in the field. strong field: high density of -lines S N weak field: low density of -lines Fig. 2. Magnetic field lines for a bar magnet. The magnetic field lines are continuous loops. The field lines exit away from the north pole and enter the magnet at the south pole. The magnetic field is strongest where the field lines are closest together at the two poles. S N compass needles / magnets align along -field 2

3 Fig. 3. Magnetic field lines for a bar magnet showing the external magnetic field only and the magnetic field pattern due to iron filings. The iron filings align themselves as if they were small magnets and more of them accumulate where the -field is strongest. N S the magnetic field in the region between the poles is nearly uniform Fig. 4. Magnetic field lines for a horse-shoe magnet. The magnetic field lines are continuous loops. The field lines exit away from the north pole and enter the magnet at the south pole. The Earth has a magnetic field surrounding it. The field lines are similar to a huge bar magnet. The south pole of the magnet is located near the geographical north pole and the north magnetic pole near the south geographical pole as shown in figure (5). south magnetic hole north magnetic hole Fig. 5. The Earth is surrounded by a magnetic field. 3

4 Figure 6 show that if you break a magnet into pieces you create smaller magnets. Fig. 6. reaking a magnet produces new smaller magnets. 4

5 ELECTRIC CURRENTS AND MAGNETISM When electric charges are in motion they exert forces on each other that can t be explained by Coulomb s law. If two parallel current carrying conductors are near each other they attract each other when the currents are in the same direction and repel each other when the currents are in opposite directions. Such forces are called magnetic forces. Hans Oersted ( ) placed a wire near a compass needle and switch on the current. When the wire was parallel to the compass needle, the compass needle was deflected by the current. When the wire was perpendicular to the compass needle, there was no deflection when the current was switched on. He made two conclusions: (1) the electric current somehow exerts a twisting force on the magnet near it and (2) the magnitude of the force depends upon the relative orientation of the current and the magnet. A current (moving charges) through a wire alters the properties of space near it such that a piece of iron will experience a force. Hence, surrounding a wire carrying a current is a magnetic field. It is the interaction of the magnetic field and the iron that leads to the force, rather than the current and iron acting upon each other. The magnetic field surrounding a straight conductor carrying a current I can be visualized as a series of circles. The closer the lines are together, the stronger the magnetic field. A compass placed near the wire will align itself with the field lines. The direction of the magnetic field is determined by the right hand screw rule. Using the right hand: the direction of the thumb represents the current (direction in which positive charges would move) and the curl of the fingers represents the direction of the magnetic field as shown in figure (7). The magnetic field strength is given by the vector quantity where stands for the -field or magnetic induction or magnetic flux density. The S.I. unit for the - field is the teslas [T]. I Fig. 7. The right hand screw rule is used to determine the direction of the magnetic field produced by moving charges. 5

6 The -field surrounding a conductor carrying a current I at a distance R from the conductor is given by equation (1) as shown in figure (8) 0 I (1) = 0 = T.m.A -1 2 R where 0 is a constant called the permeability of free space. direction of -field given by right hand rule -field increases with increasing I R -field decreases with increasing R I current I into page Fig. 8. -field surrounding straight conductor carrying a current. R A conductor carrying a current produces a magnetic field similar to a bar magnet as shown in figure (9). current I -field Fig. 9. Magnet field due to a current loop. The direction of the -field is given by the right hand screw rule. -field stro strong ng -field - field A solenoid is a conductor wound into a long set of coils 6

7 Solenoids are often used as electromagnets where a ferromagnetic substance placed inside the coils greatly increases the strength of the magnetic field. Figure (10) shows the magnetic field patters for an air filled solenoid and when a rod of ferromagnetic material is placed inside the coils. Fig. 10. Magnetic field patterns for a solenoid (air and ferromagnetic cores). The magnetic field of a solenoid is very similar to that of a bar magnet as shown in figure (11). Fig. 11. Magnetic field patterns for a bar magnet and solenoid. 7

8 MAGNETIC FLUX [T.m -2 ] A useful quantity is to consider the number of magnetic field lines crossing an area. This concept is called the magnetic flux and is illustrated and defined in figure (12). Magnetic flux for constant -field Acos Each point on a surface is associated with a direction, called the surface normal; the magnetic flux through a point is then the component of the magnetic field along this direction A 90 o cos 1 A Acos 0 cos 0 0 Fig. 12. Magnetic flux when the magnetic field is uniform over an area A. o ORIGIN OF THE MAGNETIC FORCE Permanent Magnets A moving charge gives rise to a magnetic field. An electron is not a spinning or orbiting particle, but to account for the magnetism of materials it is useful to view the electron as a charged particle spinning as it orbits the nucleus. Every electron, on account of its spin, is a small magnet. In most materials, the countless electrons have randomly oriented spins, leaving no magnetic effect on average. However, in a bar magnet many of the electron spins are aligned in the same direction, so they act cooperatively, creating a net magnetic field. In addition to the electron's intrinsic magnetic field, there is sometimes an additional magnetic field that results from the electron's orbital motion around the nucleus. This effect is analogous to how a current-carrying loop of wire generates a magnetic field. Ordinarily, the motion of the electrons is such that there is no average field from the material, but in certain conditions, the motion can line up so as to produce a measurable total field as in iron. 8

9 Origin of magnetic effects Consider a charged particle A with its electric field surrounding it. Another charged placed in this electric field will experience an electric force as described by Coulomb s law. ut what happens when the charge particle A moves. About 1880 the famous English scientist James Clerke Maxell stated that the charge was not instantaneous aware that charge A had moved but the change in the electric field due to A moving, spreads out from A at the speed of light. The time required for the influence of the electric field to travel causes a time lag. This time lag for the change to be travel or due to the fact that one electric charge does not influence another instantaneously gives rise to the magnetic force. Thus, the force between two moving becomes dependent upon their speeds. At any instant of time one charge is feeling the electric field of influence of the other, not where it is now, but where it was a short time before. Hence, all magnetic effects are simply magnetic effects. 9

10 Common uses of magnets Magnetic recording media: VHS tapes and audio cassettes contain a reel of magnetic tape. The information that makes up the video and sound is encoded on the magnetic coating on the tape. Computers, floppy and hard disks record data on a thin magnetic coating. Credit, debit, and ATM cards: have a magnetic strip on one side. Common televisions and computer monitors: TV and computer screens containing a cathode ray tube employ an electromagnet to guide electrons to the screen. Speakers and microphones: Most speakers employ a permanent magnet and a current-carrying coil to convert electric energy (the signal) into mechanical energy (movement which creates the sound). The coil is wrapped around a bobbin attached to the speaker cone, and carries the signal as changing current which interacts with the field of the permanent magnet. The voice coil feels a magnetic force and in response moves the cone and changes the pressure the neighbouring air, thus generating sound. Dynamic microphones employ the same concept, but in reverse. A microphone has a diaphragm or membrane attached to a coil of wire. The coil rests inside a specially shaped magnet. When sound vibrates the membrane, the coil is vibrated as well. As the coil moves through the magnetic field, a voltage is induced across the coil. This voltage drives a current in the wire that is characteristic of the original sound. Medicine: Hospitals use Magnetic Resonance Imaging (MRI) to spot problems in a patient's organs without invasive surgery. Transformers: are devices that transfer electric energy between two windings of wire that are electrically isolated but are coupled magnetically. Compasses: is a magnetized pointer free to align itself with a magnetic field, most commonly Earth's magnetic field. Art: Vinyl magnet sheets may be attached to paintings, photographs, and other ornamental articles, allowing them to be attached to refrigerators and other metal surfaces. Toys Magnets can pick up magnetic items (iron nails, staples, tacks, paper clips) that are either too small, too hard to reach, or too thin for fingers to hold. Some screwdrivers are magnetized for this purpose. Magnets can be used in scrap and salvage operations to separate magnetic metals (iron, steel, and nickel) from nonmagnetic metals (aluminium, non-ferrous alloys, etc.). The same idea can be used in the so-called magnet test, in which an auto body is inspected with a magnet to detect areas repaired using fiberglass or plastic putty. Magnetic levitation transport, or maglev, is a form of transportation that suspends, guides and propels trains through electromagnetic force. The maximum recorded speed of a maglev train is 581 km.h -1. Health: human tissues have a very low level of susceptibility to static magnetic fields, there is little mainstream scientific evidence showing a health hazard associated with exposure to static fields. Dynamic magnetic fields may be a different issue however; correlations between electromagnetic radiation and cancer rates have been postulated due to demographic correlations. If a ferromagnetic foreign body is present in human tissue, an external magnetic field interacting with it can pose a serious safety risk. A different type of indirect 10

11 magnetic health risk exists involving pacemakers. If a pacemaker has been embedded in a patient's chest (usually for the purpose of monitoring and regulating the heart for steady electrically induced beats), care should be taken to keep it away from magnetic fields or metal detectors at airports. It is for this reason that a patient with the device installed cannot be tested with the use of an MRI, which is a magnetic imaging device. Children sometimes swallow small magnets from toys; and this can be hazardous if two or more magnets are swallowed, as the magnets can pinch or puncture internal tissues; one death has been reported. Motors and generators P6354 P6428 P

MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX VISUAL PHYSICS ONLINE

MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX Magnetic field (-field ): a region of influence where magnetic materials and electric currents are subjected to a magnetic

More information

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM When electric charges are in motion they exert forces on each other that can t be explained by Coulomb s law. If two parallel

More information

EB Education Revision Guide. How to work with Magnetism and Electromagnetism

EB Education Revision Guide. How to work with Magnetism and Electromagnetism EB Education Revision Guide How to work with Magnetism and Electromagnetism Magnets Magnetic fields Magnets have two poles, north and south. They produce a magnetic field, this is a region where other

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism The figure shows the path of a negatively charged particle in a region of a uniform magnetic field. Answer the following questions about this situation (in each case, we revert back

More information

Chapter 18 Study Questions Name: Class:

Chapter 18 Study Questions Name: Class: Chapter 18 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The region around a magnet in which magnetic forces

More information

Unit Packet Table of Contents Notes 1: Magnetism Intro Notes 2: Electromagnets Notes 3: Electromagnetic Induction Guided Practice: Left Hand Rule #3

Unit Packet Table of Contents Notes 1: Magnetism Intro Notes 2: Electromagnets Notes 3: Electromagnetic Induction Guided Practice: Left Hand Rule #3 Unit Packet Table of Contents Notes 1: Magnetism Intro Notes 2: Electromagnets Notes 3: Electromagnetic Induction Guided Practice: Left Hand Rule #3 Name Date Notes: Magnetism intro. Regents Physics Objectives:

More information

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I Physics 12 Unit 8 Magnetic Field and Electromagnetism Part I 1. Basics about magnets Magnets have been known by ancient people since long time ago, referring to the iron-rich rocks, called magnetite or

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges

More information

> What happens when the poles of two magnets are brought close together? > Two like poles repel each other. Two unlike poles attract each other.

> What happens when the poles of two magnets are brought close together? > Two like poles repel each other. Two unlike poles attract each other. CHAPTER OUTLINE Section 1 Magnets and Magnetic Fields Key Idea questions > What happens when the poles of two magnets are brought close together? > What causes a magnet to attract or repel another magnet?

More information

Magnets. Magnetic vs. Electric

Magnets. Magnetic vs. Electric Magnets A force is applied to the iron filings causing them to align themselves to the direction of the magnetic field. A compass needle will tell you the direction of the field. Show Fields of little

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6.

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6. Chapter 19 Magnetism 1. Magnets 2. Earth s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel Conductors 8. Loops and Solenoids 9. Magnetic Domains

More information

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 29 Lecture RANDALL D. KNIGHT Chapter 29 The Magnetic Field IN THIS CHAPTER, you will learn about magnetism and the magnetic field.

More information

Chapter 22 Magnetism

Chapter 22 Magnetism Chapter 22 Magnetism 1 Overview of Chapter 22 The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

19.1 Laws of Magnetism page The Earth can be regarded as a large bar magnet with its south pole in the northern hemisphere.

19.1 Laws of Magnetism page The Earth can be regarded as a large bar magnet with its south pole in the northern hemisphere. Chapter 19 Magnetism Learning Outcomes After completing this chapter, students should be able to: 1. state the properties of magnets 2. describe induced magnetism 3. describe electrical methods of magnetisation

More information

PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5)

PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5) 1 PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5) Everyone has played with magnets and knows that they stick to some materials and not to others. This lecture explores the physical principles behind

More information

A little history. Electricity and Magnetism are related!

A little history. Electricity and Magnetism are related! Intro to Magnetism A little history Until the early 19 th century, scientists thought electricity and magnetism were unrelated In 1820, Danish science professor Hans Christian Oersted was demonstrating

More information

Torque on a Current Loop

Torque on a Current Loop Today Chapter 19 Magnetism Torque on a current loop, electrical motor Magnetic field around a current carrying wire. Ampere s law Solenoid Material magnetism Clicker 1 Which of the following is wrong?

More information

Unit 12: Magnetism. Background Reading

Unit 12: Magnetism. Background Reading Unit 12: Magnetism Background Reading What causes magnetism? Have you ever wondered why certain materials can be easily magnetized while others seem to be unaffected by magnets? The properties of certain

More information

Electromagnetism. Kevin Gaughan for. Bristol Myers Squibb

Electromagnetism. Kevin Gaughan for. Bristol Myers Squibb Electromagnetism Kevin Gaughan for Bristol Myers Squibb Contents Magnets and Ferromagnetism Domains Theory H, B and µ The links between electricity and Magnetism Electromagnets Induction Applications of

More information

Chapter 21. Magnetism

Chapter 21. Magnetism Chapter 21 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

Lab 7: Magnetism Introduction Magnets need no introduction (i.e. introduction to be added in future revision).

Lab 7: Magnetism Introduction Magnets need no introduction (i.e. introduction to be added in future revision). CSUEB Physics 1780 Lab 7: Magnetism Page 1 Lab 7: Magnetism Introduction Magnets need no introduction (i.e. introduction to be added in future revision). Experiments The purpose of these experiments is

More information

Cabrillo College Physics 10L. LAB 8 Magnetism. Read Hewitt Chapter 24

Cabrillo College Physics 10L. LAB 8 Magnetism. Read Hewitt Chapter 24 Cabrillo College Physics 10L Name LAB 8 Magnetism Read Hewitt Chapter 24 What to learn and explore Magnetic forces are very closely related to electric forces--for example, they share the property that

More information

36 Magnetism. A moving electric charge is surrounded by a magnetic field.

36 Magnetism. A moving electric charge is surrounded by a magnetic field. A moving electric charge is surrounded by a magnetic field. Electricity and magnetism were regarded as unrelated phenomena until it was noticed that an electric current caused the deflection of the compass

More information

A moving electric charge is surrounded by a magnetic field Magnetic Poles

A moving electric charge is surrounded by a magnetic field Magnetic Poles A moving electric charge is surrounded by a magnetic field. Electricity and magnetism were regarded as unrelated phenomena until it was noticed that an electric current caused the deflection of the compass

More information

Magnets & Magnetic Fields

Magnets & Magnetic Fields Magnets & Magnetic Fields Magnets Magnets have 2 poles, North and South if broken in half, each half will have both poles at the ends. Like poles repel, unlike poles attract. Hard Magnets- materials that

More information

General Physics (PHYS )

General Physics (PHYS ) General Physics (PHYS ) Chapter 22 Magnetism Magnetic Force Exerted on a current Magnetic Torque Electric Currents, magnetic Fields, and Ampere s Law Current Loops and Solenoids Magnetism in Matter GOT

More information

Lecture #4.4 Magnetic Field

Lecture #4.4 Magnetic Field Lecture #4.4 Magnetic Field During last several lectures we have been discussing electromagnetic phenomena. However, we only considered examples of electric forces and fields. We first talked about electrostatics

More information

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism HIGH SCHOOL SCIENCE Physical Science 7: Electricity & Magnetism WILLMAR PUBLIC SCHOOL 2013-2014 EDITION CHAPTER 7 Electricity & Magnatism In this chapter you will: 1. Analyze factors that affect the strength

More information

Magnets & Electromagnets. Pg

Magnets & Electromagnets. Pg Magnets & Electromagnets Pg. 378-385 Permanent Magnets 1. Where is the magnetic field the strongest? At the poles! **the magnetic field lines of a bar magnet are similar to the electric field lines of

More information

Review: Magnetism and Electromagnetism

Review: Magnetism and Electromagnetism Review: Magnetism and Electromagnetism Multiple Choice: Write the letter of the term or phrase that best completes each statement. 1. Magnetism is a force of a. gravity. b. weight. c. voltage. d. attraction

More information

Chapter 6: Electromagnetism

Chapter 6: Electromagnetism Physical Science 4011 Electricity Chapter 6: Electromagnetism Review Electricity is simply a collection of electrons. Electrodynamics is the study of electricity that flows through a circuit, under the

More information

6.3 Magnetic Force and Field (4 hr)

6.3 Magnetic Force and Field (4 hr) 6.3 Magnetic Force and Field (4 hr) Name Activity 631 Investigating Magnetic Field around a magnet Activity 632 Investigating Electric Field in a slinky. Activity 633 Build your own Electric Motor. Read

More information

Vocabulary. Magnet. a material that can create magnetic effects by itself. Electromagnet

Vocabulary. Magnet. a material that can create magnetic effects by itself. Electromagnet Vocabulary Term Magnet Definition a material that can create magnetic effects by itself Electromagnet Magnets created by electric current flowing in wires. A simple electromagnet is a coil of wire wrapped

More information

Magnetism & Electromagnetism

Magnetism & Electromagnetism Magnetism & Electromagnetism By: Dr Rosemizi Abd Rahim Click here to watch the magnetism and electromagnetism animation video http://rmz4567.blogspot.my/2013/02/electrical-engineering.html 1 Learning Outcomes

More information

Lecture Outlines Chapter 22. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 22. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 22 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

Section 3: Mapping Magnetic Fields. In this lesson you will

Section 3: Mapping Magnetic Fields. In this lesson you will Section 3: Mapping Magnetic Fields In this lesson you will state the Law(s) of magnetic forces use iron filings to map the field around various configurations of bar magnets and around a horse shoe magnet

More information

Magnetism. and its applications

Magnetism. and its applications Magnetism and its applications Laws of Magnetism 1) Like magnetic poles repel, and 2) unlike poles attract. Magnetic Direction and Strength Law 3 - Magnetic force, either attractive or repelling varies

More information

Elements of Physics II. Agenda for Today. Physics 201: Lecture 1, Pg 1

Elements of Physics II. Agenda for Today. Physics 201: Lecture 1, Pg 1 Forces on currents Physics 132: Lecture e 19 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Reading Question 24.1

Reading Question 24.1 Reading Question 24.1 A compass in a magnetic field will line up A. With the north pole pointing in the direction of the magnetic field. B. With the north pole pointing opposite the direction of the magnetic

More information

ELECTROMAGNETISM The study of the relationship between electricity and magnetism is called

ELECTROMAGNETISM The study of the relationship between electricity and magnetism is called ELECTROMAGNETISM The study of the relationship between electricity and magnetism is called Electromagnetism Before, 1819 it was believed that there was no connection between electricity and magnetism.

More information

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH.

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it NORTH. This end points to the South; call it SOUTH. Unit 9 Magnetism This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH." 1 The behavior of magnetic poles is similar to that of like and unlike electric charges. Law

More information

MOTORS AND GENERATORS

MOTORS AND GENERATORS DO PHYSCS ONLNE MOTORS AND GENERATORS view 1 Charge q Q [coulomb C] view 2 Current i [ampere A] view 3 Potential difference v V [volt V] Electric ield E [V.m -1 N.C -1 ] view 4 Resistance R [ohm ] view

More information

Electromagnetism Notes 1 Magnetic Fields

Electromagnetism Notes 1 Magnetic Fields Electromagnetism Notes 1 Magnetic Fields Magnets can or other magnets. They are able to exert forces on each other without touching because they are surrounded by. Magnetic Flux refers to Areas with many

More information

Topic 6.3 Magnetic Force and Field. 2 hours

Topic 6.3 Magnetic Force and Field. 2 hours Topic 6.3 Magnetic Force and Field 2 hours 1 Magnetic Fields A magnetic field is said to exist at a point if a compass needle placed there experiences a force. The appearance of a magnetic field can be

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 8 Electricity and Magnetism 1. Magnetism Application of magnetic forces Ampere s law 2. Induced voltages and induction Magnetic flux http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

MAGNETISM. Magnetism. Magnetism is a result of electrons spinning on their own axis around the nucleus (Figure 18). Basic Electrical Theory

MAGNETISM. Magnetism. Magnetism is a result of electrons spinning on their own axis around the nucleus (Figure 18). Basic Electrical Theory Basic Electrical Theory Certain metals and metallic oxides have the ability to attract other metals. This property is called magnetism, and the materials which have this property are called magnets. Some

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields and Forces Fundamentally they do not exist If we had special relativity we would find there is no such thing as a magnetic field. It is only a relativistic transformation

More information

Magnets attract some metals but not others

Magnets attract some metals but not others Electricity and Magnetism Junior Science Magnets attract some metals but not others Some objects attract iron and steel. They are called magnets. Magnetic materials have the ability to attract some materials

More information

4.7 Magnetism and electromagnetism

4.7 Magnetism and electromagnetism 4.7 Magnetism and electromagnetism Electromagnetic effects are used in a wide variety of devices. Engineers make use of the fact that a magnet moving in a coil can produce electric current and also that

More information

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION English Michael Faraday (1791 1867) who experimented with electric and magnetic phenomena discovered that a changing magnetic

More information

Chapter 17: Magnetism

Chapter 17: Magnetism Chapter 17: Magnetism Section 17.1: The Magnetic Interaction Things You Already Know Magnets can attract or repel Magnets stick to some things, but not all things Magnets are dipoles: north and south Labels

More information

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes B for a Long, Straight Conductor, Special Case If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes μ I B = o 2πa B for a Curved Wire Segment Find the field at point

More information

UNIT 25: MAGNETIC FIELDS Approximate Time three 100-minute Sessions

UNIT 25: MAGNETIC FIELDS Approximate Time three 100-minute Sessions Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 25: MAGNETIC FIELDS Approximate Time three 100-minute Sessions To you alone... who seek knowledge, not from books only, but also from things themselves,

More information

Physics 202: Lecture 8, Pg 1

Physics 202: Lecture 8, Pg 1 Physics 132: Lecture e 18 Elements of Physics II Agenda for Today Magnets and the Magnetic Field Magnetic fields caused by charged particles B-field from a current-carrying carrying wire Magnetic fields

More information

4.7.1 Permanent and induced magnetism, magnetic forces and fields. Content Key opportunities for skills development

4.7.1 Permanent and induced magnetism, magnetic forces and fields. Content Key opportunities for skills development 4.7 Magnetism and electromagnetism Electromagnetic effects are used in a wide variety of devices. Engineers make use of the fact that a magnet moving in a coil can produce electric current and also that

More information

Kirchhoff s rules, example

Kirchhoff s rules, example Kirchhoff s rules, example Magnets and Magnetism Poles of a magnet are the ends where objects are most strongly attracted. Two poles, called north and south Like poles repel each other and unlike poles

More information

Magnetic Field Lines for a Loop

Magnetic Field Lines for a Loop Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings Figure (c) compares the field lines to that of

More information

Magnetism. (Unit Review)

Magnetism. (Unit Review) Physics Name: Date: Period: Magnetism (Unit Review) Coronal mass ejection Diamagnetic Differential rotation Electric motor Electromagnet Electromagnetic induction Faraday s Law of Induction Galvanometer

More information

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil Print Your Name Print Your Partners' Names You will return this

More information

Chapter 8 Review, pages Knowledge

Chapter 8 Review, pages Knowledge Chapter 8 Review, pages 416 421 Knowledge 1. a) 2. b) 3. d) 4. c) 5. a) 6. d) 7. d) 8. True 9. True 10. True 11. True 12. False. Field theory does not include the study of the principles of spectral fields.

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields Outline 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a Charged Particle in a Uniform Magnetic Field 29.5 Applications

More information

Chapter 22, Magnetism. Magnets

Chapter 22, Magnetism. Magnets Chapter 22, Magnetism Magnets Poles of a magnet (north and south ) are the ends where objects are most strongly attracted. Like poles repel each other and unlike poles attract each other Magnetic poles

More information

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai Electromagnetic Induction Bo Zhou Faculty of Science, Hokudai Oersted's law Oersted s discovery in 1820 that there was a close connection between electricity and magnetism was very exciting until then,

More information

Gravity Electromagnetism Weak Strong

Gravity Electromagnetism Weak Strong 19. Magnetism 19.1. Magnets 19.1.1. Considering the typical bar magnet we can investigate the notion of poles and how they apply to magnets. 19.1.1.1. Every magnet has two distinct poles. 19.1.1.1.1. N

More information

Chapter 29. Magnetic Fields due to Currentss

Chapter 29. Magnetic Fields due to Currentss Chapter 29 Magnetic Fields due to Currentss Refresher: The Magnetic Field Permanent bar magnets have opposite poles on each end, called north and south. Like poles repel; opposites attract. If a magnet

More information

13.5 Conductor in a Magnetic Field The Motor Principle

13.5 Conductor in a Magnetic Field The Motor Principle 13.5 Conductor in a Magnetic ield igure 1 Determining the force on an electric conductor in a magnetic field Magnetic field of the permanent magnet Magnetic field of the current-carrying conductor (c)

More information

General Physics II. Magnetism

General Physics II. Magnetism General Physics II Magnetism Bar magnet... two poles: N and S Like poles repel; Unlike poles attract. Bar Magnet Magnetic Field lines [B]: (defined in a similar way as electric field lines, direction and

More information

General Physics II. Magnetic Fields and Forces

General Physics II. Magnetic Fields and Forces General Physics II Magnetic Fields and Forces 1 Magnetism Magnetism underlies the operation of the hard disk drive, which is the mainstay of modern electronic information storage, from computers to ipods.

More information

Chapter 24 Preview Looking Ahead

Chapter 24 Preview Looking Ahead Chapter 24 Preview Looking Ahead Text p. 764 Slide 24-1 Chapter 24 Preview Looking Back: Electric Fields In Chapter 20, we described electric interactions between charged objects in terms of the field

More information

Chapter 27 Magnetic Field and Magnetic Forces

Chapter 27 Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces Lecture by Dr. Hebin Li Goals for Chapter 27 To study magnets and the forces they exert on each other To calculate the force that a magnetic field exerts on

More information

Electromagnetism. Chapter I. Figure 1.1: A schematic diagram of Earth s magnetic field. Sections 20-1, 20-13

Electromagnetism. Chapter I. Figure 1.1: A schematic diagram of Earth s magnetic field. Sections 20-1, 20-13 Chapter I Electromagnetism Day 1 Magnetism Sections 20-1, 20-13 An investigation of permanent magnets shows that they only attract certain metals specifically those containing iron, or a few other materials,

More information

DRAFT. Activity 16, Electromagnetic Induction! Science & Global Issues: Global Energy & Power! from! 2014 The Regents of the University of California!

DRAFT. Activity 16, Electromagnetic Induction! Science & Global Issues: Global Energy & Power! from! 2014 The Regents of the University of California! Activity 16, Electromagnetic Induction! from! Science & Global Issues: Global Energy & Power! This material is based upon work supported by the National Science Foundation under Grant No. ESI 0352453.

More information

Introduction to Electromagnetism

Introduction to Electromagnetism Introduction to Electromagnetism Electric Field Lines If a charge feels an electrostatic force (Coulombic Force), it is said to be in an electric field. We like to represent electric fields with lines.

More information

24 Magnetic Fields BIGIDEA Write the Big Idea for this chapter.

24 Magnetic Fields BIGIDEA Write the Big Idea for this chapter. 24 Magnetic Fields BIGIDEA Write the Big Idea for this chapter. Use the What I Know column to list the things you know about the Big Idea. Then list the questions you have about the Big Idea in the What

More information

Magnetic Attraction and Electromagnetism. Spring 2011

Magnetic Attraction and Electromagnetism. Spring 2011 Magnetic Attraction and Electromagnetism Spring 2011 The Nature of Magnetism Magnets are found everywhere doorbells, TV s, computers Magnets were discovered in a region in Greece called.you guessed it

More information

Magnetic Forces and Magnetic Fields

Magnetic Forces and Magnetic Fields Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The behavior of magnetic poles is similar to that of like and unlike electric charges. 21.1 Magnetic Fields The needle of a compass is permanent

More information

Magnetic Forces and Fields

Magnetic Forces and Fields Magnetic Forces and Fields Physics 102 Lecture 3 21 February 2002 IF NOT REGISTERED FOR PHYSICS 102, SEE REGISTRAR ASAP, AND REGISTER 21 Feb 2002 Physics 102 Lecture 3 1 RC Puzzler 21 Feb 2002 Physics

More information

Big idea (age 11-14) PEM: Electricity and magnetism

Big idea (age 11-14) PEM: Electricity and magnetism Physics Big idea (age 11-14) PEM: Electricity and magnetism What s the big idea? The familiar everyday world we live in is largely a consequence of the properties and behaviour of electric charge. Matter

More information

Outline Chapter 6 Electricity and Magnetism Positive and Negative Charge Positive and Negative Charge

Outline Chapter 6 Electricity and Magnetism Positive and Negative Charge Positive and Negative Charge Outline Chapter 6 Electricity and Magnetism 6-1. Positive and Negative Charge 6-2. What is Charge? 6-3. Coulomb s Law 6-4. Force on an Uncharged Object 6-5. Matter in Bulk 6-6. Conductors and Insulators

More information

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question. ame: Class: Date: ID: A AP Physics Spring 2012 Q6 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (2 points) A potential difference of 115 V across

More information

Some History of Magnetism

Some History of Magnetism Magnetism Some History of Magnetism The ancient Greeks were the first to observe magnetism. They studied the mineral magnetite. The poles of a magnet were observed to be south or north seeking. These properties

More information

Basic electromagnetism and electromagnetic induction

Basic electromagnetism and electromagnetic induction Basic electromagnetism and electromagnetic induction This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

Part 11 - Physics Paper 2 Magnetism and Electromagnetism Combined Science Application Questions

Part 11 - Physics Paper 2 Magnetism and Electromagnetism Combined Science Application Questions Part 11 - Physics Paper 2 Magnetism and Electromagnetism Combined Science Application Questions Internal energy and energy transfers Internal energy and energy transfers Changes of state and the particle

More information

Transfer of Forces Classwork

Transfer of Forces Classwork Transfer of Forces Classwork 1. Describe what a force is. 2. List at least four forces that are observed in nature. 3. How are forces transferred between two objects if they are not in contact? 4. Describe

More information

FB-DC6 Electric Circuits: Magnetism and Electromagnetism

FB-DC6 Electric Circuits: Magnetism and Electromagnetism CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC6 Electric Circuits: Magnetism and Electromagnetism Contents 1. Electromagnetism 2. Magnetic units of measurement 3. Permeability

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

Magnetic Field and Magnetic Forces

Magnetic Field and Magnetic Forces Chapter 27 Magnetic Field and Magnetic Forces PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by Reza Khanbabaie Goals for Chapter 27 To study magnetic

More information

Note on Posted Slides. Magnetism. Magnetism. The Magnetic Force. The Electric Force. PHY205H1S Physics of Everyday Life Class 18: Magnetism

Note on Posted Slides. Magnetism. Magnetism. The Magnetic Force. The Electric Force. PHY205H1S Physics of Everyday Life Class 18: Magnetism ote on Posted lides These are the slides that I intended to show in class on Wed. Mar. 20, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

9. Which of the following is the correct relationship among power, current, and voltage?. a. P = I/V c. P = I x V b. V = P x I d.

9. Which of the following is the correct relationship among power, current, and voltage?. a. P = I/V c. P = I x V b. V = P x I d. Name: Electricity and Magnetism Test Multiple Choice Identify the choice that best completes the statement. 1. Resistance is measured in a unit called the. a. ohm c. ampere b. coulomb d. volt 2. The statement

More information

MAGNETIC PARTICLE INSPECTION (MPI)

MAGNETIC PARTICLE INSPECTION (MPI) MAGNETIC PARTICLE INSPECTION (MPI) Magnetic particle inspection (MPI) is a method that can be used to detect surface and near surface defects or flaws in ferromagnetic materials such as steel and iron.

More information

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Conceptual Physics. Chapter 24: MAGNETISM

Conceptual Physics. Chapter 24: MAGNETISM Conceptual Physics Chapter 24: MAGNETISM Magnetism The term magnetism comes from the name Magnesia, a coastal district of ancient Thessaly, Greece. Unusual stones, called lodestones, were found by the

More information

Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1

Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1 Induced EMF Physics 132: Lecture e 21 Elements of Physics II Agenda for Today Force on moving charges Induced Current Magnetic Flux Area Vector Physics 201: Lecture 1, Pg 1 Atomic Magnets A plausible explanation

More information

Chapter 22: Magnetism

Chapter 22: Magnetism Chapter 22: Magnetism Magnets Magnets are caused by moving charges. Permanent Magnets vs. Electromagnets Magnets always have two poles, north and south. Like poles repel, opposites attract. Brent Royuk

More information

Continuing the Analogy. Electricity/Water Analogy: PHY205H1F Summer Physics of Everyday Life Class 8: Electric Current, Magnetism

Continuing the Analogy. Electricity/Water Analogy: PHY205H1F Summer Physics of Everyday Life Class 8: Electric Current, Magnetism PHY205H1F ummer Physics of Everyday Life Class 8: Electric Current, Magnetism Flow of Charge Voltage, Current, Resistance Ohm s Law DC and AC Electric Power Light bulbs Electric Circuits Magnetic Force

More information

Magnetism Chapter Questions

Magnetism Chapter Questions Magnetism Chapter Questions 1. Both Electric and Magnetic Forces will cause objects to repel and attract each other. What is a difference in the origin of these forces? 2. A Magnet has a north and a south

More information