PREDICTION OF ACOUSTIC NATURAL FREQUENCIES FOR TWO DIMENSIONAL SIMPLIFIED AIRCRAFT CABIN BY IMPEDANCE MOBILITY COMPACT MATRIX (IMCM) APPROACH

Size: px
Start display at page:

Download "PREDICTION OF ACOUSTIC NATURAL FREQUENCIES FOR TWO DIMENSIONAL SIMPLIFIED AIRCRAFT CABIN BY IMPEDANCE MOBILITY COMPACT MATRIX (IMCM) APPROACH"

Transcription

1 PREDICION OF ACOUSIC NAURAL FREQUENCIES FOR WO DIMENSIONAL SIMPLIFIED AIRCRAF CABIN BY IMPEDANCE MOBILIY COMPAC MARIX (IMCM) APPROACH Veerabhadra REDDY 1 ; Venkatesham B 2 1 Department of Mechanical and Aerospace Engineering, II Hyderabad, India 2 Department of Mechanical and Aerospace Engineering, II Hyderabad, India ABSRAC Prediction of modal characteristics of acoustic cavities with irregular shapes is an important topi c in vibro-acoustic analysis of systems. In this paper, proposed method of impedance and mobility compact matrix (IMCM) provided the approach of Integro Modal Method (IMM) in the matrix form for prediction of modal characteristics of acoustical cavities with irregular shape. his method, consists of discretizing the whole cavity into a series of sub cavities either regular or irregular cavities. Acoustic pressure in regular sub cavities has been decomposed over a modal basis and for irregular sub cavities over that of bounding surface. Continuity of both pressure and velocity between adjacent sub cavities is ensured using a membrane with zero mass and stiffness. he objective of this method is to develop a physical basis rather than a numerical approach. Mathematical formulation of the method for acoustic cavities with irregular shape has been explained in detail. Predicted natural frequencies of the simplified aircraft cabin based on the proposed method have been compared with the available results in the literature. Keywords: Impedance, mobility, vibro-acoustic analysis I-INCE Classification of Subjects Number: INRODUCION Prediction of modal characteristics of acoustic cavities with irregular shapes is an important issue in vibro-acoustic analysis of systems. Modal characteristics include natural frequencies, modal pressure and velocity of the particles of the medium. Analytical expressions available to calculate natural frequencies and mode shapes of cavities are limited to regular and simple geometries, such as rectangular and cylindrical cavities. In literature methods available for prediction of modal characteristics of cavities with arbitrary shape, are limited. hese methods include Finite element method (FEM), (1, 2), Acousto Elastic Method (AEM) (3), Green s function method (GFM) (4), and Integro Modal Method (IMM) (5). FEM is very popular and widely used for prediction of acoustic natural frequencies of arbitrary geometries; however it needs large number of degrees of freedom and computational time. AEM depends on the irregularity of the cavity shape. GFM is limited to a cavity slightly distorted from a regular one. IMM provides a combined approach of AEM and GFM retaining the advantages of both the methods. his method consists of discretising the whole cavity into a series of subcavities, whose acoustic pressure is decomposed either over a modal basis of regular subcavities or over that of bounding cavities in the case of irregular-shaped boundaries. An integral formulation is then established to ensure continuity of both pressure and velocity between adjacent subcavities using a membrane with zero mass and stiffness (5). E. Anyunzoghe and L. Cheng (6, 7) improved the integro-modal approach developed previously, and introduced the technique of overlapped cavities for better convergence of pressure gradient in the vicinity of the junctions between subcavities. S. M Kim and M. J Brennan (8) presented a compact matrix formulation for the steady-state analysis of vibroacoustic system. It is based on the Impedance and mobility approach using the uncoupled mobility of the structure and uncoupled acoustic impedance, both in modal coordinate systems. his method is very effective for investigating coupling between structural and acoustic systems. B. Venkatesham et al. (9) presented free vibration analysis of coupled acoustic-structural systems. 1 me13p1005@iith.ac.in 2 venkatesham@iith.ac.in 5526

2 In this paper an alternative approach; impedance and mobility compact matrix (IMCM) method is presented for prediction of acoustic modal characteristics of irregular cavities. Mathematical formulation and generalization of the method for acoustic cavities with irregular shape has been explained in detail. A standard Eigen value problem is then established. Numerical results are then presented and discussed. 2. IMPEDANCE AND MOBILIY COMPAC MARIX MEHOD (IMCM) he mathematical formulation consists in treating an irregular shaped cavity as a combination of connected sub-cavities separated by elastic panels. In each sub-cavity, sound pressure P can be calculated using Kirchhoff s Helmholtz integral (5). G( 2 P + λ 2 P)dv = P( 2 G + λ 2 G)dv + (G P G P n n ) ds (1) V V where λ is the wave number; n the outward normal vector of the boundary surface S b of the enclosure with volume V; G is the Green s function corresponding to a transfer function obtained between an observation point (r) and the source point (r 0 ). Green s function G, for interior cavities in terms of mode shapes can be written as (10) G(r, r 0 ) = c2 φ n (r)φ n (r 0 ) (ω 2 n ω 2 (2) )Λ n n Where c is the speed of the sound in the internal medium, ω n is the angular resonance frequency of the cavity, φ n the corresponding mode shape and S b Λ n is the acoustic mass of the cavity. 2 Λ n = φ n (r)dv (3) v Figure 1. Shows a typical irregular cavity and for the illustration purpose, the formulation is first developed for the cavity shown in Figure 1(a). As shown in Figure 1. he cavity investigated can be divided into a regular (Figure 1(b).) and an irregular (Figure 1(c).) subcavity. he junction between the two subcavities is replaced by a virtual vibrating membrane with zero mass and stiffness. a) Junction n n b) c) Figure -1. Discretization procedure a) Real Cavity b) Regular Subcavity c) Irregular Subcavity 2.1 Regular Subcavity In the case of a regular-shaped cavity, analytical expressions are available for the mode shapes and the natural frequencies. ypical examples are rectangular, cylindrical, or semi-cylindrical enclosures. he acoustic pressure P(r, ω) and the vibration velocity of the panel u(r, ω) are 5527

3 described by (8) N P(r, ω) = φ n (r) a n (ω) = Φ a (4) n=1 M u(r, ω) = ψ m (r)b m (ω) = Ψ b (5) m=1 where, n ( consisting of n x, n y ) is a acoustic and m is a structural index, the N length column vectors and a consists of array of uncoupled acoustic mode shape function for the rigid wall cavities amplitude of the acoustic pressure mode a n (ω) Ψ Φ φ n (r), and respectively. Similarly the M length column vectors and b consists of array of uncoupled vibration mode shape functions of the membraneψ m (r), and the uncoupled amplitude of the vibration velocity modes b m (ω) respectively. he amplitude of the nth acoustic mode in regular cavities is given by (8); M a n (ω) = ρ 0 c 2 V A n (ω) (q n + C n,m. b m (ω)) (6) where q n is the generalised acoustic source strength, ρ 0 is density of air, V is volume of the cavity and C n,m represents the geometrical coupling relationship between the uncoupled structural and acoustic mode shape functions on the surface of the vibrating membrane m=1 S f and is given by C n,m = φ n (r) ψ m (r)ds (7) S f Assuming damping is negligible A n (ω) = jω ω n 2 ω 2 (8) he modal acoustic pressure vector a can be expressed as a = Z a (q + q s ) (9) where q is the N length modal source strength vector and q s = Cb is the modal source strength vector due to vibration of the structure and Z a is the uncoupled acoustic modal impedance matrix. he vibration amplitude of the mth mode is expressed as (8) b m (ω) = N 1 B ρ s hs m (ω) c n,m a n (ω) (10) f In the above equation external force is assumed to be zero. ρ s is the density, h is the thickness and S f is the area of the of the vibration membrane. B m (ω) is the structural mode resonance term for the imaginary junction vibration membrane and assumed to be unity. he modal vibration amplitude vector b can be expressed as b = Y s g a (11) where g a = C a is the modal force vector acting on the acoustic system. Y s is the (M M) n=1 diagonal matrix defined as the uncoupled structural modal mobility matrix and is given by Y s = 1 Λ s Λ s = ψ m (r) 2 ds (12) S f 2.2 Irregular Subcavity An irregular shaped subcavity is deviation from regular shape as shown in Figure 1(c). In this the procedure consists of enclosing the irregular cavity by a regular one, called the enveloping or bounding cavity for which modal information is available. Since the natural modes of the irregular 5528

4 shaped cavity are not known analytically, the modes of the bounding cavity are used to obtain the pressure. he amplitude of the nth acoustic mode in irregular cavities is given by a n (ω) = ρ 2 0 c 0 jω V ω 2 n ω 2 (q n + C n,m. b m (ω) M m=1 1 an jω Λ n,n ) (13) n V, ω n, and acoustic mass Λ n belong to the bounding cavity. n,n is the spatial coupling between the t nth and n th acoustic modes of the bounding cavity S d and is given by φ n n,n = φ n ds (14) S d n d In the Eq. (14). Integration is performed over the surface of the irregular cavity, either analytically or numerically. Any irregularity of the boundary shape has the effect of coupling the acoustic modes of its envelope. 2.3 Generalization of the formulation In order to generalize the procedure, four subcavity systems is taken as shown in Figure 2. Middle cavities have two membranes one each on its left (L) and right (R) sides. End cavities have one membrane either left or right side. L R Figure -2. Four subcavity system Applying Eqs. (6, 10) to each subcavity k (k =1, 2, 3, 4) and assuming q = 0 a k = Z ak (C k b k ) k=1, 4 (15) a k = Z ak (C k L b K L + C k R b K R ) k=2, 3 (16) b k = Y sk C k a k k=1, 2, 3,4 (17) o ensure continuity of pressure on both sides of the membranes the following equations are imposed R b k = b k+1 k=1 (18) b L R k = b k+1 k=2, 3 (19) L b k 1 = b k k=4 (20) he above Eqs. (15 to 20) on simplification and assuming = λ, can be rearranged in to the following form (λ 2 [M] + λ[l] + [S])X = 0 (21) where = {a n (ω)}. n n MatricesM, L, and S are given below. o convert Eq. (21) in to standard eigen value problem, Y = λx is assumed and the same is rearranged as 0 I [ M 1 S M 1 L ] {X Y } = λ {X Y } (22) where AZ = λz (23) 0 I A = [ M 1 S M 1 L ], and Z = {X Y } 5529

5 Λ sk Λ nk 0 ω 2 nk Λ sk Λ nk 0 M = [ ], L = [ ] and 0 Λ sk Λ nk 0 ω 2 nk Λ sk Λ nk C k C k 0 S = [ C k C k 1 C k C k ] 0 C k C k 1 0 On solving Eq. (23). Imaginary values of λ 2π are the natural frequencies of the cavity 3. Results and Discussions 3.1 Regular Subcavity A simplified rectangular cavity is used to test the method. he dimensions of the rectangular cavity considered are Lx X Ly=2.0 X1.1 m; hree subcavities with five acoustic and structural modes (n x = n y =5, m=5) is used to validate the results. he dimensions of the three cavities Lx 1 =0.5, Lx 2 =1.05, Lx 3 =0.45 and Ly 1 = Ly 2 = Ly 3 =1.1. he connecting zero mass and stiffness membrane is located at x 1 =0.5 and x 2 =1.55. he mode shapes for membrane and bounding cavities are taken as ψ m (y) = sin ( mπy L y ) (24) φ n (x, y) = cos ( n xπx (L x ) cos ( n yπy L y ) (25) able 1. Natural frequencies of the rectangular cavity calculated with ICMM S. No Mode order Exact Solution (Hz) IMM (Hz) ICMM (Hz) % of Deviation of IMCM results from the exact solution 1 (1,0) (0,1) (2,0) (1,1) (2,1) (3,0) (3,1) (0,2) (1,2) (4,0)

6 able 1 shows the calculated natural frequencies of rectangular cavity using IMCM method. Results obtained from IMCM method are compared with exact solution and IMM results. he calculated results match well with exact solution and IMM results and the deviation is less than 3% at all modes. he convergence of the results to the exact solution improves with increasing number of cavities, number of acoustic and membrane modes. 3.2 Irregular Sub-cavity A simplified two-dimensional aircraft cabin with floor is considered as shown in Figure 3. he dimensions of the simplified cabin θ=49 0 and radius =1 m; wo subcavities with five acoustic and structural modes (n x = n y =5, m=5) is used to validate the results. he dimensions of the two cavities Lx 1 =0.66 m, Lx 2 =1 m and Ly 1 = Ly 2 = 2 m. he connecting zero mass and stiffness membrane is located at x 1 =0.66 m. he mode shapes for membrane and bounding cavities are taken same as shown in Eqs. (23 to 24) θ Figure- 3. Irregular cavity (Simplified two-dimensional aircraft cabin) able 2 below shows the calculated natural frequencies of simplified aircraft cabin with floor using IMCM method. Results obtained from IMCM method are compared with IMM results. he calculated results match well with IMM results and the deviation is less than 5% at all modes. he convergence of the results to the exact solution improves with increasing number of cavities, number of acoustic and membrane modes. 5531

7 able 2. Natural frequencies of the irregular cavity calculated with ICMM Mode order FE Analysis Frequency (Hz) IMM (Hz) ICMM (Hz) % of Deviation of IMCM results from the IMM CONCLUSIONS A new approach has been proposed for the computation of acoustic modes of irregular shaped cavities. he method approximates the solution via impedance and mobility formulation using multi-connected subcavities. he formulation is general and flexible enough to handle different cavity configurations. his method calculates the natural frequencies accurately even when few acoustic modes of the bounding cavity are considered. Future work is required to extend this approach to the prediction of interior noise inside irregular shaped cavities with vibrating structures. REFERENCES 1. Petyt M, Lea J, Koopmann GH. A finite element method for determining the acoustic modes of irregular shaped cavities. Journal of Sound and Vibration Apr 22; 45(4): Joppa PD, Fyfe IM. A finite element analysis of the impedance properties of irregular shaped cavities with absorptive boundaries. Journal of Sound and Vibration Jan 8; 56(1): Dowell EH, Gorman GF, Smith DA. Acoustoelasticity: general theory, acoustic natural modes and forced response to sinusoidal excitation, including comparisons with experiment. Journal of Sound and vibration Jun 22; 52(4): Morse PM, Feshbach H. Methods of theoretical physics, Vol-II, New York; Mc-GrawHill. 5. Missaoui J, Cheng L. A combined integro-modal approach for predicting acoustic properties of irregular-shaped cavities. he Journal of the Acoustical Society of America Jun 1;101(6): Anyunzoghe E, Cheng L. Improved integro-modal approach with pressure distribution assessment and the use of overlapped cavities. Applied Acoustics Nov 30; 63(11): Anyunzoghe E, Cheng L. On the extension of the integro-modal approach. Journal of sound and vibration Aug 8; 255(2): Kim SM, Brennan MJ. A compact matrix formulation using the impedance and mobility approach for the analysis of structural-acoustic systems. Journal of Sound and Vibration May 27; 223(1): Venkatesham B, iwari M, Munjal ML. Free vibration analysis of coupled acoustic structural systems. IISC Centenary-International Conference on Advances in Mechanical Engineering (IC-ICAME); July 2-4; Bangalore, India. 10. Morse PM, Ingard KU. heoretical acoustics. Princeton university press;

Transfer-matrix-based approach for an eigenvalue problem of a coupled rectangular cavity

Transfer-matrix-based approach for an eigenvalue problem of a coupled rectangular cavity ransfer-matrix-based approach for an eigenvalue problem of a coupled rectangular cavity Hiroyuki IWAMOO ; Nobuo ANAKA Seikei University, Japan okyo Metropolitan University, Japan ABSRAC his study concerns

More information

Vibro-acoustic analysis of a rectangular-like cavity with a tilted wall

Vibro-acoustic analysis of a rectangular-like cavity with a tilted wall Applied Acoustics 68 (007) 739 751 wwwelseviercom/locate/apacoust Vibro-acoustic analysis of a rectangular-like cavity with a tilted wall YY Li 1, L Cheng * Department of Mechanical Engineering, The Hong

More information

BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES

BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES BOUNDARY CONDITION FOR THE ACOUSTIC IMPEDANCE OF LIGHTWEIGHT MICRO PERFORATED PANELS AND MEMBRANES Chenxi Li, Ben Cazzolato and Anthony Zander School of Mechanical Engineering, The University of Adelaide,

More information

Noise in enclosed spaces. Phil Joseph

Noise in enclosed spaces. Phil Joseph Noise in enclosed spaces Phil Joseph MODES OF A CLOSED PIPE A 1 A x = 0 x = L Consider a pipe with a rigid termination at x = 0 and x = L. The particle velocity must be zero at both ends. Acoustic resonances

More information

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS

EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS EFFECTS OF PERMEABILITY ON SOUND ABSORPTION AND SOUND INSULATION PERFORMANCE OF ACOUSTIC CEILING PANELS Kento Hashitsume and Daiji Takahashi Graduate School of Engineering, Kyoto University email: kento.hashitsume.ku@gmail.com

More information

Micro-perforates in vibro-acoustic systems Li CHENG

Micro-perforates in vibro-acoustic systems Li CHENG Micro-perforates in vibro-acoustic systems Li CHENG Chair Professor and Director Consortium for Sound and Vibration research Department of Mechanical Engineering The Hong Kong Polytechnic University CAV

More information

Simplified modelling of vehicle interior noise: comparison of analytical, numerical and experimental approaches

Simplified modelling of vehicle interior noise: comparison of analytical, numerical and experimental approaches Loughborough University Institutional Repository Simplified modelling of vehicle interior noise: comparison of analytical, numerical and experimental approaches This item was submitted to Loughborough

More information

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response

Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response Proceedings of the Acoustics 22 Nantes Conference 23-27 April 22, Nantes, France Laboratory synthesis of turbulent boundary layer wall-pressures and the induced vibro-acoustic response C. Maury a and T.

More information

NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE

NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE NUMERICAL PREDICTION OF PERFORATED TUBE ACOUSTIC IMPEDANCE G. Pradeep, T. Thanigaivel Raja, D.Veerababu and B. Venkatesham Department of Mechanical and Aerospace Engineering, Indian Institute of Technology

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 13 http://acousticalsocietyorg/ ICA 13 Montreal Montreal, Canada - 7 June 13 Architectural Acoustics Session paab: Dah-You Maa: His Contributions and Life

More information

Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch

Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch Report for Stage 4 Tasks 1 and 2 July 24 Prepared For:

More information

Modal analysis of an enclosure acoustic space based on spectro-geometric method

Modal analysis of an enclosure acoustic space based on spectro-geometric method INTER-NOISE 6 Modal analysis of an enclosure acoustic space based on spectro-geometric method Xianjie SHI ; Chunli LI ; Fengjun WANG 3 ; Wen L LI 4 Institute of Systems Engineering, China Academy of Engineering

More information

The sound power output of a monopole source in a cylindrical pipe containing area discontinuities

The sound power output of a monopole source in a cylindrical pipe containing area discontinuities The sound power output of a monopole source in a cylindrical pipe containing area discontinuities Wenbo Duan, Ray Kirby To cite this version: Wenbo Duan, Ray Kirby. The sound power output of a monopole

More information

FLINOVIA 2017, State Collage, USA. Dr. Alexander Peiffer, Dr. Uwe Müller 27 th -28 th April 2017

FLINOVIA 2017, State Collage, USA. Dr. Alexander Peiffer, Dr. Uwe Müller 27 th -28 th April 2017 Review of efficient methods for the computation of transmission loss of plates with inhomogeneous material properties and curvature under turbulent boundary layer excitation FLINOVIA 2017, State Collage,

More information

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES

A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES A SIMPLE DECOUPLED MODAL CALCULATION OF SOUND TRANSMISSION BETWEEN VOLUMES 43.40r Philippe JEAN; Jean-François RONDEAU Centre Scientifique et Technique du Bâtiment, 24 rue Joseph Fourier, 38400 Saint Martin

More information

An indirect Trefftz method for the steady state dynamic analysis of coupled vibro acoustic systems

An indirect Trefftz method for the steady state dynamic analysis of coupled vibro acoustic systems An indirect Trefftz method for the steady state dynamic analysis of coupled vibro acoustic systems W. Desmet, P. Sas, D. Vandepitte K.U. Leuven, Department of Mechanical Engineering, Division PMA Celestijnenlaan

More information

This is the author s version of a work that was submitted/accepted for publication in the following source:

This is the author s version of a work that was submitted/accepted for publication in the following source: This is the author s version of a work that was submitted/accepted for publication in the following source: Lin, Tian Ran & Pan, Jie (29) Sound radiation characteristics of a box-type structure. Journal

More information

An explicit time-domain finite-element method for room acoustics simulation

An explicit time-domain finite-element method for room acoustics simulation An explicit time-domain finite-element method for room acoustics simulation Takeshi OKUZONO 1 ; Toru OTSURU 2 ; Kimihiro SAKAGAMI 3 1 Kobe University, JAPAN 2 Oita University, JAPAN 3 Kobe University,

More information

Microphone reciprocity calibration: acoustic field in the coupler

Microphone reciprocity calibration: acoustic field in the coupler Microphone reciprocity calibration: acoustic field in the coupler Cécile Guianvarc h, Jean-Noël Durocher Laboratoire National d Essais, 29 av. Roger Hennequin, 78197 Trappes Cedex, France, e-mail: {cecile.guianvarch,

More information

A HYBRID WAVE BASED VIBRO-ACOUSTIC MODELLING TECHNIQUE FOR THE PREDICTION OF INTERIOR NOISE IN AN AIRCRAFT FUSELAGE

A HYBRID WAVE BASED VIBRO-ACOUSTIC MODELLING TECHNIQUE FOR THE PREDICTION OF INTERIOR NOISE IN AN AIRCRAFT FUSELAGE 25th INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES A HYBRID WAVE BASED VIBRO-ACOUSTIC MODELLING TECHNIQUE FOR THE PREDICTION OF INTERIOR NOISE IN AN AIRCRAFT FUSELAGE B. Van Genechten, D. Vandepitte,

More information

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS

IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS Proceedings of COBEM 007 Copyright 007 by ABCM 9th International Congress of Mechanical Engineering November 5-9, 007, Brasília, DF IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED

More information

Effect of effective length of the tube on transmission loss of reactive muffler

Effect of effective length of the tube on transmission loss of reactive muffler Effect of effective length of the tube on transmission loss of reactive muffler Gabriela Cristina Cândido da SILVA 1 ; Maria Alzira de Araújo NUNES 1 1 University of Brasilia, Brazil ABSTRACT Reactive

More information

Analytical coupled vibroacoustic modeling of membranetype acoustic metamaterials: membrane model

Analytical coupled vibroacoustic modeling of membranetype acoustic metamaterials: membrane model Analytical coupled vibroacoustic modeling of membranetype acoustic metamaterials: membrane model Yangyang Chen and Guoliang Huang a) Department of Systems Engineering, University of Arkansas at Little

More information

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method csnak, 014 Int. J. Nav. Archit. Ocean Eng. (014) 6:894~903 http://dx.doi.org/10.478/ijnaoe-013-00 pissn: 09-678, eissn: 09-6790 A simple formula for insertion loss prediction of large acoustical enclosures

More information

Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments

Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments Optimization for heat and sound insulation of honeycomb sandwich panel in thermal environments Jinlong Yuan 1, Haibo Chen 2, Qiang Zhong 3, Kongjuan Li 4 Department of Modern mechanics, University of Science

More information

Introduction to Acoustics Exercises

Introduction to Acoustics Exercises . 361-1-3291 Introduction to Acoustics Exercises 1 Fundamentals of acoustics 1. Show the effect of temperature on acoustic pressure. Hint: use the equation of state and the equation of state at equilibrium.

More information

ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 4th Edn. First printing April 23, 2018

ERRATA AND ADDITIONS FOR ENGINEERING NOISE CONTROL 4th Edn. First printing April 23, 2018 ERRATA AND ADDITIONS FOR "ENGINEERING NOISE CONTROL" 4th Edn. First printing April 3, 08 p4, Eq..3 should not have the ± symbol on the RHS p36, 3 lines from the bottom of the page, replace cos b with cos

More information

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method

Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method Prediction of the radiated sound power from a fluid-loaded finite cylinder using the surface contribution method Daipei LIU 1 ; Herwig PETERS 1 ; Nicole KESSISSOGLOU 1 ; Steffen MARBURG 2 ; 1 School of

More information

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k:

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k: Principles of Soil Dynamics 3rd Edition Das SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-soil-dynamics-3rd-editiondas-solutions-manual/ Chapter

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source

Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Numerical Model of the Insertion Loss Promoted by the Enclosure of a Sound Source Gil F. Greco* 1, Bernardo H. Murta 1, Iam H. Souza 1, Tiago B. Romero 1, Paulo H. Mareze 1, Arcanjo Lenzi 2 and Júlio A.

More information

NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE

NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE 23 rd International Congress on Sound & Vibration Athens, Greece -4 July 26 ICSV23 NUMERICAL ESTIMATION OF THE ABSORPTION COEFFICIENT OF FLEXIBLE MICRO-PERFORATED PLATES IN AN IMPEDANCE TUBE Muttalip Aşkın

More information

Improved Method of the Four-Pole Parameters for Calculating Transmission Loss on Acoustics Silence

Improved Method of the Four-Pole Parameters for Calculating Transmission Loss on Acoustics Silence 7659, England, UK Journal of Information and Computing Science Vol., No., 7, pp. 6-65 Improved Method of the Four-Pole Parameters for Calculating Transmission Loss on Acoustics Silence Jianliang Li +,

More information

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS ANALYSIS OF HIGHRISE BUILDING SRUCURE WIH SEBACK SUBJEC O EARHQUAKE GROUND MOIONS 157 Xiaojun ZHANG 1 And John L MEEK SUMMARY he earthquake response behaviour of unframed highrise buildings with setbacks

More information

Transactions on Modelling and Simulation vol 3, 1993 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 3, 1993 WIT Press,  ISSN X Boundary element method in the development of vehicle body structures for better interior acoustics S. Kopuz, Y.S. Unliisoy, M. Qali kan Mechanical Engineering Department, Middle East Technical University,

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

Transient response prediction of an impulsively excited structure using a scaling approach

Transient response prediction of an impulsively excited structure using a scaling approach Numerical Techniques (others): Paper ICA2016-668 Transient response prediction of an impulsively excited structure using a scaling approach Xianhui Li (a), Jing Zhang (b), Tuo Xing (c) (a) Beijing Municipal

More information

Examination of the Effect of a Sound Source Location on the Steady-State Response of a Two-Room Coupled System

Examination of the Effect of a Sound Source Location on the Steady-State Response of a Two-Room Coupled System ARCHIVES OF ACOUSTICS 36, 4, 761 775 (2011) DOI: 10.2478/v10168-011-0051-7 Examination of the Effect of a Sound Source Location on the Steady-State Response of a Two-Room Coupled System Mirosław MEISSNER

More information

Structural Matrices in MDOF Systems

Structural Matrices in MDOF Systems in MDOF Systems http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April 9, 2016 Outline Additional Static Condensation

More information

Guided convected acoustic wave coupled with a membrane wall used as noise reduction device

Guided convected acoustic wave coupled with a membrane wall used as noise reduction device Buenos Aires 5 to 9 September, 016 Acoustics for the 1 st Century PROCEEDINGS of the nd International Congress on Acoustics Structural Acoustics and Vibration (others): Paper ICA016-516 Guided convected

More information

Sound radiation of a plate into a reverberant water tank

Sound radiation of a plate into a reverberant water tank Sound radiation of a plate into a reverberant water tank Jie Pan School of Mechanical and Chemical Engineering, University of Western Australia, Crawley WA 6009, Australia ABSTRACT This paper presents

More information

Control of Earthquake Induced Vibrations in Asymmetric Buildings Using Passive Damping

Control of Earthquake Induced Vibrations in Asymmetric Buildings Using Passive Damping Control of Earthquake Induced Vibrations in Asymmetric Buildings Using Passive Damping Rakesh K. Goel, California Polytechnic State University, San Luis Obispo Abstract This paper summarizes the results

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

Wojciech ŁAPKA, Czesław CEMPEL

Wojciech ŁAPKA, Czesław CEMPEL ARCHIVES OF ACOUSTICS 33, 4 (Supplement), 65 70 (2008) COMPUTATIONAL AND EXPERIMENTAL INVESTIGATIONS OF A SOUND PRESSURE LEVEL DISTRIBUTION AT THE OUTLET OF THE SPIRAL DUCT Wojciech ŁAPKA, Czesław CEMPEL

More information

IMPROVED STRUCTURE-ACOUSTIC INTERACTION MODELS, PART II: MODEL EVALUATION Guseong-dong, Yuseong-gu, Daejeon Republic of Korea

IMPROVED STRUCTURE-ACOUSTIC INTERACTION MODELS, PART II: MODEL EVALUATION Guseong-dong, Yuseong-gu, Daejeon Republic of Korea ICSV14 Cairns Australia 9-12 July, 2007 IMPROVED STRUCTURE-ACOUSTIC INTERACTION MODELS, PART II: MODEL EVALUATION Abstract Moonseok Lee 1 *, Youn-Sik Park 1, Youngjin Park 1, K.C. Park 2 1 NOVIC, Department

More information

1 Introduction. 2 Boundary Integral Equations

1 Introduction. 2 Boundary Integral Equations Analysis of sound transmission through a thin elastic plate by using boundary integral equations T. Terai*, Y. Kawai* "Department ofarchitecture, Faculty ofengineering, Kinki University, 1 Umenobe Takaya,

More information

Broadband Vibration Response Reduction Using FEA and Optimization Techniques

Broadband Vibration Response Reduction Using FEA and Optimization Techniques Broadband Vibration Response Reduction Using FEA and Optimization Techniques P.C. Jain Visiting Scholar at Penn State University, University Park, PA 16802 A.D. Belegundu Professor of Mechanical Engineering,

More information

Side branch resonators modelling with Green s function methods

Side branch resonators modelling with Green s function methods Side branch resonators modelling with Green s function methods E. Perrey-Debain, R. Maréchal, J.-M. Ville Laboratoire Roberval UMR 6253, Equipe Acoustique, Université de Technologie de Compiègne, France

More information

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Carl Howard School of Mechanical Engineering, University of Adelaide, South Australia, Australia ABSTRACT A transmission

More information

Measurement of Structural Intensity Using an Angular Rate Sensor

Measurement of Structural Intensity Using an Angular Rate Sensor Measurement of Structural Intensity Using an Angular Rate Sensor Nobuaki OMATA 1 ; Hiroki NAKAMURA ; Yoshiyuki WAKI 3 ; Atsushi KITAHARA 4 and Toru YAMAZAKI 5 1,, 5 Kanagawa University, Japan 3, 4 BRIDGESTONE,

More information

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering

Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering D. W. Herrin, Ph.D., P.E. Department of Mechanical Engineering Reference 1. Ver, I. L., and Beranek, L. L. (2005). Control Engineering: Principles and Applications. John Wiley and Sons. 2. Sharp, B. H.

More information

Statistical Energy Analysis Software & Training Materials, Part II

Statistical Energy Analysis Software & Training Materials, Part II Statistical Energy Analysis Software & Training Materials, Part II Tom Irvine Dynamic Concepts, Inc. NASA Engineering & Safety Center (NESC) 20-22 June 2017 The Aerospace Corporation 2010 The Aerospace

More information

Prediction of Light Rail Vehicle Noise in Running Condition using SEA

Prediction of Light Rail Vehicle Noise in Running Condition using SEA Prediction of Light Rail Vehicle Noise in Running Condition using SEA Sebastian PREIS ; Gérard BORELLO Siemens AG Austria Urban Transport, Austria InterAC, France ABSTRACT A complete Light Rail vehicle

More information

A reduced-order stochastic finite element analysis for structures with uncertainties

A reduced-order stochastic finite element analysis for structures with uncertainties A reduced-order stochastic finite element analysis for structures with uncertainties Ji Yang 1, Béatrice Faverjon 1,2, Herwig Peters 1, icole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering,

More information

METHODS OF THEORETICAL PHYSICS

METHODS OF THEORETICAL PHYSICS METHODS OF THEORETICAL PHYSICS Philip M. Morse PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Herman Feshbach PROFESSOR OF PHYSICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY PART II: CHAPTERS 9

More information

Estimation of Acoustic Impedance for Surfaces Delimiting the Volume of an Enclosed Space

Estimation of Acoustic Impedance for Surfaces Delimiting the Volume of an Enclosed Space ARCHIVES OF ACOUSTICS Vol.37,No.1, pp.97 102(2012) Copyright c 2012byPAN IPPT DOI: 10.2478/v10168-012-0013-8 Estimation of Acoustic Impedance for Surfaces Delimiting the Volume of an Enclosed Space Janusz

More information

Modelling sound radiation from a baffled vibrating plate for different boundary conditions using an elementary source technique

Modelling sound radiation from a baffled vibrating plate for different boundary conditions using an elementary source technique Modelling sound radiation from a baffled vibrating plate for different boundary conditions using an elementary source technique Azma PUTRA 1 ; Nurain SHYAFINA 1 ; David THOMPSON 2 ; Noryani MUHAMMAD 1

More information

Mobility and Impedance Methods. Professor Mike Brennan

Mobility and Impedance Methods. Professor Mike Brennan Mobility and Impedance Methods Professor Mike Brennan ibration control ibration Problem Understand problem Modelling (Mobility and Impedance Methods) Solve Problem Measurement Mobility and Impedance The

More information

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates

Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Acoustic radiation by means of an acoustic dynamic stiffness matrix in spherical coordinates Kauê Werner and Júlio A. Cordioli. Department of Mechanical Engineering Federal University of Santa Catarina

More information

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients

Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Proceedings of Acoustics 2013 Victor Harbor Transmission Matrix Model of a Quarter-Wave-Tube with Gas Temperature Gradients Carl Howard School of Mechanical Engineering, University of Adelaide, South Australia,

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 7.6 AN INNOVATIVE APPROACH

More information

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES PACS REFERENCE: 43.40-Rj RADIATION FROM VIBRATING STRUCTURES INTO FLUID MEDIA Names of the authors: Kohrs, Torsten; Petersson, Björn

More information

Prediction of high-frequency responses in the time domain by a transient scaling approach

Prediction of high-frequency responses in the time domain by a transient scaling approach Prediction of high-frequency responses in the time domain by a transient scaling approach X.. Li 1 1 Beijing Municipal Institute of Labor Protection, Beijing Key Laboratory of Environmental Noise and Vibration,

More information

Sound radiation from the open end of pipes and ducts in the presence of mean flow

Sound radiation from the open end of pipes and ducts in the presence of mean flow Sound radiation from the open end of pipes and ducts in the presence of mean flow Ray Kirby (1), Wenbo Duan (2) (1) Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, Australia

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 9, 2010 http://asa.aip.org 159th Meeting Acoustical Society of America/NOISE-CON 2010 Baltimore, Maryland 19-23 April 2010 Session 4aSA: Structural Acoustics

More information

Transmission Loss Assessment for a Muffler by Boundary Element Method Approach

Transmission Loss Assessment for a Muffler by Boundary Element Method Approach ANALELE UNIVERSITĂłII EFTIMIE MURGU REŞIłA ANUL XVII, NR. 1, 010, ISSN 1453-7397 Ovidiu Vasile Transmission Loss Assessment for a Muffler by Boundary Element Method Approach This paper investigates the

More information

Sub-structuring of mechanical systems based on the path concept

Sub-structuring of mechanical systems based on the path concept Sub-structuring of mechanical systems based on the path concept Francesc Xavier MAGRANS 1 ; Jordi POBLET-PUIG 2 ; Antonio RODRÍGUEZ-FERRAN 3 1 Ingeniería para el Control del Ruido S.L., Spain 1,2,3 Universitat

More information

SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT BUILDINGS

SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT BUILDINGS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1918 SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT

More information

CSVR in Hong Kong PolyU

CSVR in Hong Kong PolyU Research @ CSVR in Hong Kong PolyU Li Cheng ( Chair Professor and Head Director, Consortium for Sound and Vibration Research (CSVR) The Hong Kong Polytechnic University Department of Mechanical Engineering

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

MODal ENergy Analysis

MODal ENergy Analysis MODal ENergy Analysis Nicolas Totaro, Jean-Louis Guyader To cite this version: Nicolas Totaro, Jean-Louis Guyader. MODal ENergy Analysis. RASD, Jul 2013, Pise, Italy. 2013. HAL Id: hal-00841467

More information

INFLUENCE OF ROOM GEOMETRY ON MODAL DENSITY, SPATIAL DISTRIBUTION OF MODES AND THEIR DAMPING M. MEISSNER

INFLUENCE OF ROOM GEOMETRY ON MODAL DENSITY, SPATIAL DISTRIBUTION OF MODES AND THEIR DAMPING M. MEISSNER ARCHIVES OF ACOUSTICS 30, 4 (Supplement), 203 208 (2005) INFLUENCE OF ROOM GEOMETRY ON MODAL DENSITY, SPATIAL DISTRIBUTION OF MODES AND THEIR DAMPING M. MEISSNER Institute of Fundamental Technological

More information

Radiated Sound Power from a Curved Honeycomb Panel

Radiated Sound Power from a Curved Honeycomb Panel Radiated Sound Power from a Curved Honeycomb Panel Jay H. Robinson Ralph D. Buehrle Jacob Klos NASA Langley Research Center, Hampton, VA 23681-2199 Ferdinand W. Grosveld Lockheed Martin Engineering and

More information

Acoustic performance of industrial mufflers with CAE modeling and simulation

Acoustic performance of industrial mufflers with CAE modeling and simulation csnak, 214 Int. J. Nav. Archit. Ocean Eng. (214) 6:935~946 http://dx.doi.org/1.2478/ijnaoe-213-223 pissn: 292-6782, eissn: 292-679 Acoustic performance of industrial mufflers with CAE modeling and simulation

More information

Preprint. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls.

Preprint. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls. Vibro-acoustic response of flexible Micro-Perforated Plates: impact of the boundary condition at the perforation walls J. Tournadre, M. A. Temiz 2, P. Martínez-Lera 3, W. De Roeck, W. Desmet,4 KU Leuven,

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 ISSN ISSN 2229-5518 692 In literature, finite element formulation uses beam element or plate element for structural modelling which has a limitation on transverse displacement. Atkinson and Manrique [1] studied

More information

Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution

Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution Analytical Solution for a Fluid-Structure Interaction Problem in Comparison with Finite Element Solution Amirhossein Keivani & Ahmad Shooshtari Ferdowsi University of Mashhad, Mashhad, Iran. Ahmad Aftabi

More information

A Modal Approach to Lightweight Partitions with Internal Resonators

A Modal Approach to Lightweight Partitions with Internal Resonators A Modal Approach to Lightweight Partitions with Internal Resonators Steffen Hettler, Philip Leistner Fraunhofer-Institute of Building Physics, D-7569 Stuttgart, Nobelstrasse, Germany e-mail: hettler@ibp.fraunhofer.de,

More information

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder

Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Effects of mass distribution and buoyancy on the sound radiation of a fluid loaded cylinder Hongjian Wu, Herwig Peters, Roger Kinns and Nicole Kessissoglou School of Mechanical and Manufacturing, University

More information

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method

Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundary Element Method 10 th International LS-DYNA Users Conference Simulation Technolog (2) Simulation of Acoustic and Vibro-Acoustic Problems in LS-DYNA using Boundar Element Method Yun Huang Livermore Software Technolog Corporation

More information

CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING

CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING CHAPTER 5 SIMULATION OF A PAYLOAD FAIRING In the preceding chapters, a model of a PZT actuator exciting a SS cylinder has been presented. The structural model is based on a modal expansion formulation

More information

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials

A 3 D finite element model for sound transmission through a double plate system with isotropic elastic porous materials Acoustics and Vibrations Group Université de Sherbrooke, QC CANADA Département génie mécanique Université de Sherbrooke Sherbrooke, QC CANADA Tel.: (819) 821-7157 Fax: (819) 821-7163 A 3 D finite element

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Structural Acoustics and Vibration Session 2pSA: Memorial Session in

More information

Acoustic performance of a stretched membrane and porous blanket combination '

Acoustic performance of a stretched membrane and porous blanket combination ' Acoustic performance of a stretched membrane and porous blanket combination ' W. A. Thomas, Jr. and C. J. Hurst Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (Received

More information

Active Impact Sound Isolation with Floating Floors. Gonçalo Fernandes Lopes

Active Impact Sound Isolation with Floating Floors. Gonçalo Fernandes Lopes Active Impact Sound Isolation with Floating Floors Gonçalo Fernandes Lopes Outubro 009 Active impact sound isolation with floating floors Abstract The users of buildings are, nowadays, highly demanding

More information

Multi Degrees of Freedom Systems

Multi Degrees of Freedom Systems Multi Degrees of Freedom Systems MDOF s http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March 9, 07 Outline, a System

More information

Critical loss factor in 2-DOF in-series system with hysteretic friction and its use for vibration control

Critical loss factor in 2-DOF in-series system with hysteretic friction and its use for vibration control Critical loss factor in -DOF in-series system with hysteretic friction and its use for vibration control Roman Vinokur Acvibrela, Woodland Hills, CA Email: romanv99@aol.com Although the classical theory

More information

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe

Transmission Loss of a Dissipative Muffler with Perforated Central Pipe Transmission Loss of a Dissipative Muffler with Perforated Central Pipe 1 Introduction This example problem demonstrates Coustyx ability to model a dissipative muffler with a perforated central pipe. A

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

Sound Radiation Of Cast Iron

Sound Radiation Of Cast Iron Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2002 Sound Radiation Of Cast Iron N. I. Dreiman Tecumseh Products Company Follow this and

More information

Active noise control in a pure tone diffuse sound field. using virtual sensing. School of Mechanical Engineering, The University of Adelaide, SA 5005,

Active noise control in a pure tone diffuse sound field. using virtual sensing. School of Mechanical Engineering, The University of Adelaide, SA 5005, Active noise control in a pure tone diffuse sound field using virtual sensing D. J. Moreau, a) J. Ghan, B. S. Cazzolato, and A. C. Zander School of Mechanical Engineering, The University of Adelaide, SA

More information

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption

Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption Analogy Electromagnetism - Acoustics: Validation and Application to Local Impedance Active Control for Sound Absorption L. Nicolas CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon BP63-693 Ecully cedex

More information

Sound radiation from nested cylindrical shells

Sound radiation from nested cylindrical shells Sound radiation from nested cylindrical shells Hongjian Wu 1 ; Herwig Peters 1 ; Nicole Kessissoglou 1 1 School of Mechanical and Manufacturing Engineering, UNSW Australia, Sydney NSW 252 ABSTRACT Fluid-loaded

More information

FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS

FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS FREE VIBRATIONS OF FRAMED STRUCTURES WITH INCLINED MEMBERS A Thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology in Civil Engineering By JYOTI PRAKASH SAMAL

More information

The use of microperforated plates to attenuate cavity resonances

The use of microperforated plates to attenuate cavity resonances The use of microperforated plates to attenuate cavity resonances Benjamin Fenech a Acoustic Technology, Ørsted DTU, Technical University of Denmark, Building 352, Ørsteds Plads, DK-2800 Kgs. Lyngby, Denmark

More information

Analytical and experimental study of single frame double wall

Analytical and experimental study of single frame double wall Analytical and experimental study of single frame double wall C. Guigou-Carter and M. Villot Center for Building Science and Technology Acoustics and Lighting Department Paper ID 203 Analytical and experimental

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati

Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Theory and Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module - 7 Instability in rotor systems Lecture - 4 Steam Whirl and

More information

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Introduction to Vibration Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Vibration Most vibrations are undesirable, but there are many instances where vibrations are useful Ultrasonic (very high

More information

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT:

Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method ABSTRACT: Simulation of acoustic and vibroacoustic problems in LS-DYNA using boundary element method Yun Hang, Mhamed Souli, Rogelio Perez Livermore Software Technology Corporation USA & University of Lille Laboratoire

More information