PHYS 202 Notes, Week 13/14

Size: px
Start display at page:

Download "PHYS 202 Notes, Week 13/14"

Transcription

1 PHYS 202 Notes, Week 13/14 Greg Christian April 19, 21 & 26, 2016 Last updated: 04/19/2016 at 14:25:34 This week we learn about atomic structure, nuclei, radioactivity, and nuclear reactions. Atomic Structure Wave Functions As we ve learned, atoms consist of electrons orbiting in specific sets of stable orbits around a nucleus. It turns out that the existence of these stable orbits is no accident: it comes from fundamental properties of the microscopic world. As we discussed last time, wave-particle duality states that all object have both wave and particle properties, with the wave properties summarized by the de Broglie Wavelength, λ = h/p. More fundamentally, every particle can be described by something called a Wave Function, Ψ. This is a mathematical equation which governs the wave nature of subatimic particles. It s analogous to the wave function you used in PHYS-201 to describe waves on a string. Important points Wave functions fundamentally describe the dynamics of microscopic particles; solutions to the complete wave function equation involve three quantum numbers (plus a fourth, spin, which is intrinsic to the particle). Important equations Angular momentum L = l (l + 1)h/2π L z = m l h/2π Figure 1: Examples of wavefunctions. For electrons orbiting a nucleus, Ψ is a function of the three position coordinates, (x, y, z) and time. The total form is often written as Ψ(x, y, z, t). What Ψ actually describes is a probability: it tells the probability of finding an electron in a particular point in space and time, (x, y, z, t). Figure?? shows what some wavefunctions can look like for spherically symmetric systems. When Ψ is large, the probability of

2 phys 202 notes, week 13/14 2 finding the electron there is large; when it s small, the probability of finding the electron there is small. We can only ever talk about the position of an electron when we actually do an experiment to look and see where it is otherwise a probability is the best description we ve got. The wave function is determined by an equation called Schrödinger s Equation, which is a complicated differential equation whose solution is outside the scope of this course. However, we can still discuss some important properties of the solution. The first is that a solution is only possible when some physical quantity, such as the energy, has one of a specific set of values. This, then, is the fundamental reason for the quantization of things like energy levels of electrons we introduced in the last chapter: it arises naturally from the mathematical solutions of Schrödinger s Equation. As it turns out, these allowed energies agree exactly with those predicted by the Bohr model, which themselves agree with experiment. Thus the Schrödinger equation is able to predict complicated experimental quantities in a natural, fundamental way. Aside: Schrödinger s Cat Figure 2: Schrödinger s cat thought experiment. The idea of subatomic particles being fundamentally described in terms of probabilities only is a difficult one to accept. In particular, the fact that something like an electron does not even have a position until someone decides to look at it can be hard to swallow. To elucidate the seeming ridiculousness of this, Schrödinger himself came up with a thought experiment, which he described as follows, One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with the following device (which must be secured against direct interference by the cat): in a Geiger counter, there is a tiny bit of radioactive substance, so small, that perhaps in the course of the

3 phys 202 notes, week 13/14 3 hour one of the atoms decays, but also, with equal probability, perhaps none; if it happens, the counter tube discharges and through a relay releases a hammer that shatters a small flask of hydrocyanic acid. If one has left this entire system to itself for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed or smeared out in equal parts. In other words, quantum mechanics and the Schrödinger equation state that the cat is neither dead nor alive until someone bothers to look at. This is, of course, a ridiculous proposition, and it serves to show just how strange the microscopic world is. Quantum Numbers One consequence of the Schrödinger equation solutions is that angular momentum is quantized. The allowed range depends on the principal quantum number n that defines the energy (recall: E n = 13.6 ev/n 2 ). In particular, only values of L that satisfy the following equation are allowed: L = l(l + 1) h 2π, (1) where l = 0, 1, 2,..., n 1. Note that the maximum value of l is limited to being n 1. Furthermore, the component of l in a specific direction (defined to be the z direction) is quantized: L z = m l h 2π, (2) where m l = 0, 1, 2,..., l. Note that the quantity h/2π is used so often that it s given its own symbol ħ ( h-bar ), ħ = h 2π = J s. (3) Fundamentally, the solution to the Schrödinger Equation is defined by three quantum numbers, as opposed to just the one in the Bohr model. They are called: The principal quantum number n; The angular momentum quantum number l; and The magnetic quantum number m l. There s also a fourth quantum number called the spin, which is an angular momentum that s intrinsic to the electron itself. As the name suggests, it s analogous to something like a planet spinning around its axis (while the orbital angular momentum would be the planet orbiting around the sun). However, this analogy only goes so far; in reality the electron isn t a perfect sphere; it s more like something smeared out at different locations outside the nucleus. Fundamentally,

4 phys 202 notes, week 13/14 4 the spin is just a quantity that goes along with every electron, sort of like a color on some ordinary object. The spin of an electron can be defined in terms of its z component, which is constrained to be S z = ± 1 ħ. (4) 2 Note that when speaking of spin, the ħ is often dropped. Thus a spin of +ħ/2 is often called plus one-half (sometimes written +1/2) and ħ/2 is often called minus one-half ( 1/2). Figure 3: Electron probability distribution ( cloud ) shapes for different quantum numbers. Remember that we said that electrons aren t actually perfect spheres circling around the nucleus. Rather, they re more like clouds or smeared out distributions in space. When fully described in terms of their four quantum numbers, the electron clouds can take on a variety of shapes, as shown in Figure??. Pauli Exclusion Principle & Atomic Structure One principle which fundamentally defined how microscopic systems (like atoms) are built is the Pauli Exclusion Principle. Basically, what this says is that no two electrons in an atom 1 can have exactly the same quantum numbers. This enforces a hierarchy from atomic structure naturally arises. When filling up the available slots in an atom, electrons prefer to go into the slots with the lowest quantum numbers first, as these have the lowest energy, and nature tends to prefer the lowest energy configuration whenever possible. According to the Pauli principle, for each set of n, l, l quantum numbers, two electrons are allowed, since one can have spin +1/2 and the other can have spin 1/2. These arrangements of quantum numbers are called shells, with each value of the principal quantum number n defining a new shell. A listing of the quantum numbers for the first four shells is shown in Figure??. 1 Although defined for an atom, it applies equally well to other systems, such as nuclei which we will learn about next.

5 phys 202 notes, week 13/14 5 As the atomic number increases, so does the number of electrons orbiting the nucleus. These electrons fill up the shells as outlined in Figure??. The chemical properties of each atom are defined by the behavior of their outer electrons, i.e. those in the final shell. Inner electrons are effectively shielded from the outside world. This is what leads the the periodic table: similar elements (in the same column) have effectively the same outer-shell configuration, leading to similar chemical behavior. Nuclei We ve talked so far about atomic structure, treating the nucleus, the thing at the center of the atom, mostly as a black box. But the nucleus has structure and properties, as well, which can be understood. Nuclei are made up of protons and neutrons, with the following symbols used to describe proton and neutron numner: Proton number, Z Neutron number, N Mass number, A = Z + N Although they can be uniquely classified by using 2/3 of the above numbers, it s most typical to classify nuclei by Z and A. And since proton number Z also defines the element, we often represent nuclei in terms of their elemental symbol, with extra numbers added to denote the proton an neutron number. For example, for the nucleus with Figure 4: Available quantum orbitals in atoms. Important points Nuclei have less mass than the sum of their parts; this supplies the energy that binds them together. Some (most) nuclei have binding energies which allow for radioactive decay. Important equations Energy-mass equivanence Radius E = mc 2 R = R 0 A 1/3, R 0 = m Mass defect M = Zm p + Nm n M.

6 phys 202 notes, week 13/14 6 A = 9 and Z = 4, we are dealing with beryllium, chemical symbol Be. Hence we write this as 9 4 Be. This general format, Z A El is followed for any nucleus we want to represent. One important property of the nucleus is its radius, which is approximately given by the formula 2 R = R 0 A 1/3, (5) where R 0 = m = 1.2 fm. This number is significantly smaller than the atomic radius, by about five orders of magnitude. Hence most of the atom, and by extension, all matter, is by far empty space. Mass is also an important property of the nucleus. Owing to its small size, the nuclear mass is often discussed in terms of either the unified mass unit, 1 u = kg. (6) Nuclear masses are also often discussed in terms of energy-mass equivalent. What does this mean? It basically comes from Einstein s famous equation E = mc 2. This says that energy and mass are essentially the same thing, just related by a constant c 2. Hence we can discuss the mass of a nucleus in terms of the mega-electron volt, 1 MeV = 10 6 ev. To relate MeV to the unified mass unit, use the following: 1 u = MeV. Why is the mass of the nucleus such an interesting thing? You might just think it should be sum of it s constituent parts, 2 Though there are some massive deviations from this in certain cases; for example 11 3 Li has roughly the same radius as Pb! You can ignore these for this course, though. M = Zm p + Nm n. (7) However, this is not correct: the total mass of the nucleus is always less than that given by Eq. (??). We can introduce a concept called the mass defect, M to represent this, M = Zm p + Nm n M. (8) A related concept is the binding energy, E b which is the energy equivalent of the mass defect, E b = ( M)c 2. (9) This is the same thing as the amount of energy required to break apart the nucleus into its constituent particles. For example, the deuteron, 2 1H, has a mass of u; hence its mass defect is M = u u u (10) = u, (11)

7 phys 202 notes, week 13/14 7 and the binding energy is ( u) (931.5 MeV/u) = 2.23 MeV. (12) So if you wanted to break a deuteron apart into a proton and a neutron, you d have to supply it with at least 2.23 MeV of energy. Nuclear Forces and Binding Energy. As mentioned, nuclei consist of protons and neutrons packed together at very close radius. But recall that protons are positively charged and repel each other, especially when very close together. So why doesn t the nucleus fly apart? It turns out there is another force in play, the strong nuclear force, which only acts at very close distances and it always attractive between protons and neutrons. 3 This force is able to overcome the electrical repulsion of the protons and hold the nucleus together. The strong force has a number of unique properties, summarized on page 965 of your textbook. 3 Note that it s attractive for all possible pairs, i.e. p-p, n-n, and p-n. Figure 5: Nuclear binding energies. Depending on the total number of protons and neutrons and the way in which the strong and electrical forces work to bind the nucleus, the total binding energy will differ for different nuclei. Figure?? shows a plot of binding energy across the range of nuclear masses. Another effect of the nuclear force is that not all nuclei are created equal. Some have higher binding energies than others, which causes them to be particularly stable, i.e. to be the nuclei that you see around you in the world. The ratio of neutron:proton number for stable nuclei changes as the mass A increases. This is illustrated on something

8 phys 202 notes, week 13/14 8 called a Segré chart, shown in Figure??. As you can see, stable nuclei tend to have relatively higher neutron numbers, i.e. N/Z increases as Z increases. For the lightest nuclei N = Z (or N/Z = 1) forms the stable configurations, but by the heaviest the ratio is more like N/Z = 1.5. Figure 6: A segre chart showing changing N/Z ratio for stable nuclei. Radioactivity The differing binding energies mentioned in the last chapter leads to the phenomena of radioactivity, wherein nuclei can release energetic particles. The reason they do this is to seek higher binding energy: effectively nuclei can spontaneously turn themselves into an-

9 phys 202 notes, week 13/14 9 other species in order to increase their binding energy. The two most common decay modes (types of ground-state radioactivity) are alpha (α) and beta (beta) decay. Alpha decay Alpha decay occurs when the nucleus spontaneously emits an α particle, which is just another name for a 4 2He nucleus, consisting of two protons and two neutrons. The net result is that the nucleus loses two protons and two neutrons. For example, the nucleus Ra decays by alpha emission, becoming Rn via the following process (also shown in Figure??), Ra Rn +4 2 He. Alpha decay always occurs such that the final system gains energy; this energy gain is a result of the final nucleus having larger binding energy than the initial one. This extra energy is carried off in the form of kinetic energy of the α particle. Since its energy is set by the binding energy differences, for any given alpha-emitting nucleus, the α particles will always exit with the same kinetic energy (or speed). Figure 7: Alpha decay of Ra. Beta decay Beta decay occurs when the nucleus emits a high-energy electron, which can also be called a beta-minus particle (β ). Effectively what this does is turn a neutron into a proton. The total mass remains the same, but we swap a neutron for a proton in the nucleus. For example, 19 8 O emits a β particle to become 19 9 F. The process for this is as follows: 19 8 O 19 9 F + β + ν e. You probably noticed that there s an extra, unexpected, particle in the equation above. This particle is called the anti-neutrino, and it s always emitted along with the β particle during beta-minus decay. This was somewhat of a surprise in the early days of studying radioactivity, 4 but has now been well established theoretically. Similar to β-minus decay is another decay process called beta-plus (β + ) decay. In this process, the nucleus releases something called a beta-plus particle, or an anti-electron. This particle is exactly the same as an electron in every way, except is has charge +e rather than e. In the original nucleus, this effectively turns a proton into a neutron. Additionally, a neutrino, ν e is also released. This fills the same role as the anti-neutrino in beta plus decay. 5 An example of β + decay would be 15 8 O decaying into 15 7 N: 15 8 O 15 7 N + β+ + ν e. 4 One famous physicist, Wolfgang Pauli, is rumored to have said, Who ordered that? when he learned about the antineutrino. 5 Some theories claim that the antineutrino and neutrino are exactly the same particle. This is a subject of massive experimental research efforts, which usually involve looking for very rare decay events in old mine shafts located miles underground.

10 phys 202 notes, week 13/14 10 Like alpha decay, the total energy released in beta decay is determined by the binding energy differences between the initial and final nuclei. However, unlike alpha decay, this energy is shared between the beta particle and (anti-)neutrino: both exit the nucleus with some kinetic energy (speed). As a result, the kinetic energy of the beta particle can take on a range of values, and is not the same every time a decay occurs. Gamma decay There is a third type of radioactive decay called gamma decay (γ-decay). Unlike the other two, this occurs when the nucleus is in an excited state, which means that is has somehow been given extra energy. This extra energy is eventually released via emission of a γ-ray, which is a very high energy (short wavelength) photon. This process is almost exactly the same thing as light emission from atoms, except instead of the electron being promoted to an energy level, the protons/neutrons making up the nucleus are re-arranged. In both cases, the system de-excited by emitting a photon; in the case of atoms, this photon is in or near the visible spectrum, while in nuclei the energies involved are much higher (kev MeV), and the released photon is in the γ-ray regime. Decay rates Radioactive decay in nuclei is a spontaneous, statistical process. What this means is that if we have some sample of a radioactive nucleus, we can talk about the number of nucleons N in the sample that decay in some period of time t. This is given by the equation, N t = λn, (13) where λ is the decay constant for the nucleus. This can also be expressed in terms of the half life, T 1/2, or the amount of time it takes for half of a given sample to decay, T 1/2 = ln 2 λ = λ. (14) Equation (??) can be rearranged to solve for the number of nuclei N remaining in the sample after time t, N = N 0 e λt, (15) where N 0 is the initial number of nuclei in the sample. A graph of N vs. time is shown in Figure??. Figure 8: Example plot showning number of nuclei in a sample N vs. time.

11 phys 202 notes, week 13/14 11 The term activity refers to the number of decays per second that a sample undergoes, i.e. N/ t. The SI unit of activity is the becquerel, or Bq, 1 Bq = 1 decay/second. Another unit is commonly employed, the Curie (Ci), which is equal to Bq. 6 Nuclear Reactions 6 This is approximately the activity of one gram of Radium, which in the early days of studying radioactivity made more sense than the becquerel. So far all the processes we ve discussed pertaining to nuclei, such as radioactivity, have been natural and spontaneous. In other words, they occur with out any human intervention; all we can do is sit back and observe. However, there s also the possibility to induce nuclear reactions by smashing two nuclei together with some amount of kinetic energy. In the early days, nuclear reactions typically involved bombarding some sample with alpha particles from a radioactive sample. The first nuclear reaction study was undertaken by Rutherford, who bombarded 14 7 N nuclei with alpha particles (4 2H nuclei). In doing this, ha observed the following process, 4 2He N 17 8 O +1 1 H. What s going on is that the 14 7 N and 4 2 He merge together, briefly form- H. Nowadays, ing a compound system that then decays into 17 8 O and 1 1 nuclear reactions are still heavily studied, but most research replaces the alpha decaying source with a nucleus accelerated by some type of particle accelerator, such as a cyclotron. Nuclear reactions always obey conservation principles for charge, momentum, angular momentum, and energy. For example, in the reaction above, the total number of protons (9) and neutrons (9) in the system doesn t change. Reaction Energy Because they re changing nuclear species, the total mass (or energy equivalent) on the left and right sides of the reaction will in general be different. This difference (expressed as an energy) is referred to as the Q-value of the reaction. For the reaction A + B C + D, the Q-value is Q = (M A + M B M C M D ) c 2. (16) Note that in this equation, the masses M A, M B, M C, M D are the neutral atom masses, i.e. the mass calculated with the contribution of atomic electrons included. Q-values can either be positive or negative. When Q is positive, the reaction is exoergic (or more commonly, exothermic), while if Q

12 phys 202 notes, week 13/14 12 is negative the reaction is endoergic (endothermic). In the case of endothermic reactions, the reaction cannot occur at all unless the initial kinetic energy (caused by accelerating one or both of the involved nuclei) is greater than or equal to Q. For this reason, Q is sometimes called the threshold energy of the reaction. Fission and Fusion Two categories of nuclear reaction are very important for practical (energy) applications. The first in nuclear fission. This occurs when some heavy nucleus, such as U, breaks apart into two roughly equal-mass nuclei. This process can release very large amounts of energy, as the Q-value makes it a highly exoergic reaction. Typically, fission is induced by a neutron, and there are some leftover neutrons at the end of the reaction. For example, the total process for U breaking up into, say, Ba plus 92Kr is U +1 0 n Ba Kr n (where the notation 3 10 n means three separate neutrons). Fission has been employed practically by creating what is called a chain reaction. The basic idea is to make use of the extra neutrons emitted in a reaction like the one shown above. These neutrons can go on to interact with other U,7 which themselves fission, releasing energy along with more neutrons which fission other nuclei and so on. Left uncontrolled, this process results in an enormous release of energy in a very small amount of time, i.e. a nuclear bomb. 8 Fortunately, fission chain reactions can also be controlled by moderating the neutrons with special materials. This essentially assures that the chain reaction can t get out of control, leading to a stable slow release of energy. This is the basis of a conventional (fission) nuclear power plant, which are used around the world to generate electricity. Another important reaction is fusion, where light nuclei combine to create a heavier one. For example, tritium ( 3 1H) and deuterium ( 2 1 H) can combine (fuse) to form an alpha particle (4 2He) plus a neutron, 7 Or whatever nucleus is being used as the fuel for the chain reaction; for example, Pu is another nucleus that can sustain a chain reaction. 8 Which is unfortunately often called an atomic bomb a largely incorrect term, especially considering that conventional explosives, such as dynamite are far more atomic in nature than are nuclear weapons. 3 1 H +2 1 H 4 2 He +1 0 n (17) Again, this process is highly exoergic, with a large positive Q-value. For example, in the reaction above, the Q-value is 17.6 MeV. Fusion reactions have enormous potential for peaceful energy generation. They require only hydrogen (extractable from seawater) for fuel and produce very little of the dangerous radioactive contamination that results from fission power plants. However, despite 60+ years of effort, no one has yet been able to harness them for energy. The difficulty lies in the fact that despite the reaction being exoergic,

13 the coulomb repulsion between the initial positively-charged hydrogen nuclei prevents them from ever coming close enough for the reaction to take place. This can be overcome by accelerating one (or both) of the nuclei to a kinetic energy that s greater than the coulomb repulsion. However, the energy required to do this is more than that released by the reaction. Current efforts at using fusion for power generation rely on confining the nuclei either with very powerful lasers or with a magnetic field. This results in conditions that allow the nuclei to become close enough for the fusion to occur. A natural example of a fusion reactor is stars, such as our sun. In this case, the massive gravitational force due to the star itself packs the nuclei close enough together that they can overcome the Coulomb repulsion. phys 202 notes, week 13/14 13

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: Neutrons and protons are collectively

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 18 Modern Physics Nuclear Physics Nuclear properties Binding energy Radioactivity The Decay Process Natural Radioactivity Last lecture: 1. Quantum physics Electron Clouds

More information

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element.

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element. I. NUCLEAR PHYSICS I.1 Atomic Nucleus Very briefly, an atom is formed by a nucleus made up of nucleons (neutrons and protons) and electrons in external orbits. The number of electrons and protons is equal

More information

ABC Math Student Copy

ABC Math Student Copy Page 1 of 17 Physics Week 16(Sem. ) Name The Nuclear Chapter Summary Nuclear Structure Atoms consist of electrons in orbit about a central nucleus. The electron orbits are quantum mechanical in nature.

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building. Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can

More information

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics Subatomic Physics Section 1 Preview Section 1 The Nucleus Section 2 Nuclear Decay Section 3 Nuclear Reactions Section 4 Particle Physics Subatomic Physics Section 1 TEKS The student is expected to: 5A

More information

NUCLEI. Atomic mass unit

NUCLEI. Atomic mass unit 13 NUCLEI Atomic mass unit It is a unit used to express the mass of atoms and particles inside it. One atomic mass unit is the mass of atom. 1u = 1.660539 10. Chadwick discovered neutron. The sum of number

More information

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics SPH4UI Physics Modern understanding: the ``onion picture Nuclear Binding, Radioactivity Nucleus Protons tom and neutrons Let s see what s inside! 3 Nice Try Introduction: Development of Nuclear Physics

More information

SECTION A Quantum Physics and Atom Models

SECTION A Quantum Physics and Atom Models AP Physics Multiple Choice Practice Modern Physics SECTION A Quantum Physics and Atom Models 1. Light of a single frequency falls on a photoelectric material but no electrons are emitted. Electrons may

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

THE NUCLEUS OF AN ATOM

THE NUCLEUS OF AN ATOM VISUAL PHYSICS ONLINE THE NUCLEUS OF AN ATOM Models of the atom positive charge uniformly distributed over a sphere J. J. Thomson model of the atom (1907) ~2x10-10 m plum-pudding model: positive charge

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Atoms and Nuclei 1. The radioactivity of a sample is X at a time t 1 and Y at a time t 2. If the mean life time of the specimen isτ, the number of atoms that have disintegrated in the time interval (t

More information

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS VERY SHORT ANSWER QUESTIONS Q-1. Which of the two is bigger 1 kwh or 1 MeV? Q-2. What should be the approximate minimum energy of a gamma ray photon for pair

More information

Physics 142 Modern Physics 2 Page 1. Nuclear Physics

Physics 142 Modern Physics 2 Page 1. Nuclear Physics Physics 142 Modern Physics 2 Page 1 Nuclear Physics The Creation of the Universe was made possible by a grant from Texas Instruments. Credit on a PBS Program Overview: the elements are not elementary The

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Nuclear Physics Part 1: Nuclear Structure & Reactions

Nuclear Physics Part 1: Nuclear Structure & Reactions Nuclear Physics Part 1: Nuclear Structure & Reactions Last modified: 25/01/2018 Links The Atomic Nucleus Nucleons Strong Nuclear Force Nuclei Are Quantum Systems Atomic Number & Atomic Mass Number Nuclides

More information

Nicholas J. Giordano. Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 30. Nuclear Physics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 30 Nuclear Physics Marilyn Akins, PhD Broome Community College Atomic Nuclei Rutherford s discovery of the atomic nucleus caused scientists

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Nuclear Powe. Bronze Buddha at Hiroshima

Nuclear Powe. Bronze Buddha at Hiroshima Nuclear Powe Bronze Buddha at Hiroshima Nuclear Weapons Nuclear Power Is it Green & Safe? Nuclear Waste 250,000 tons of Spent Fuel 10,000 tons made per year Health Effects of Ionizing Radiation Radiocarbon

More information

Forces and Nuclear Processes

Forces and Nuclear Processes Forces and Nuclear Processes To understand how stars generate the enormous amounts of light they produce will require us to delve into a wee bit of physics. First we will examine the forces that act at

More information

Chapter 29. Nuclear Physics

Chapter 29. Nuclear Physics Chapter 29 Nuclear Physics Ernest Rutherford 1871 1937 Discovery that atoms could be broken apart Studied radioactivity Nobel prize in 1908 Some Properties of Nuclei All nuclei are composed of protons

More information

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents.

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents. Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Table of Contents Slide 3 / 87 Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

Nuclear Physics

Nuclear Physics Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Slide 3 / 87 Table of Contents Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity Physics 1161: Lecture 25 Nuclear Binding, Radioactivity Sections 32-1 32-9 Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents.

Nuclear Physics. Slide 1 / 87. Slide 2 / 87. Slide 3 / 87. Table of Contents. Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Table of Contents Slide 3 / 87 Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

Nuclear Physics. Nuclear Structure. Slide 1 / 87 Slide 2 / 87. Slide 4 / 87. Slide 3 / 87. Slide 6 / 87. Slide 5 / 87. Table of Contents.

Nuclear Physics. Nuclear Structure. Slide 1 / 87 Slide 2 / 87. Slide 4 / 87. Slide 3 / 87. Slide 6 / 87. Slide 5 / 87. Table of Contents. Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Slide 3 / 87 Slide 4 / 87 Table of Contents Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Nuclear Physics

Nuclear Physics Slide 1 / 87 Slide 2 / 87 Nuclear Physics www.njctl.org Slide 3 / 87 Table of Contents Click on the topic to go to that section Nuclear Structure Binding Energy and Mass Defect Radioactivity Nuclear Half-life

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

Chapter 4. Atomic Structure

Chapter 4. Atomic Structure Chapter 4 Atomic Structure Warm Up We have not discussed this material, what do you know already?? What is an atom? What are electron, neutrons, and protons? Draw a picture of an atom from what you know

More information

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes AstroPhysics Notes Nuclear Physics Dr. Bill Pezzaglia Nuclear Physics A. Nuclear Structure B. Nuclear Decay C. Nuclear Reactions Updated: 0Feb07 Rough draft A. Nuclear Structure. Parts of Atom. Parts of

More information

Chapter 42. Nuclear Physics

Chapter 42. Nuclear Physics Chapter 42 Nuclear Physics In the previous chapters we have looked at the quantum behavior of electrons in various potentials (quantum wells, atoms, etc) but have neglected what happens at the center of

More information

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects Exam 3 Hour Exam 3: Wednesday, November 29th In-class, Quantum Physics and Nuclear Physics Twenty multiple-choice questions Will cover:chapters 13, 14, 15 and 16 Lecture material You should bring 1 page

More information

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability Atomic and Nuclear Structure George Starkschall, Ph.D. Lecture Objectives Describe the atom using the Bohr model Identify the various electronic shells and their quantum numbers Recall the relationship

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

= : K A

= : K A Atoms and Nuclei. State two limitations of JJ Thomson s model of atom. 2. Write the SI unit for activity of a radioactive substance. 3. What observations led JJ Thomson to conclusion that all atoms have

More information

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A.

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A. AstroPhysics Notes Tom Lehrer: Elements Dr. Bill Pezzaglia Nuclear Physics Updated: 0Feb Rough draft Nuclear Physics A. Nuclear Structure A. Nuclear Structure B. Nuclear Decay C. Nuclear Reactions. Parts

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Bohr s Correspondence Principle Bohr s Correspondence Principle states that quantum mechanics is in agreement with classical physics when the energy differences between quantized

More information

Chapter 22 - Nuclear Chemistry

Chapter 22 - Nuclear Chemistry Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.

More information

Nuclear Physics. Chapter 43. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Nuclear Physics. Chapter 43. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 43 Nuclear Physics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 43 To understand some key properties

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

Atomic and Nuclear Radii

Atomic and Nuclear Radii Atomic and Nuclear Radii By first approx. the nucleus can be considered a sphere with radius given by R 1.25 x A (1/3) {fm} A atomic mass number, fm 10-15 m Since the volume of a sphere is proportional

More information

Physics 11. Unit 10 Nuclear Physics

Physics 11. Unit 10 Nuclear Physics Physics 11 Unit 10 Nuclear Physics 1. Review of atomic structure From chemistry we have learned that all matters in this world are made of tiny particles called atoms. Atoms are made of three smaller particles:

More information

Introduction to Nuclear Physics and Nuclear Decay

Introduction to Nuclear Physics and Nuclear Decay Introduction to Nuclear Physics and Nuclear Decay Larry MacDonald macdon@uw.edu Nuclear Medicine Basic Science Lectures September 6, 2011 toms Nucleus: ~10-14 m diameter ~10 17 kg/m 3 Electron clouds:

More information

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion

Lecture 14, 8/9/2017. Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Lecture 14, 8/9/2017 Nuclear Reactions and the Transmutation of Elements Nuclear Fission; Nuclear Reactors Nuclear Fusion Nuclear Reactions and the Transmutation of Elements A nuclear reaction takes place

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 7-2 NUCLEAR REACTIONS Review Videos-Radioactivity2 Review Videos - Strong and Weak Nuclear Forces Essential Idea: Energy can be released

More information

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich LECTURE 23 NUCLEI Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 32.1 to 32.2 Nucleus Radioactivity Mass and energy 3 The famous equation by Einstein tells us that mass is a form of energy. E =

More information

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u 5/5 A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u The number of neutrons in the nucleus is given by the symbol N. Clearly, N = A Z. Isotope:

More information

PHYSICS 102N Spring Week 12 Quantum Mechanics and Atoms

PHYSICS 102N Spring Week 12 Quantum Mechanics and Atoms PHYSICS 102N Spring 2009 Week 12 Quantum Mechanics and Atoms Quantum Mechanics 1. All objects can be represented by waves describing their propagation through space 2. The wave length is λ=h/p and frequency

More information

Physics 1C. Lecture 29A. "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955

Physics 1C. Lecture 29A. Nuclear powered vacuum cleaners will probably be a reality within 10 years.  --Alex Lewyt, 1955 Physics 1C Lecture 29A "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955 The Nucleus All nuclei are composed of protons and neutrons (they can also be called

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry Chemistry: The Central Science Chapter 21: Nuclear Chemistry A nuclear reaction involves changes in the nucleus of an atom Nuclear chemistry the study of nuclear reactions, with an emphasis in their uses

More information

Atomic Theory. Contribution to Modern Atomic Theory

Atomic Theory. Contribution to Modern Atomic Theory Alief High School Chemistry STAAR Review Reporting Category 2: Atomic Structure and Nuclear Chemistry C.6.A Understand the experimental design and conclusions used in the development of modern atomic theory,

More information

Page 1. ConcepTest Clicker Questions Chapter 32. Physics, 4 th Edition James S. Walker

Page 1. ConcepTest Clicker Questions Chapter 32. Physics, 4 th Edition James S. Walker ConcepTest Clicker Questions Chapter 32 Physics, 4 th Edition James S. Walker There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus a) Coulomb repulsive

More information

Phys 102 Lecture 27 The strong & weak nuclear forces

Phys 102 Lecture 27 The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

CHAPTER 12 The Atomic Nucleus

CHAPTER 12 The Atomic Nucleus CHAPTER 12 The Atomic Nucleus 12.1 Discovery of the Neutron 12.2 Nuclear Properties 12.3 The Deuteron 12.4 Nuclear Forces 12.5 Nuclear Stability 12.6 Radioactive Decay 12.7 Alpha, Beta, and Gamma Decay

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

Chapter 28 Lecture. Nuclear Physics Pearson Education, Inc.

Chapter 28 Lecture. Nuclear Physics Pearson Education, Inc. Chapter 28 Lecture Nuclear Physics Nuclear Physics How are new elements created? What are the natural sources of ionizing radiation? How does carbon dating work? Be sure you know how to: Use the right-hand

More information

NUCLEI 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes.

NUCLEI 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes. UCLEI Important Points: 1. The nuclei having the same atomic number (Z), but different mass numbers (A) are called isotopes. Ex: 1 H, 2 H, 3 1 1 1H are the isotopes of hydrogen atom. 2. The nuclei having

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Atoms have two separate parts. The nucleus and the electron cloud.

Atoms have two separate parts. The nucleus and the electron cloud. Name Ch. 5 - Atomic Structure Pre-AP Modern Atomic Theory All atoms are made of three subatomic (smaller than the atom) particles: the protons, the electrons and the neutrons. (P.E.N. s) There are particles

More information

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law.

Matter and Energy. Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. Fission & Fusion Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to understand

More information

Recap I Lecture 41 Matthias Liepe, 2012

Recap I Lecture 41 Matthias Liepe, 2012 Recap I Lecture 41 Matthias Liepe, 01 Recap II Nuclear Physics The nucleus Radioactive decay Fission Fusion Particle Physics: What is the Higgs? Today: Nuclear Physics: The Nucleus Positive charge and

More information

Nuclear Physics Part 2: Radioactive Decay

Nuclear Physics Part 2: Radioactive Decay Nuclear Physics Part 2: Radioactive Decay Last modified: 17/10/2017 Part A: Decay Reactions What is a Decay? Alpha Decay Definition Q-value Example Not Every Alpha Decay is Possible Beta Decay β rays are

More information

Name Chemistry-PAP Per. Notes: Atomic Structure

Name Chemistry-PAP Per. Notes: Atomic Structure Name Chemistry-PAP Per. I. Historical Development of the Atomic Model Ancient Greek Model Notes: Atomic Structure Democritus (460-370 BC) was an ancient Greek philosopher credited with the first particle

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

A. Incorrect! Do not confuse Nucleus, Neutron and Nucleon. B. Incorrect! Nucleon is the name given to the two particles that make up the nucleus.

A. Incorrect! Do not confuse Nucleus, Neutron and Nucleon. B. Incorrect! Nucleon is the name given to the two particles that make up the nucleus. AP Physics - Problem Drill 24: Nuclear Physics 1. Identify what is being described in each of these statements. Question 01 (1) It is held together by the extremely short range Strong force. (2) The magnitude

More information

Chapter 16: Ionizing Radiation

Chapter 16: Ionizing Radiation Chapter 6: Ionizing Radiation Goals of Period 6 Section 6.: To discuss unstable nuclei and their detection Section 6.2: To describe the sources of ionizing radiation Section 6.3: To introduce three types

More information

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry

Radioactivity & Nuclear. Chemistry. Mr. Matthew Totaro Legacy High School. Chemistry Radioactivity & Nuclear Chemistry Mr. Matthew Totaro Legacy High School Chemistry The Discovery of Radioactivity Antoine-Henri Becquerel designed an experiment to determine if phosphorescent minerals also

More information

Introduction to Nuclear Engineering. Ahmad Al Khatibeh

Introduction to Nuclear Engineering. Ahmad Al Khatibeh Introduction to Nuclear Engineering Ahmad Al Khatibeh CONTENTS INTRODUCTION (Revision) RADIOACTIVITY Radioactive Decay Rates Units of Measurement for Radioactivity Variation of Radioactivity Over Time.

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

We completed our discussion of nuclear modeling with a discussion of the liquid drop and shell models We began discussing radioactivity

We completed our discussion of nuclear modeling with a discussion of the liquid drop and shell models We began discussing radioactivity Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Nuclear Physics: Fission and Fusion (11.7) SteveSekula, 19 April 010 (created 1 April 010) Review no tags We completed our

More information

UNIT VIII ATOMS AND NUCLEI

UNIT VIII ATOMS AND NUCLEI UNIT VIII ATOMS AND NUCLEI Weightage Marks : 06 Alpha-particles scattering experiment, Rutherford s model of atom, Bohr Model, energy levels, Hydrogen spectrum. Composition and size of Nucleus, atomic

More information

Lecture PowerPoints. Chapter 31 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 31 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 31 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Particles involved proton neutron electron positron gamma ray 1

Particles involved proton neutron electron positron gamma ray 1 TOPIC : Nuclear and radiation chemistry Nuclide - an atom with a particular mass number and atomic number Isotopes - nuclides with the same atomic number (Z) but different mass numbers (A) Notation A Element

More information

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da]

ZX or X-A where X is chemical symbol of element. common unit: [unified mass unit = u] also known as [atomic mass unit = amu] or [Dalton = Da] 1 Part 5: Nuclear Physics 5.1. The Nucleus = atomic number = number of protons N = neutron number = number of neutrons = mass number = + N Representations: X or X- where X is chemical symbol of element

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Fission & Fusion Movie

Fission & Fusion Movie Fission & Fusion Movie Matter and Energy Previous studies have taught us that matter and energy cannot be created nor destroyed We balance equations to obey this law. 2 H 2 O 2 H 2 + O 2 We now need to

More information

Fission and Fusion Book pg cgrahamphysics.com 2016

Fission and Fusion Book pg cgrahamphysics.com 2016 Fission and Fusion Book pg 286-287 cgrahamphysics.com 2016 Review BE is the energy that holds a nucleus together. This is equal to the mass defect of the nucleus. Also called separation energy. The energy

More information

Nuclear Properties. Thornton and Rex, Ch. 12

Nuclear Properties. Thornton and Rex, Ch. 12 Nuclear Properties Thornton and Rex, Ch. 12 A pre-history 1896 Radioactivity discovered - Becquerel a rays + (Helium) b rays - (electrons) g rays 0 (EM waves) 1902 Transmutation observed - Rutherford and

More information

THE NUCLEUS: A CHEMIST S VIEW Chapter 20

THE NUCLEUS: A CHEMIST S VIEW Chapter 20 THE NUCLEUS: A CHEMIST S VIEW Chapter 20 "For a long time I have considered even the craziest ideas about [the] atom[ic] nucleus... and suddenly discovered the truth." [shell model of the nucleus]. Maria

More information

Chapter 25: Radioactivity, Nuclear Processes, and Applications. What do we know about the nucleus? James Chadwick and the discovery of the neutron

Chapter 25: Radioactivity, Nuclear Processes, and Applications. What do we know about the nucleus? James Chadwick and the discovery of the neutron Chapter 25: Radioactivity, Nuclear Processes, and Applications What do we know about the nucleus? Rutherford discovered Contains positively charged protons. Held together by the Nuclear Strong Force. The

More information

CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum

CONCEPT MAP ATOMS. Atoms. 1.Thomson model 2.Rutherford model 3.Bohr model. 6. Hydrogen spectrum CONCEPT MAP ATOMS Atoms 1.Thomson model 2.Rutherford model 3.Bohr model 4.Emission line spectra 2a. Alpha scattering experiment 3a. Bohr s postulates 6. Hydrogen spectrum 8. De Broglie s explanation 5.Absorption

More information

Atomic & Nuclear Physics

Atomic & Nuclear Physics Atomic & Nuclear Physics Life and Atoms Every time you breathe you are taking in atoms. Oxygen atoms to be exact. These atoms react with the blood and are carried to every cell in your body for various

More information