ADVANCED QUANTUM FIELD THEORY

Size: px
Start display at page:

Download "ADVANCED QUANTUM FIELD THEORY"

Transcription

1 Imperial College London MSc EXAMINATION May 2016 This paper is also taken for the relevant Examination for the Associateship ADVANCED QUANTUM FIELD THEORY For Students in Quantum Fields and Fundamental Forces Friday, 6th May 2016: 14:00 to 17:00 Answer THREE out of the following FOUR questions. Marks shown on this paper are indicative of those the Examiners anticipate assigning. General Instructions Complete the front cover of each of the THREE answer books provided. If an electronic calculator is used, write its serial number at the top of the front cover of each answer book. USE ONE ANSWER BOOK FOR EACH QUESTION. Enter the number of each question attempted in the box on the front cover of its corresponding answer book. Hand in THREE answer books even if they have not all been used. You are reminded that Examiners attach great importance to legibility, accuracy and clarity of expression. c Imperial College London Go to the next page for questions

2 You may use the following results without proof: Chain rule for functional differentiation: δf (x) δb(y) = d 4 z δf (x) δa(z) δa(z) δb(y). Minkowski-space loop integral in d = 4 ɛ dimensions: I n (m 2 ) := µ ɛ d d p 1 (2π) d (p 2 m 2 + iɛ ) n = ( 1) n iµɛ m d 2n Γ(n 1 2 d), (4π) d/2 Γ(n) where Γ(z + 1) = zγ(z), such that Γ(m) = (m 1)! if m is a positive integer and Γ(δ) = δ 1 γ + O(δ), Γ( 1 + δ) = (δ γ) + O(δ), for small δ where γ = is the Euler Mascheroni constant. Gaussian path integrals: real: Grassmannian: Dφ e 1 2 d d x d d y φ(x)m(x,y)φ(y) = const. det M, Dθ Dθ e d d x d d y θ (x)m(x,y)θ(y) = det M 2 Go to the next page for questions

3 1. Consider a particle with action tb S[q; t a, t b ] = dt [ 1 2 m q2 V (q) ] t a Let q, t be the eigenstate of the position operator ˆq(t) q; t = q q; t at time t. The amplitude for the particle to evolve from position q a at time t a to position q b at time t b is given by the path integral U(q a, q b ; t b t a ) := q b ; t b q a ; t a = q(tb )=q b q(t a)=q a Dq e is[q:ta,t b]/. (i) Discuss briefly the physical interpretation of this path integral. In the limit 0, which paths q(t) in the integral give the largest contribution to the amplitude? Why? By inserting factors of 1 = dq q, t q, t, show that q b ; t b ˆq(t) q a ; t a = dq U(q, q b ; t b t) qu(q a, q; t t a ) = q(tb )=q b q(t a)=q a Dq q(t)e is[q;ta,t b]/. Hence argue that in general one gets the time-ordered expression q(tb )=q b q(t a)=q a Dq q(t 1 ) q(t n ) e is[q;ta,t b]/ = q b ; t b T ˆq(t 1 ) ˆq(t n ) q a ; t a. lim T (1 iɛ) [7 marks] (ii) Setting = 1 and given q; t = e iĥt q where Ĥ is the Hamiltonian, show that lim T (1 iɛ) q; T Ω where Ω is the ground state. Hence show that Dq q(t1 ) q(t n ) e is[q; T,T ] Ω T ˆq(t 1 ) ˆq(t n ) Ω =. Dq e is[q; T,T ] (iii) The generating functional is given by Z[J] = lim T (1 iɛ) Dq e is[q]+i dt q(t)j(t). [6 marks] By considering a change of integration variables in Z[J] from q(t) to q (t) = q(t) + α(t) for arbitrary, small α(t), show that ( ) δs[q] dt α(t) lim Dq T (1 iɛ) δq(t) + J(t) e is[q]+i dt q(t)j(t) = 0. (You may assume Dq = Dq.) (iv) Hence show that m d2 dt Ω T dv (t) 2 ˆq(t)ˆq(t ) Ω + Ω T dq ˆq(t ) Ω = iδ(t t ). [3 marks] [Total 20 marks] 3 Please go to the next page

4 2. The generating functionals Z[J], E[J] and Γ[φ cl ] for a scalar theory are related by i ln Z[J] = E[J] = Γ[φ cl ] d 4 xφ cl (x)j(x), where φ cl (x) = δe[j]/δj(x), and the corresponding correlation functions are given by G n (x 1,..., x n ) = ( i)n δ n Z[J] Z[0] δj(x 1 ) δj(x n ), J=0 G n (x 1,..., x n ) = ( i) n+1 δ n E[J] δj(x 1 ) δj(x n ), J=0 δ n Γ[φ cl ] Γ n (x 1,..., x n ) = i. δφ cl (x 1 ) δφ cl (x n ) φcl =0 (i) In a perturbation expansion, what kind of Feynman diagrams contribute to G n? What about G n and Γ n? Consider λφ 4 theory. Argue that G 2 (x 1, x 2 ) = G 2 (x 1, x 2 ) and draw the tree-level and one-loop Feynman diagrams that contribute to the functions G 4, G 4 and Γ 4. [6 marks] (ii) If A is a constant, the effective potential V eff (A) is defined by Γ[φ cl ] φcl =A = d 4 x V eff (A). Ignoring terms independent of A, show that 1 V eff (A) = i n! An Γn (0,..., 0), n=1 where the Fourier transform of Γ n (x 1,..., x n ) is (2π) 4 δ (4) ( i p i) Γ n (p 1,..., p n ). (iii) Draw the Feynman diagrams that give the one-loop contribution to V eff (A) in λφ 4 theory. Using the standard Feynman rules show that ( ) V 1-loop i d 4 n p λ 0 eff (A) = 2 n+1 n (2π) 4 p 2 m 2 n=1 0 + A 2n, iɛ ( = 1 2 i d 4 p p 2 (2π) log m λ 0A 2 + iɛ ) 4 p 2 m0 2 + iɛ (You do not have justify the symmetry factors.) Which terms in the power series expression are divergent? (iv) Show that, using dimensional regularisation, V 1-loop eff = λ [ ( ) 0 ( m 2 A 2 64π λ 0A 2) 2 ɛ + log 4πµ 2 m λ 0A 2 ] γ + 1. [Total 20 marks] 4 Please go to the next page

5 3. The action for electromagnetism is S[A µ ] = 1 4 d 4 x F µν F µν where F µν = µ A ν ν A µ. It is invariant under gauge transformations A µ A (α) µ = A µ + 1 e µα. (i) Show that in momentum space S[à µ ] = 1 2 i d 4 p d 4 q (2π) 4 (2π) 4 à µ(p) M µν (p, q)ã ν (q), where M µν (p, q) = i(2π) 4 δ (4) (p q) (p 2 η µν p µ p ν ) and à µ (p) = à µ( p) is the Fourier transform of A µ (x). Show that M µν (p, q) is not invertible and hence argue that the standard procedure for defining the propagator 0 T A µ (x)a ν (y) 0 fails. (ii) Let G[A µ ](x) = w(x) be some (local) gauge-fixing condition. By inserting ( ) δg[a µ (α) ] 1 = Dα det δ(g[a µ (α) ] w) δα show that the partition function of A µ (x) can be written as ( ) Z[J µ δg[a µ (α) ] ] = DA µ det e is ξ[a µ]+i d 4 xj µ (x)a µ(x), δα where S ξ [A µ ] = S[A µ ] 1 2ξ d 4 x G[A µ ] 2 for some constant ξ. Do you expect correlation functions of A µ to depend on G[A µ ] and ξ? What about correlation functions of F µν? (iii) Locality implies that δg[a µ (α) ](x)/δα(y) = δ (4) (x y) (x) for some operator (x). Show that Z[J µ ] can be rewritten as Z[J µ ] = DA µ Dc Dc e is[aµ,c,c ]+i d 4 xj µ (x)a µ(x) where S[A µ, c, c ] = S ξ [A µ ] d 4 x c c. What are the properties of the new fields c(x) and c (x)? What type of particle do they describe? [3 marks] (iv) Show that Z[J µ ] DA µ Dc Dc DB e is[aµ,c,c,b]+i d 4 xj µ (x)a µ(x) where S[A µ, c, c, B] = d 4 x ( 1 4 F µνf µν c c ξb2 + BG[A µ ] ). What are the properties of the new field B(x)? [3 marks] 5 [This question continues on the next page... ]

6 (v) Take G[A µ ] = µ A µ and show that S[A µ, c, c, B] is invariant under the infinitesimal BRST transformations, parameterised by a constant Grassmannian variable ɛ, δ ɛ A µ = 1 e ɛ µc, δ ɛ c = 0, δ ɛ c = ɛb, δ ɛ B = 0. Defining an operator Q such that acting on fields ɛq A µ = δ ɛ A µ, and ɛq c = δ ɛ c etc., show that Q 2 = 0. Outline how the physical states of the theory are defined using Q. [Total 20 marks] 6 Please go to the next page

7 4. The Lagrangian density for λφ 4 theory is given by L = 1 2 µφ µ φ 1 2 m2 0φ 2 1 4! λ 0φ 4. (i) In renormalised perturbation theory one defines φ = Z 1/2 φ R, Zm 2 0 = m 2 R + δm 2, Z 2 λ 0 = λ R + δλ, where Z = 1+δZ. Rewrite the Lagrangian density in terms of the renormalised field, renormalised couplings, and counter terms. [2 marks] (ii) Let G2 R (x, y) = Ω T φ R (x)φ R (y) Ω be the renormalised two-point function. Using the standard Feynman rules, show that the Fourier transform can be written as ( ) k G 2 R (p, q) = (2π) 4 δ (4) i i Γ 2 (p) (p + q) p 2 mr 2 + iɛ p 2 mr 2 + iɛ k=0 = (2π) 4 δ (4) i (p + q) p 2 mr 2 i Γ 2 (p) + iɛ where Γ 2 (p) is the one-particle irreducible (1PI) two-point function. (iii) By considering one-loop and counter-term diagrams, show that Γ 2 (p) = 1 2 λ RI 1 (m 2 R) + i ( p 2 δz δm 2) + O(λ 2 R). (where I 1 (m 2 ) is defined on page 2). Hence show that in the MS scheme δz = 0 + O(λ 2 R) δm 2 = λ ( ) RmR 2 2 4πµ2 + log γ + O(λ 2 32π 2 ɛ M R). 2 (iv) Now consider the renormalised four-point vertex function Γ R 4 (p 1, p 2, p 3, p 4 ). By considering one-loop and counter-term diagrams, show that Γ R 4 (0, 0, 0, 0) = iλ R λ2 RI 2 (m 2 R) iδλ + O(λ 3 R). (where I 2 (m 2 ) is defined on page 2). Hence show that in the MS scheme ( ) δλ = 3λ2 R 2 4πµ2 + log γ + O(λ 3 32π 2 ɛ M R). 2 (v) Using the relation between bare and renormalised quantities given in part (i), show that γ 2 = (M/m 2 R )( m2 R / M) and β = M( λ R/ M) are given by γ 2 = M m 2 R δm 2 R M = λ R 16π 2 + O(λ2 R), β = M δλ M = 3λ2 R 16π 2 + O(λ3 R), 7 [This question continues on the next page... ]

8 where the derivatives are defined holding the bare quantities fixed. Hence argue that λ R is a marginally irrelevant coupling. These equations also imply that the mass mr 2 is a marginal coupling. Is this correct? Would we have found the same result if we had used a simple cut-off to regulate the theory? [Total 20 marks] 8 End of examination paper

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning.

For QFFF MSc Students Monday, 9th January 2017: 14:00 to 16:00. Marks shown on this paper are indicative of those the Examiners anticipate assigning. Imperial College London QFFF MSc TEST January 017 QUANTUM FIELD THEORY TEST For QFFF MSc Students Monday, 9th January 017: 14:00 to 16:00 Answer ALL questions. Please answer each question in a separate

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk FY3464 Quantum Field Theory II Final exam 0..0 NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory II Contact: Kåre Olaussen, tel. 735 9365/4543770 Allowed tools: mathematical

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) 1 Problem Sheet 7: Interacting Quantum Field Theory: λφ 4 Comments on these questions are always welcome. For instance if you spot any typos or

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Path Integrals in Quantum Field Theory C6, HT 2014

Path Integrals in Quantum Field Theory C6, HT 2014 Path Integrals in Quantum Field Theory C6, HT 01 Uli Haisch a a Rudolf Peierls Centre for Theoretical Physics University of Oxford OX1 3PN Oxford, United Kingdom Please send corrections to u.haisch1@physics.ox.ac.uk.

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

PAPER 44 ADVANCED QUANTUM FIELD THEORY

PAPER 44 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Friday, 3 May, 203 9:00 am to 2:00 pm PAPER 44 ADVANCED QUANTUM FIELD THEORY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

Introduction to Quantum Field Theory

Introduction to Quantum Field Theory Introduction to Quantum Field Theory John Cardy Hilary Term 2012 Version 19/1/12 Abstract These notes are intended to supplement the lecture course Field Theory in Condensed Matter and are not intended

More information

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS

Imperial College London BSc/MSci EXAMINATION May 2008 THERMODYNAMICS & STATISTICAL PHYSICS Imperial College London BSc/MSci EXAMINATION May 2008 This paper is also taken for the relevant Examination for the Associateship THERMODYNAMICS & STATISTICAL PHYSICS For Second-Year Physics Students Wednesday,

More information

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression

Coherent-state path integrals. The coherent states are complete (indeed supercomplete) and provide for the identity operator the expression Coherent-state path integrals A coherent state of argument α α = e α / e αa 0 = e α / (αa ) n 0 n! n=0 = e α / α n n n! n=0 (1) is an eigenstate of the annihilation operator a with eigenvalue α a α = α

More information

Physics 582, Problem Set 4 Solutions

Physics 582, Problem Set 4 Solutions Physics 582, Problem Set 4 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. PATH INTEGRAL FOR A PARTICLE IN A DOUBLE POTENTIAL WELL 1. In real time, q 0, T/2 q 0, T/2 = q 0 e i HT q 0 = where

More information

PhD in Theoretical Particle Physics Academic Year 2017/2018

PhD in Theoretical Particle Physics Academic Year 2017/2018 July 10, 017 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 017/018 S olve two among the four problems presented. Problem I Consider a quantum harmonic oscillator in one spatial

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Imperial College London BSc/MSci EXAMINATION May 2014

Imperial College London BSc/MSci EXAMINATION May 2014 Imperial College London BSc/MSci EXAMINATION May 2014 This paper is also taken for the relevant Examination for the Associateship MOCK-EXAM QUESTIONS: QUANTUM THEORY OF MATTER For 4th-Year Physics Students

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) 11 Perturbation Theory and Feynman Diagrams We now turn our attention to interacting quantum field theories. All of the results that we will derive in this section apply equally to both relativistic and

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables 1. Procca equation. 5 points A massive spin-1

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

4 4 and perturbation theory

4 4 and perturbation theory and perturbation theory We now consider interacting theories. A simple case is the interacting scalar field, with a interaction. This corresponds to a -body contact repulsive interaction between scalar

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

1 Path Integral Quantization of Gauge Theory

1 Path Integral Quantization of Gauge Theory Quatization of gauge theory Ling fong Li; 1 Path Integral Quantization of Gauge Theory Canonical quantization of gauge theory is diffi cult because the gauge invariance implies that not all components

More information

MATHS & STATISTICS OF MEASUREMENT

MATHS & STATISTICS OF MEASUREMENT Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship MATHS & STATISTICS OF MEASUREMENT For Second-Year Physics Students Tuesday,

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya The boundary state from open string fields Yuji Okawa University of Tokyo, Komaba March 9, 2009 at Nagoya Based on arxiv:0810.1737 in collaboration with Kiermaier and Zwiebach (MIT) 1 1. Introduction Quantum

More information

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY)

BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) Imperial College London MSc EXAMINATION May 2015 BLACK HOLES (ADVANCED GENERAL RELATIV- ITY) For MSc students, including QFFF students Wednesday, 13th May 2015: 14:00 17:00 Answer Question 1 (40%) and

More information

Lecture-05 Perturbation Theory and Feynman Diagrams

Lecture-05 Perturbation Theory and Feynman Diagrams Lecture-5 Perturbation Theory and Feynman Diagrams U. Robkob, Physics-MUSC SCPY639/428 September 3, 218 From the previous lecture We end up at an expression of the 2-to-2 particle scattering S-matrix S

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

10 Thermal field theory

10 Thermal field theory 0 Thermal field theory 0. Overview Introduction The Green functions we have considered so far were all defined as expectation value of products of fields in a pure state, the vacuum in the absence of real

More information

Concistency of Massive Gravity LAVINIA HEISENBERG

Concistency of Massive Gravity LAVINIA HEISENBERG Universite de Gene ve, Gene ve Case Western Reserve University, Cleveland September 28th, University of Chicago in collaboration with C.de Rham, G.Gabadadze, D.Pirtskhalava What is Dark Energy? 3 options?

More information

Warming Up to Finite-Temperature Field Theory

Warming Up to Finite-Temperature Field Theory Warming Up to Finite-Temperature Field Theory Michael Shamma UC Santa Cruz March 2016 Overview Motivations Quantum statistical mechanics (quick!) Path integral representation of partition function in quantum

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama Renormalization of the Yukawa Theory Physics 23A (Spring 27), Hitoshi Murayama We solve Problem.2 in Peskin Schroeder. The Lagrangian density is L 2 ( µφ) 2 2 m2 φ 2 + ψ(i M)ψ ig ψγ 5 ψφ. () The action

More information

Schwinger-Dyson Equation(s)

Schwinger-Dyson Equation(s) Mobolaji Williams mwilliams@physics.harvard.edu x First Version: uly 8, 016 Schwinger-Dyson Equations In these notes we derive the Schwinger-Dyson equation, a functional differential equation whose solution

More information

Solution to sunset diagram problem

Solution to sunset diagram problem Solution to sunset diagram problem The sunset diagram provides the leading contribution to the p 2 )/ and hence Z, where I am simplifying notation by using Z Z φ.. First, use Feynman parameters to write

More information

Euclidean path integral formalism: from quantum mechanics to quantum field theory

Euclidean path integral formalism: from quantum mechanics to quantum field theory : from quantum mechanics to quantum field theory Dr. Philippe de Forcrand Tutor: Dr. Marco Panero ETH Zürich 30th March, 2009 Introduction Real time Euclidean time Vacuum s expectation values Euclidean

More information

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature

Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Self-consistent Conserving Approximations and Renormalization in Quantum Field Theory at Finite Temperature Hendrik van Hees in collaboration with Jörn Knoll Contents Schwinger-Keldysh real-time formalism

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

The Quantum Theory of Finite-Temperature Fields: An Introduction. Florian Divotgey. Johann Wolfgang Goethe Universität Frankfurt am Main

The Quantum Theory of Finite-Temperature Fields: An Introduction. Florian Divotgey. Johann Wolfgang Goethe Universität Frankfurt am Main he Quantum heory of Finite-emperature Fields: An Introduction Florian Divotgey Johann Wolfgang Goethe Universität Franfurt am Main Fachbereich Physi Institut für heoretische Physi 1..16 Outline 1 he Free

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

BRST renormalization

BRST renormalization BRST renormalization Peter Lavrov Tomsk State Pedagogical University Dubna, SQS 11, 23 July 2011 Based on PL, I. Shapiro, Phys. Rev. D81, 2010 P.M. Lavrov (Tomsk) BRST renormalization Dubna 2011 1 / 27

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

Heisenberg-Euler effective lagrangians

Heisenberg-Euler effective lagrangians Heisenberg-Euler effective lagrangians Appunti per il corso di Fisica eorica 7/8 3.5.8 Fiorenzo Bastianelli We derive here effective lagrangians for the electromagnetic field induced by a loop of charged

More information

The Path Integral: Basics and Tricks (largely from Zee)

The Path Integral: Basics and Tricks (largely from Zee) The Path Integral: Basics and Tricks (largely from Zee) Yichen Shi Michaelmas 03 Path-Integral Derivation x f, t f x i, t i x f e H(t f t i) x i. If we chop the path into N intervals of length ɛ, then

More information

STOCHASTIC QUANTIZATION AND HOLOGRAPHY

STOCHASTIC QUANTIZATION AND HOLOGRAPHY STOCHASTIC QUANTIZATION AND HOLOGRAPHY WORK WITH D.MANSI & A. MAURI: TO APPEAR TASSOS PETKOU UNIVERSITY OF CRETE OUTLINE CONFORMAL HOLOGRAPHY STOCHASTIC QUANTIZATION STOCHASTIC QUANTIZATION VS HOLOGRAPHY

More information

QCD on the lattice - an introduction

QCD on the lattice - an introduction QCD on the lattice - an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008 - Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the

More information

1 Running and matching of the QED coupling constant

1 Running and matching of the QED coupling constant Quantum Field Theory-II UZH and ETH, FS-6 Assistants: A. Greljo, D. Marzocca, J. Shapiro http://www.physik.uzh.ch/lectures/qft/ Problem Set n. 8 Prof. G. Isidori Due: -5-6 Running and matching of the QED

More information

QFT at finite Temperature

QFT at finite Temperature Benjamin Eltzner Seminar on Theoretical Elementary Particle Physics and QFT, 13.07.06 Content 1 Path Integral and Partition Function Classical Partition Function The Quantum Mechanical Partition Function

More information

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used.

Write your CANDIDATE NUMBER clearly on each of the THREE answer books provided. Hand in THREE answer books even if they have not all been used. UNIVERSITY OF LONDON BSc/MSci EXAMINATION May 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Tuesday 5 June 21 1.3 to 4.3 PAPER 63 THE STANDARD MODEL Attempt THREE questions. The questions are of equal weight. You may not start to read the questions printed on the

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Functional Quantization

Functional Quantization Functional Quantization In quantum mechanics of one or several particles, we may use path integrals to calculate the transition matrix elements as out Ût out t in in D[allx i t] expis[allx i t] Ψ out allx

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 7 June, 004 1.30 to 4.30 PAPER 48 THE STANDARD MODEL Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS

STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship STRUCTURE OF MATTER, VIBRATIONS AND WAVES, AND QUANTUM PHYSICS For 1st-Year

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 6: Lectures 11, 12 As usual, these notes are intended for use by class participants only, and are not for circulation Week 6: Lectures, The Dirac equation and algebra March 5, 0 The Lagrange density for the Dirac equation

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

We would like to give a Lagrangian formulation of electrodynamics.

We would like to give a Lagrangian formulation of electrodynamics. Chapter 7 Lagrangian Formulation of Electrodynamics We would like to give a Lagrangian formulation of electrodynamics. Using Lagrangians to describe dynamics has a number of advantages It is a exceedingly

More information

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as

Vector Fields. It is standard to define F µν = µ ϕ ν ν ϕ µ, so that the action may be written compactly as Vector Fields The most general Poincaré-invariant local quadratic action for a vector field with no more than first derivatives on the fields (ensuring that classical evolution is determined based on the

More information

Dilaton: Saving Conformal Symmetry

Dilaton: Saving Conformal Symmetry Dilaton: Saving Conformal Symmetry Alexander Monin Ecole Polytechnique Fédérale de Lausanne December 2, 2013 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry

More information

2.3 Calculus of variations

2.3 Calculus of variations 2.3 Calculus of variations 2.3.1 Euler-Lagrange equation The action functional S[x(t)] = L(x, ẋ, t) dt (2.3.1) which maps a curve x(t) to a number, can be expanded in a Taylor series { S[x(t) + δx(t)]

More information

Solutions to Problems in Peskin and Schroeder, An Introduction To Quantum Field Theory. Chapter 9

Solutions to Problems in Peskin and Schroeder, An Introduction To Quantum Field Theory. Chapter 9 Solutions to Problems in Peskin and Schroeder, An Introduction To Quantum Field Theory Homer Reid June 3, 6 Chapter 9 Problem 9.1 Part a. Part 1: Complex scalar propagator The action for the scalars alone

More information

Finite temperature QFT: A dual path integral representation

Finite temperature QFT: A dual path integral representation A dual path integral representation I. Roditi Centro Brasileiro de Pesquisas Físicas February 20, 2009 1 I. Roditi (CBPF) Collaborators: 2 I. Roditi (CBPF) Collaborators: C. Cappa Ttira 2 I. Roditi (CBPF)

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

String Theory I GEORGE SIOPSIS AND STUDENTS

String Theory I GEORGE SIOPSIS AND STUDENTS String Theory I GEORGE SIOPSIS AND STUDENTS Department of Physics and Astronomy The University of Tennessee Knoxville, TN 37996-2 U.S.A. e-mail: siopsis@tennessee.edu Last update: 26 ii Contents 4 Tree-level

More information

Path Integrals in Quantum Mechanics and Quantum Field Theory C6, MT 2017

Path Integrals in Quantum Mechanics and Quantum Field Theory C6, MT 2017 Path Integrals in Quantum Mechanics and Quantum Field Theory C6, MT 017 Joseph Conlon a a Rudolf Peierls Centre for Theoretical Physics University of Oxford OX1 3PN Oxford, United Kingdom Please send corrections

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

Interface Profiles in Field Theory

Interface Profiles in Field Theory Florian König Institut für Theoretische Physik Universität Münster January 10, 2011 / Forschungsseminar Quantenfeldtheorie Outline φ 4 -Theory in Statistical Physics Critical Phenomena and Order Parameter

More information

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν =

Lagrangian. µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0. field tensor. ν = Lagrangian L = 1 4 F µνf µν j µ A µ where F µν = µ A ν ν A µ = F νµ. F µν = ν = 0 1 2 3 µ = 0 0 E x E y E z 1 E x 0 B z B y 2 E y B z 0 B x 3 E z B y B x 0 field tensor. Note that F µν = g µρ F ρσ g σν

More information

Advanced Quantum Field Theory Example Sheet 1

Advanced Quantum Field Theory Example Sheet 1 Part III Maths Lent Term 2017 David Skinner d.b.skinner@damtp.cam.ac.uk Advanced Quantum Field Theory Example Sheet 1 Please email me with any comments about these problems, particularly if you spot an

More information

Loop Corrections: Radiative Corrections, Renormalization and All

Loop Corrections: Radiative Corrections, Renormalization and All Loop Corrections: Radiative Corrections, Renormalization and All That Michael Dine Department of Physics University of California, Santa Cruz Nov 2012 Loop Corrections in φ 4 Theory At tree level, we had

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

11 Symmetries and symmetry breaking

11 Symmetries and symmetry breaking 11 Symmetries and symmetry breaking We have seen in the last chapter that the discrete Z symmetry of our standard λφ 4 Lagrangian could be hidden at low temperatures, if we choose a negative mass term

More information

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS LOGAN T. MEREDITH 1. Introduction When one thinks of quantum field theory, one s mind is undoubtedly drawn to Feynman diagrams. The naïve view these

More information

STRUCTURE OF MATTER, VIBRATIONS & WAVES and QUANTUM PHYSICS

STRUCTURE OF MATTER, VIBRATIONS & WAVES and QUANTUM PHYSICS UNIVERSITY OF LONDON BSc/MSci EXAMINATION June 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

What is a particle? Keith Fratus. July 17, 2012 UCSB

What is a particle? Keith Fratus. July 17, 2012 UCSB What is a particle? Keith Fratus UCSB July 17, 2012 Quantum Fields The universe as we know it is fundamentally described by a theory of fields which interact with each other quantum mechanically These

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Spacetime foam and modified dispersion relations

Spacetime foam and modified dispersion relations Institute for Theoretical Physics Karlsruhe Institute of Technology Workshop Bad Liebenzell, 2012 Objective Study how a Lorentz-invariant model of spacetime foam modify the propagation of particles Spacetime

More information

Green Functions in Many Body Quantum Mechanics

Green Functions in Many Body Quantum Mechanics Green Functions in Many Body Quantum Mechanics NOTE This section contains some advanced material, intended to give a brief introduction to methods used in many body quantum mechanics. The material at the

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.3 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 010 Lecture Firstly, we will summarize our previous results. We start with a bare Lagrangian, L [ 0, ϕ] = g (0)

More information

Solution set #7 Physics 571 Tuesday 3/17/2014. p 1. p 2. Figure 1: Muon production (e + e µ + µ ) γ ν /p 2

Solution set #7 Physics 571 Tuesday 3/17/2014. p 1. p 2. Figure 1: Muon production (e + e µ + µ ) γ ν /p 2 Solution set #7 Physics 571 Tuesday 3/17/2014 μ 1. The amplitude is Figure 1: Muon production ( e µ + µ ) it = ie2 s (v 2γ µ u 1 )(u 1 γ µ v 2 ), (1) so the spin averaged squared amplitude is T 2 = e4

More information

Week 1, solution to exercise 2

Week 1, solution to exercise 2 Week 1, solution to exercise 2 I. THE ACTION FOR CLASSICAL ELECTRODYNAMICS A. Maxwell s equations in relativistic form Maxwell s equations in vacuum and in natural units (c = 1) are, E=ρ, B t E=j (inhomogeneous),

More information

Introduction to Renormalization Group

Introduction to Renormalization Group Introduction to Renormalization Group Alex Kovner University of Connecticut, Storrs, CT Valparaiso, December 12-14, 2013 Alex Kovner (UConn) Introduction to Renormalization Group December 12-14, 2013 1

More information

Continuous Symmetries and Conservation Laws. Noether s Theorem

Continuous Symmetries and Conservation Laws. Noether s Theorem As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality. Albert Einstein (1879-1955) 3 Continuous Symmetries and Conservation

More information

ADVANCED QUANTUM FIELD THEORY. Exercises. Adel Bilal

ADVANCED QUANTUM FIELD THEORY. Exercises. Adel Bilal ADVANCED QUANTUM FIELD THEORY Exercises October 17 Adel Bilal Laboratoire de Physique Théorique, École Normale Supérieure - CNRS 4 rue Lhomond, 7531 Paris Cedex 5, France Unité mixte du CNRS et de l Ecole

More information

A Brief Introduction to Linear Response Theory with Examples in Electromagnetic Response

A Brief Introduction to Linear Response Theory with Examples in Electromagnetic Response A Brief Introduction to Linear Response Theory with Examples in Electromagnetic Response Robert Van Wesep May 3, 2013 In order to gain information about any physical system, it is necessary to probe the

More information