ENGINEERING MATHEMATICS 4 (BDA34003)

Size: px
Start display at page:

Download "ENGINEERING MATHEMATICS 4 (BDA34003)"

Transcription

1 ENGINEERING MATHEMATICS 4 (BDA34003) Lecture Module 6: Numerical Integration Waluyo Adi Siswanto Universiti Tun Hussein Onn Malaysia This work is licensed under a Creative Commons Attribution 3.0 License.

2 Topics Rectangular rule Trapezoidal rule Simpson's rule Simpson 1/3 Simpson 3/8 Gauss Quadrature 2-point 3-point Lecture Module 6 BDA

3 Learning Outcomes Students have the knowledge of effective numerical integration in engineering Students will be able to use various methods of numerical integrations to calculate complex problems with high accuracy without involving mathematical exact solution Students will be able to decide the appropriate numerical method to solve particular engineering problem Lecture Module 6 BDA

4 y y(x) You want to calculate the yellow area, under the curve y(x) Then you can calculate the area x n Area= x 1 y(x)dx x 1 x n x Lecture Module 6 BDA

5 y y 2 y n 1 y(x) If the function is difficult You will find it difficult to integrate. Then you can predict by approximation Area=Area 1+ Area 2+ Area 3 Area=h y 1 + h y 2 + h y n 1 y 1 Or you can write Area=h( y 1 + y 2 + y n 1 ) x 1 x n Of course not accurate. If you use smaller division? x Lecture Module 6 BDA

6 Rectangular rule y n 1 y 2 y y(x) If you want to divide by N division h= x n x 1 N Number of data n = N + 1 y 1 x n x 1 y(x)dx = h( y 1 + y y n 1) h h h x x 1 x n Lecture Module 6 BDA

7 Trapezoidal rule y n y n 1 y 3 y 2 y y(x) If you want to divide by N division h= x n x 1 N Now the area is not rectangular but trapezoidal y 1 x n y(x)dx = h x 1 2 ( y + y )+ h ( y + y )+ + h ( y + y ) n 1 n h h h x n y(x)dx = h x 1 2 ( y + 2 y y + y ) 1 2 n 1 n x x 1 x n Lecture Module 6 BDA

8 Trapezoidal m function (trapezoidal.m): function I = trapezoidal(f_str, a, b, n) %TRAPEZOIDAL Trapezoidal Rule integration. % I = TRAPEZOIDAL(F_STR, A, B, N) returns the Trapezoidal Rule approximation % for the integral of f(x) from x=a to x=b, using N divisions (subintervals), where % F_STR is the string representation of f. I=0; g = inline(f_str); h = (b-a)/n; I = I + g(a); for ii = (a+h):h:(b-h) I = I + 2*g(ii); end I = I + g(b); I = I*h/2; Lecture Module 6 BDA

9 Simpson's rule Simpson 1/3 x n y( x)dx = h x 1 3 ( y 1+ 4 y y y y y n 1+ y n ) The number of division must be multiplication of 2 Simpson 3/8 x n x 1 y( x)dx = 3 h 8 ( y 1+ 3( y 2 + y 3 + y 5 + y 6 + )+ 2( y 4 + y 7 + )+ y n ) The number of division must be multiplication of 3 Lecture Module 6 BDA

10 Simpson 1/3 m function (simpson13.m): function I = simpson13(f_str, a, b, n) %SIMPRULE Simpson's rule integration. % I = SIMPRULE(F_STR, A, B, N) returns the Simpson's rule approximation % for the integral of f(x) from x=a to x=b, using N subintervals, where % F_STR is the string representation of f. % An error is generated if N is not a positive, even integer. I=0; g = inline(f_str); h = (b-a)/n; if((n > 0) && (rem(n,2) == 0)) I = I + g(a); for ii = (a+h):2*h:(b-h) I = I + 4*g(ii); end for kk = (a+2*h):2*h:(b-2*h) I = I + 2*g(kk); end I = I + g(b); I = I*h/3; else disp('incorrect Value for N') end Lecture Module 6 BDA

11 Simpson 3/8 m function (simpson38.m): function int=simpson38(f_str,x1,x2,n) h=(x2-x1)/n; x(1)=x1; f=inline(f_str); if((n > 0) && (rem(n,3) == 0)) sum=f(x1); for i=2:n x(i)=x(i-1)+h; end for j=2:3:n sum=sum+3*f(x(j)); end for k=3:3:n sum=sum+3*f(x(k)); end for l=4:3:n sum=sum+2*f(x(l)); end sum=sum+f(x2); int=sum*3*h/8; else disp('incorrect Value for N') end Lecture Module 6 BDA

12 Example 6-1 Find the approximate value of 4 1 x x+ 1 dx By using : a) Exact integration, use SMath b) Rectangular rule, 12 division c) Trapezoidal rule, 12 division d) Simpson 1/3, 12 division e) Simpson 3/8, 12 division Lecture Module 6 BDA

13 Exact integration in SMath Rectangular rule N = 12 h = 0.25 No data x x/sqrt(x+1) Result=0.25( )= Lecture Module 6 BDA

14 Trapezoidal rule N = 12 h = 0.25 No data x x/sqrt(x+1) In FreeMat: Result= ( ( ))= Lecture Module 6 BDA

15 Simpson 1/3 rule N = 12 h = 0.25 No data x x/sqrt(x+1) In FreeMat : Result= ( ( )+2( ))= Lecture Module 6 BDA

16 Simpson 3/8 rule N = 12 h = 0.25 No data x x/sqrt(x+1) In FreeMat : Result= (3) ( ( )+ 2( ))= Lecture Module 6 BDA

17 Example 6-2 A racing car velocity record from start to 12 seconds is shown below. You have to calculate the distance of the car from its start position in 12 seconds. The data is taken every 1 second. Use Simpson's rule 1/ speed (km/h) time (seconds) Lecture Module 6 BDA

18 N = 12 h= 1/3600 no t v(t) Result= 1 (170+ 4(640)+ 2(545))= km Lecture Module 6 BDA

19 Gauss Quadrature The main idea in Gauss Quadrature is to change the integration limits to natural (dimensionless) coordinate limits from -1 to 1 y y(x) ϕ x 1 ϕ(ξ) x n x Change to natural coordinates 1 1 Lecture Module 6 BDA ξ

20 Gauss Quadrature The main idea in Gauss Quadrature is to change the integration limits to natural (dimensionless) coordinate limits from -1 to 1 y y(x) x ξ = 1 2 [ (1 ξ) x 1 + (1+ ξ) x n ] ϕ(ξ)= y(x ξ ) ϕ x 1 ϕ(ξ) x n x I = x 1 n x 1 ϕ(ξ)d ξ Lecture Module 6 BDA ξ I = x n x 1 2 I ξ

21 1 I ξ = ϕ(ξ)d ξ 1 I ξ = R 1 ϕ(ξ 1 ) + R 2 ϕ(ξ 2 ) + + R n ϕ(ξ n ) ξ j R j is the location of the integration point j relative to the center is the weighting factor for point j relative to the center, and n is the number of points at which ϕ(ξ) is to be calculated Lecture Module 6 BDA

22 Gauss Quadrature Coefficients for Gaussian Quadrature n ±ξ j R j Lecture Module 6 BDA

23 Program to generate abscissa and weight for any number of integration points function [x,a] = GaussNodes(n,tol) % USAGE: [x,a] = GaussNodes(n,tol) % n = order of integration points % tol = error tolerance (default is 1.0e4*eps). format long; if nargin < 2; tol = 1.0e4*eps; end A = zeros(n,1); x = zeros(n,1); nroots = fix(n + 1)/2; for i = 1:nRoots t = cos(pi*(i )/(n + 0.5)); for j = i: 30 p0 = 1.0; p1 = t; for k = 1:n-1 p = ((2*k + 1)*t*p1 - k*p0)/(k + 1); p0 = p1;p1 = p; end dp = n *(p0 - t*p1)/(1 - t^2); dt = -p/dp; t = t + dt; if abs(dt) < tol x(i) = t; x(n-i+1) = -t; A(i) = 2/(1-(t^2))/(dp^2); A(n-i+1) = A(i); break end end if nroots == 1 x(i) =0; end end Lecture Module 6 BDA

24 Program to use Gauss Quadrature, any number of integration points function I = GaussQuadrature(func,a,b,n) % USAGE: I = gaussquad(func,a,b,n) % func = handle of function to be integrated. % for example --> ((sin(x)/x)^2) % a,b = integration limits. % n = order of integration points % I = integral result format long; c1 = (b + a)/2; c2 = (b - a)/2; [x,a] = GaussNodes(n); sum = 0; for i = 1:length(x) y = feval(func,c1 + c2*x(i)); sum = sum + A(i)*y; end I = c2*sum; Lecture Module 6 BDA

25 ϕ ϕ(ξ) Gauss Quadrature 1 point ξ weighting I ξ = R 1 ϕ(ξ 1 ) I ξ = 2.0 ϕ(0) Lecture Module 6 BDA

26 ϕ ϕ(ξ) Gauss Quadrature 2 points ξ weighting I ξ = R 1 ϕ(ξ 1 ) + R 2 ϕ(ξ 2 ) I ξ = 1.0 ϕ( ) ϕ( ) Lecture Module 6 BDA

27 ϕ ϕ(ξ) Gauss Quadrature 3 points ξ weighting I ξ = R 1 ϕ(ξ 1 ) + R 2 ϕ(ξ 2 ) + R 3 ϕ(ξ 3 ) I ξ = ϕ( ) ϕ(0.0) ϕ( ) Lecture Module 6 BDA

28 Example 6-3 Find the approximate value of 4 1 x x+ 1 dx By using : a) Gauss Quadrature 2 points b) Gauss Quadrature 3 points Lecture Module 6 BDA

29 Lecture Module 6 BDA

30 Lecture Module 6 BDA

31 Example 6-4 Find the approximate value of x 2 x dx By using : a) Gauss Quadrature 4 points b) Check your result in Smath (Exact integration) c) Check your result, using Freemat (GaussQuadrature) Lecture Module 6 BDA

32 Lecture Module 6 BDA

33 Lecture Module 6 BDA

34 Student Activity Lecture Module 6 BDA

35 Problem 6-A1 A military radar detected an unidentified flying object and found that the vertical velocity (m/s) can be expressed in a polynomial function, v(t)=20 t 3 +48t t If the flying object starts moving from the ground to the sky, calculate the distance of the flying object when it moves 10 seconds from the ground, by using (a) (b) 3-points Gauss quadrature. Simpson s rule with 10 divisions. (you have to select the appropriate Simpson's method) Lecture Module 6 BDA

36 Problem 6-A2 The velocity of a particle (m/s) at each 4 seconds time t, is measured and the recorded data is shown below Time velocity Time velocity a) Find the distance travel by the particle from 0 to 48 second by using trapezoidal rule b) Use Smath - Generate the polynomial function from 13 data then calculate the distance by Integrating it from 0 to 4 seconds Lecture Module 6 BDA

37 Lecture Module 6 BDA

ENGINEERING MATHEMATICS 4 (BDA 34003)

ENGINEERING MATHEMATICS 4 (BDA 34003) ENGINEERING MATHEMATICS 4 (BDA 34003) Lecture Module 7: Eigenvalue and Eigenvector Waluyo Adi Siswanto Universiti Tun Hussein Onn Malaysia This work is licensed under a Creative Commons Attribution 3.0

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering

More information

Chapter 5: Numerical Integration and Differentiation

Chapter 5: Numerical Integration and Differentiation Chapter 5: Numerical Integration and Differentiation PART I: Numerical Integration Newton-Cotes Integration Formulas The idea of Newton-Cotes formulas is to replace a complicated function or tabulated

More information

In numerical analysis quadrature refers to the computation of definite integrals.

In numerical analysis quadrature refers to the computation of definite integrals. Numerical Quadrature In numerical analysis quadrature refers to the computation of definite integrals. f(x) a x i x i+1 x i+2 b x A traditional way to perform numerical integration is to take a piece of

More information

Section 6.6 Gaussian Quadrature

Section 6.6 Gaussian Quadrature Section 6.6 Gaussian Quadrature Key Terms: Method of undetermined coefficients Nonlinear systems Gaussian quadrature Error Legendre polynomials Inner product Adapted from http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_p/node44.html

More information

Computing Integrals. Lectures INF2320 p. 1/48

Computing Integrals. Lectures INF2320 p. 1/48 Computing Integrals Lectures INF2320 p. 1/48 Lectures INF2320 p. 2/48 Bagels We study a simple example of scientific computing. Assume that you run a Bagel&Juice cafè Each night you have to decide how

More information

Engg. Math. II (Unit-IV) Numerical Analysis

Engg. Math. II (Unit-IV) Numerical Analysis Dr. Satish Shukla of 33 Engg. Math. II (Unit-IV) Numerical Analysis Syllabus. Interpolation and Curve Fitting: Introduction to Interpolation; Calculus of Finite Differences; Finite Difference and Divided

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation

dt 2 The Order of a differential equation is the order of the highest derivative that occurs in the equation. Example The differential equation Lecture 18 : Direction Fields and Euler s Method A Differential Equation is an equation relating an unknown function and one or more of its derivatives. Examples Population growth : dp dp = kp, or = kp

More information

Homework set #7 solutions, Math 128A J. Xia

Homework set #7 solutions, Math 128A J. Xia Homework set #7 solutions, Math 18A J. Xia Sec 4.4: 1a, a, 3a, 7abc, 17 1a. Compute by hand or use a program. Matlab code for the Composite Trapezoidal rule: function integral = cmptrap(a,b,n,f) h = (b-a)/n;

More information

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker.

Integration. Topic: Trapezoidal Rule. Major: General Engineering. Author: Autar Kaw, Charlie Barker. Integration Topic: Trapezoidal Rule Major: General Engineering Author: Autar Kaw, Charlie Barker 1 What is Integration Integration: The process of measuring the area under a function plotted on a graph.

More information

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods.

Multiple Integrals. Chapter 4. Section 7. Department of Mathematics, Kookmin Univerisity. Numerical Methods. 4.7.1 Multiple Integrals Chapter 4 Section 7 4.7.2 Double Integral R f ( x, y) da 4.7.3 Double Integral Apply Simpson s rule twice R [ a, b] [ c, d] a x, x,..., x b, c y, y,..., y d 0 1 n 0 1 h ( b a)

More information

MATH 1014 Tutorial Notes 8

MATH 1014 Tutorial Notes 8 MATH4 Calculus II (8 Spring) Topics covered in tutorial 8:. Numerical integration. Approximation integration What you need to know: Midpoint rule & its error Trapezoid rule & its error Simpson s rule &

More information

Introductory Numerical Analysis

Introductory Numerical Analysis Introductory Numerical Analysis Lecture Notes December 16, 017 Contents 1 Introduction to 1 11 Floating Point Numbers 1 1 Computational Errors 13 Algorithm 3 14 Calculus Review 3 Root Finding 5 1 Bisection

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.5 Average Value of a Function In this section, we will learn about: Applying integration to find out the average value of a function. AVERAGE

More information

5 Numerical Integration & Dierentiation

5 Numerical Integration & Dierentiation 5 Numerical Integration & Dierentiation Department of Mathematics & Statistics ASU Outline of Chapter 5 1 The Trapezoidal and Simpson Rules 2 Error Formulas 3 Gaussian Numerical Integration 4 Numerical

More information

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration.

Numerical integration and differentiation. Unit IV. Numerical Integration and Differentiation. Plan of attack. Numerical integration. Unit IV Numerical Integration and Differentiation Numerical integration and differentiation quadrature classical formulas for equally spaced nodes improper integrals Gaussian quadrature and orthogonal

More information

Numerical Integration and Numerical Differentiation. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Numerical Integration and Numerical Differentiation. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Numerical Integration and Numerical Differentiation Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Integration 2 Mean for discrete and continuous data

More information

Romberg Integration and Gaussian Quadrature

Romberg Integration and Gaussian Quadrature Romberg Integration and Gaussian Quadrature P. Sam Johnson October 17, 014 P. Sam Johnson (NITK) Romberg Integration and Gaussian Quadrature October 17, 014 1 / 19 Overview We discuss two methods for integration.

More information

Math 122 Fall Unit Test 1 Review Problems Set A

Math 122 Fall Unit Test 1 Review Problems Set A Math Fall 8 Unit Test Review Problems Set A We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no guarantee

More information

Topic 6a Numerical Integration

Topic 6a Numerical Integration Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu Topic 6a umerical Integration EE 4386/5301 Computational Methods in EE Outline Introduction Discrete

More information

MA2501 Numerical Methods Spring 2015

MA2501 Numerical Methods Spring 2015 Norwegian University of Science and Technology Department of Mathematics MA5 Numerical Methods Spring 5 Solutions to exercise set 9 Find approximate values of the following integrals using the adaptive

More information

APPM/MATH Problem Set 6 Solutions

APPM/MATH Problem Set 6 Solutions APPM/MATH 460 Problem Set 6 Solutions This assignment is due by 4pm on Wednesday, November 6th You may either turn it in to me in class or in the box outside my office door (ECOT ) Minimal credit will

More information

Ch. 03 Numerical Quadrature. Andrea Mignone Physics Department, University of Torino AA

Ch. 03 Numerical Quadrature. Andrea Mignone Physics Department, University of Torino AA Ch. 03 Numerical Quadrature Andrea Mignone Physics Department, University of Torino AA 2017-2018 Numerical Quadrature In numerical analysis quadrature refers to the computation of definite integrals. y

More information

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx,

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 16. f(x) dx, Panel integration Week 12: Monday, Apr 16 Suppose we want to compute the integral b a f(x) dx In estimating a derivative, it makes sense to use a locally accurate approximation to the function around the

More information

Numerical Integration of Functions

Numerical Integration of Functions Numerical Integration of Functions Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with MATLAB for Engineers,

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

Practice Exam 2 (Solutions)

Practice Exam 2 (Solutions) Math 5, Fall 7 Practice Exam (Solutions). Using the points f(x), f(x h) and f(x + h) we want to derive an approximation f (x) a f(x) + a f(x h) + a f(x + h). (a) Write the linear system that you must solve

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 17, 2017 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

14 EE 2402 Engineering Mathematics III Solutions to Tutorial 3 1. For n =0; 1; 2; 3; 4; 5 verify that P n (x) is a solution of Legendre's equation wit

14 EE 2402 Engineering Mathematics III Solutions to Tutorial 3 1. For n =0; 1; 2; 3; 4; 5 verify that P n (x) is a solution of Legendre's equation wit EE 0 Engineering Mathematics III Solutions to Tutorial. For n =0; ; ; ; ; verify that P n (x) is a solution of Legendre's equation with ff = n. Solution: Recall the Legendre's equation from your text or

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

Name Class. (a) (b) (c) 4 t4 3 C

Name Class. (a) (b) (c) 4 t4 3 C Chapter 4 Test Bank 77 Test Form A Chapter 4 Name Class Date Section. Evaluate the integral: t dt. t C (a) (b) 4 t4 C t C C t. Evaluate the integral: 5 sec x tan x dx. (a) 5 sec x tan x C (b) 5 sec x C

More information

MA 3021: Numerical Analysis I Numerical Differentiation and Integration

MA 3021: Numerical Analysis I Numerical Differentiation and Integration MA 3021: Numerical Analysis I Numerical Differentiation and Integration Suh-Yuh Yang ( 楊肅煜 ) Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan syyang@math.ncu.edu.tw

More information

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0.

x+1 e 2t dt. h(x) := Find the equation of the tangent line to y = h(x) at x = 0. Math Sample final problems Here are some problems that appeared on past Math exams. Note that you will be given a table of Z-scores for the standard normal distribution on the test. Don t forget to have

More information

Math 1310 Lab 10. (Sections )

Math 1310 Lab 10. (Sections ) Math 131 Lab 1. (Sections 5.1-5.3) Name/Unid: Lab section: 1. (Properties of the integral) Use the properties of the integral in section 5.2 for answering the following question. (a) Knowing that 2 2f(x)

More information

Higher-Order Derivatives

Higher-Order Derivatives Higher-Order Derivatives Higher-order derivatives are simply the derivative of a derivative. You would use the same derivative rules that you learned for finding the first derivative of a function. The

More information

1.1 GRAPHS AND LINEAR FUNCTIONS

1.1 GRAPHS AND LINEAR FUNCTIONS MATHEMATICS EXTENSION 4 UNIT MATHEMATICS TOPIC 1: GRAPHS 1.1 GRAPHS AND LINEAR FUNCTIONS FUNCTIONS The concept of a function is already familiar to you. Since this concept is fundamental to mathematics,

More information

Automatic Differentiation Lecture No 1

Automatic Differentiation Lecture No 1 Automatic Differentiation Lecture No 1 Warwick Tucker The CAPA group Department of Mathematics Uppsala University, Sweden escience Winter School, Geilo Introduction to AD When do we use derivatives? Introduction

More information

1 Exam 1 Spring 2007.

1 Exam 1 Spring 2007. Exam Spring 2007.. An object is moving along a line. At each time t, its velocity v(t is given by v(t = t 2 2 t 3. Find the total distance traveled by the object from time t = to time t = 5. 2. Use the

More information

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point

Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error. 2- Fixed point Numerical Analysis Solution of Algebraic Equation (non-linear equation) 1- Trial and Error In this method we assume initial value of x, and substitute in the equation. Then modify x and continue till we

More information

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES RICHARD J. MATHAR Abstract. The manuscript provides tables of abscissae and weights for Gauss- Laguerre integration on 64, 96 and 128

More information

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes

16.4. Power Series. Introduction. Prerequisites. Learning Outcomes Power Series 6.4 Introduction In this Section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio

More information

April 15 Math 2335 sec 001 Spring 2014

April 15 Math 2335 sec 001 Spring 2014 April 15 Math 2335 sec 001 Spring 2014 Trapezoid and Simpson s Rules I(f ) = b a f (x) dx Trapezoid Rule: If [a, b] is divided into n equally spaced subintervals of length h = (b a)/n, then I(f ) T n (f

More information

5. Hand in the entire exam booklet and your computer score sheet.

5. Hand in the entire exam booklet and your computer score sheet. WINTER 2016 MATH*2130 Final Exam Last name: (PRINT) First name: Student #: Instructor: M. R. Garvie 19 April, 2016 INSTRUCTIONS: 1. This is a closed book examination, but a calculator is allowed. The test

More information

The polar coordinates

The polar coordinates The polar coordinates 1 2 3 4 Graphing in polar coordinates 5 6 7 8 Area and length in polar coordinates 9 10 11 Partial deravitive 12 13 14 15 16 17 18 19 20 Double Integral 21 22 23 24 25 26 27 Triple

More information

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx Antiderivatives and The Integral Antiderivatives Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Another important question in calculus

More information

Sample Questions PREPARING FOR THE AP (BC) CALCULUS EXAMINATION. tangent line, a+h. a+h

Sample Questions PREPARING FOR THE AP (BC) CALCULUS EXAMINATION. tangent line, a+h. a+h Sample Questions PREPARING FOR THE AP (BC) CALCULUS EXAMINATION B B A B tangent line,, a f '(a) = lim h 0 f(a + h) f(a) h a+h a b b f(x) dx = lim [f(x ) x + f(x ) x + f(x ) x +...+ f(x ) x ] n a n B B

More information

Applied Calculus I. Lecture 36

Applied Calculus I. Lecture 36 Applied Calculus I Lecture 36 Computing the volume Consider a continuous function over an interval [a, b]. y a b x Computing the volume Consider a continuous function over an interval [a, b]. y y a b x

More information

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0.

(x x 0 )(x x 1 )... (x x n ) (x x 0 ) + y 0. > 5. Numerical Integration Review of Interpolation Find p n (x) with p n (x j ) = y j, j = 0, 1,,..., n. Solution: p n (x) = y 0 l 0 (x) + y 1 l 1 (x) +... + y n l n (x), l k (x) = n j=1,j k Theorem Let

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

. CALCULUS AB. Name: Class: Date:

. CALCULUS AB. Name: Class: Date: Class: _ Date: _. CALCULUS AB SECTION I, Part A Time- 55 Minutes Number of questions -8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems, using

More information

Chapter 6: The Definite Integral

Chapter 6: The Definite Integral Name: Date: Period: AP Calc AB Mr. Mellina Chapter 6: The Definite Integral v v Sections: v 6.1 Estimating with Finite Sums v 6.5 Trapezoidal Rule v 6.2 Definite Integrals 6.3 Definite Integrals and Antiderivatives

More information

Basic Math Review for CS4830

Basic Math Review for CS4830 Basic Math Review for CS4830 Dr. Mihail August 18, 2016 (Dr. Mihail) Math Review for CS4830 August 18, 2016 1 / 35 Sets Definition of a set A set is a collection of distinct objects, considered as an object

More information

Homework 5 - Solutions

Homework 5 - Solutions Spring Math 54 Homework 5 - Solutions BF 3.4.4. d. The spline interpolation routine below produces the following coefficients: i a i b i c i d i -..869948.75637848.656598 -.5.9589.487644.9847639.887.9863.34456976.489747

More information

1 Lesson 13: Methods of Integration

1 Lesson 13: Methods of Integration Lesson 3: Methods of Integration Chapter 6 Material: pages 273-294 in the textbook: Lesson 3 reviews integration by parts and presents integration via partial fraction decomposition as the third of the

More information

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x).

a x a y = a x+y a x a = y ax y (a x ) r = a rx and log a (xy) = log a (x) + log a (y) log a ( x y ) = log a(x) log a (y) log a (x r ) = r log a (x). You should prepare the following topics for our final exam. () Pre-calculus. (2) Inverses. (3) Algebra of Limits. (4) Derivative Formulas and Rules. (5) Graphing Techniques. (6) Optimization (Maxima and

More information

Numerical integration

Numerical integration Numerical integration Responsible teacher: Anatoliy Malyarenko November 8, 003 Contents of the lecture: Black Scholes model. The trapezoidal rule. Simpson s rule. Error handling in MATLAB. Error analysis.

More information

Power Series Solutions to the Legendre Equation

Power Series Solutions to the Legendre Equation Department of Mathematics IIT Guwahati The Legendre equation The equation (1 x 2 )y 2xy + α(α + 1)y = 0, (1) where α is any real constant, is called Legendre s equation. When α Z +, the equation has polynomial

More information

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value AP Calculus Unit 6 Basic Integration & Applications Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value b (1) v( t) dt p( b) p( a), where v(t) represents the velocity and

More information

Lecture 44. Better and successive approximations x2, x3,, xn to the root are obtained from

Lecture 44. Better and successive approximations x2, x3,, xn to the root are obtained from Lecture 44 Solution of Non-Linear Equations Regula-Falsi Method Method of iteration Newton - Raphson Method Muller s Method Graeffe s Root Squaring Method Newton -Raphson Method An approximation to the

More information

Practice Final Exam Solutions

Practice Final Exam Solutions Important Notice: To prepare for the final exam, one should study the past exams and practice midterms (and homeworks, quizzes, and worksheets), not just this practice final. A topic not being on the practice

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

Multiplication of Polynomials

Multiplication of Polynomials Summary 391 Chapter 5 SUMMARY Section 5.1 A polynomial in x is defined by a finite sum of terms of the form ax n, where a is a real number and n is a whole number. a is the coefficient of the term. n is

More information

On the positivity of linear weights in WENO approximations. Abstract

On the positivity of linear weights in WENO approximations. Abstract On the positivity of linear weights in WENO approximations Yuanyuan Liu, Chi-Wang Shu and Mengping Zhang 3 Abstract High order accurate weighted essentially non-oscillatory (WENO) schemes have been used

More information

Romberg Rule of Integration

Romberg Rule of Integration Romberg Rule of ntegration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker Transforming Numerical Methods Education for STEM Undergraduates 1/10/2010 1 Romberg Rule of ntegration Basis

More information

MA 161 Final Exam December 13, You must use a #2 pencil on the scantron sheet (answer sheet).

MA 161 Final Exam December 13, You must use a #2 pencil on the scantron sheet (answer sheet). MA 161 Final Exam December 1, 016 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a # pencil on the scantron sheet (answer sheet).. Write the following in the TEST/QUIZ NUMBER boxes (and

More information

Questions from Larson Chapter 4 Topics. 5. Evaluate

Questions from Larson Chapter 4 Topics. 5. Evaluate Math. Questions from Larson Chapter 4 Topics I. Antiderivatives. Evaluate the following integrals. (a) x dx (4x 7) dx (x )(x + x ) dx x. A projectile is launched vertically with an initial velocity of

More information

Some Applications of the Euler-Maclaurin Summation Formula

Some Applications of the Euler-Maclaurin Summation Formula International Mathematical Forum, Vol. 8, 203, no., 9-4 Some Applications of the Euler-Maclaurin Summation Formula Rafael Jakimczuk División Matemática, Universidad Nacional de Luján Buenos Aires, Argentina

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 175 Riemann Sums Trapezoid Approximation Area Under

More information

Chapter 5 - Quadrature

Chapter 5 - Quadrature Chapter 5 - Quadrature The Goal: Adaptive Quadrature Historically in mathematics, quadrature refers to the act of trying to find a square with the same area of a given circle. In mathematical computing,

More information

To find an approximate value of the integral, the idea is to replace, on each subinterval

To find an approximate value of the integral, the idea is to replace, on each subinterval Module 6 : Definition of Integral Lecture 18 : Approximating Integral : Trapezoidal Rule [Section 181] Objectives In this section you will learn the following : Mid point and the Trapezoidal methods for

More information

Numerical Integration

Numerical Integration Numerical Integration Sanzheng Qiao Department of Computing and Software McMaster University February, 2014 Outline 1 Introduction 2 Rectangle Rule 3 Trapezoid Rule 4 Error Estimates 5 Simpson s Rule 6

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation

CS 450 Numerical Analysis. Chapter 8: Numerical Integration and Differentiation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential Equations

Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential Equations Research Computing with Python, Lecture 7, Numerical Integration and Solving Ordinary Differential Equations Ramses van Zon SciNet HPC Consortium November 25, 2014 Ramses van Zon (SciNet HPC Consortium)Research

More information

AP Calculus AB 2nd Semester Homework List

AP Calculus AB 2nd Semester Homework List AP Calculus AB 2nd Semester Homework List Date Assigned: 1/4 DUE Date: 1/6 Title: Typsetting Basic L A TEX and Sigma Notation Write the homework out on paper. Then type the homework on L A TEX. Use this

More information

MA6452 STATISTICS AND NUMERICAL METHODS UNIT IV NUMERICAL DIFFERENTIATION AND INTEGRATION

MA6452 STATISTICS AND NUMERICAL METHODS UNIT IV NUMERICAL DIFFERENTIATION AND INTEGRATION MA6452 STATISTICS AND NUMERICAL METHODS UNIT IV NUMERICAL DIFFERENTIATION AND INTEGRATION By Ms. K. Vijayalakshmi Assistant Professor Department of Applied Mathematics SVCE NUMERICAL DIFFERENCE: 1.NEWTON

More information

Notions of. Antonio Mucherino. last update: August University of Rennes 1 Numerical Analysis. A.

Notions of. Antonio Mucherino. last update: August University of Rennes 1   Numerical Analysis. A. Notions of Antonio Mucherino University of Rennes 1 www.antoniomucherino.it... last update: August 2013 commom s ... commom s Aircraft and wind Suppose an aircraft flies from Paris to Rio and then it comes

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information

integration integration

integration integration 13 Contents integration integration 1. Basic concepts of integration 2. Definite integrals 3. The area bounded by a curve 4. Integration by parts 5. Integration by substitution and using partial fractions

More information

Introduction to computational modelling

Introduction to computational modelling Introduction to computational modelling Lecture 6 : Differential equations Physics: Pendulum Algorithm: Taylor s method Programming: Code explained Instructor : Cedric Weber Course : 4CCP1000 Schedule

More information

y+2 x 1 is in the range. We solve x as x =

y+2 x 1 is in the range. We solve x as x = Dear Students, Here are sample solutions. The most fascinating thing about mathematics is that you can solve the same problem in many different ways. The correct answer will always be the same. Be creative

More information

Chapter 2 Convergence

Chapter 2 Convergence Chapter 2 Convergence The usage of computational electromagnetics in engineering and science more or less always originates from a physical situation that features a particular problem. Here, some examples

More information

Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area

Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area 6.1 Area of Polygonal Regions Let's first derive formulas for the area of these shapes. 1. Rectangle 2. Parallelogram 3. Triangle 4. Trapezoid 1 Ex 1: Find the

More information

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION 8 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems. After eamining the form

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

Math 113 Final Exam Practice

Math 113 Final Exam Practice Math Final Exam Practice The Final Exam is comprehensive. You should refer to prior reviews when studying material in chapters 6, 7, 8, and.-9. This review will cover.0- and chapter 0. This sheet has three

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

Math 104A - Homework 3

Math 104A - Homework 3 Math 104A - Homework 3 Due 7/7 2.4.6 Show that the following sequences converge linearly to p = 0. How large must n be before we have p n p 5 10 2? a p n = 1/n. Since p n+1 0 p n 0 = 1/(n + 1) 1/n = n

More information

LINEAR SYSTEMS (11) Intensive Computation

LINEAR SYSTEMS (11) Intensive Computation LINEAR SYSTEMS () Intensive Computation 27-8 prof. Annalisa Massini Viviana Arrigoni EXACT METHODS:. GAUSSIAN ELIMINATION. 2. CHOLESKY DECOMPOSITION. ITERATIVE METHODS:. JACOBI. 2. GAUSS-SEIDEL 2 CHOLESKY

More information

Math 1526 Excel Lab 2 Summer 2012

Math 1526 Excel Lab 2 Summer 2012 Math 1526 Excel Lab 2 Summer 2012 Riemann Sums, Trapezoidal Rule and Simpson's Rule: In this lab you will learn how to recover information from rate of change data. For instance, if you have data for marginal

More information

AM205: Assignment 3 (due 5 PM, October 20)

AM205: Assignment 3 (due 5 PM, October 20) AM25: Assignment 3 (due 5 PM, October 2) For this assignment, first complete problems 1, 2, 3, and 4, and then complete either problem 5 (on theory) or problem 6 (on an application). If you submit answers

More information

Econ 508B: Lecture 5

Econ 508B: Lecture 5 Econ 508B: Lecture 5 Expectation, MGF and CGF Hongyi Liu Washington University in St. Louis July 31, 2017 Hongyi Liu (Washington University in St. Louis) Math Camp 2017 Stats July 31, 2017 1 / 23 Outline

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT / Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer February 7, Numerical Programming I (for CSE) Repetition ) Floating Point Numbers and Rounding a) Let f : R R

More information

04. Random Variables: Concepts

04. Random Variables: Concepts University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 215 4. Random Variables: Concepts Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative

More information

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions Examples 2: Composite Functions, Piecewise Functions, Partial Fractions September 26, 206 The following are a set of examples to designed to complement a first-year calculus course. objectives are listed

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

Exercises, module A (ODEs, numerical integration etc)

Exercises, module A (ODEs, numerical integration etc) FYTN HT18 Dept. of Astronomy and Theoretical Physics Lund University, Sweden Exercises, module A (ODEs, numerical integration etc) 1. Use Euler s method to solve y (x) = y(x), y() = 1. (a) Determine y

More information