Robust Control. 1st class. Spring, 2017 Instructor: Prof. Masayuki Fujita (S5-303B) Tue., 11th April, 2017, 10:45~12:15, S423 Lecture Room

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Robust Control. 1st class. Spring, 2017 Instructor: Prof. Masayuki Fujita (S5-303B) Tue., 11th April, 2017, 10:45~12:15, S423 Lecture Room"

Transcription

1 Robust Control Spring, 2017 Instructor: Prof. Masayuki Fujita (S5-303B) 1st class Tue., 11th April, 2017, 10:45~12:15, S423 Lecture Room

2 Reference: [H95] R.A. Hyde, Aerospace Control Design: A VSTOL Flight Application, Springer, Harrier Jump Jet 2

3 Robust Control for Flight Control Process Control Automotive Control Mechatronics Smart Grid 3

4 Motivating Example: Spinning Satellite s Attitude Control JAXA: ETS-VIII Spinning Satellite Yaw =10rad/s Inputs: Outputs: Torque Angular velocity Roll Pitch Multi-Input Multi-Output System (MIMO System) Single-Input Single-Output System (SISO System) 4

5 Multivariable Plants 古典制御の時代が最初に壁にぶつかったのが 多変数 の問題である [Tsien54] H. S. Tsien:Engineering Cybernetics, McGraw-Hill, 1954 [ 木村 89] 木村 : 制御技術と制御理論, システム / 制御 / 情報,33(6) 257/263, 1989 Spinning Satellite Transfer Function Matrix Interaction (Coupling) 1 State Space Representation Unified treatment for SISO/MIMO 5

6 Control of Multivariable Plants [SP05, pp ] 1. Diagonal Controller (Decentralized Control) Controller Interaction (Coupling) 0 - MATLAB Command P11 = tf([1-100],[ ]) ; K = pidtune( P11, PID ) ; 6

7 Control of Multivariable Plants [SP05, pp ] 2. Dynamic Decoupling Loop Shaping Design Target Loop (Desired Loop) Inverse-based Controller dB/dec 30 Stabilization Delay 48 [rad/s] -40dB/dec? 7

8 Control of Multivariable Plants [SP05, pp ] Inverse-based Controller Controller Uncertainty 0 - Uncertainty 8

9 Control of Multivariable Plants 3. Robust Controller Robust Controller Uncertainty Uncertainty 9

10 Robust Control Instructor: Prof. Masayuki Fujita (S5-303B) Schedule: Units: 11 th, 18 th, 25 th April, 2 nd, 9 th, 16 th, 23 rd, 30 th May 1 unit Teaching Assistants (TA): Riku Funada, Made Widhi Surya Atman (S5-303A) Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, [ZD97] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall, [M17] Robust Control Toolbox User s Guide R2017a, MathWorks, Grading: Reports on 2nd (15%), 4th (30%) and 6 th (55%) classes ( MATLAB: Robust Control Toolbox)

11 1. Multivariable Feedback Control and Nominal Stability 1.1 Multivariable Feedback Control [SP05, Sec. 3.5] 1.2 Multivariable Frequency Response Analysis [SP05, Sec. 3.3, A.3, A.5] 1.3 Internal Stability [SP05, Sec. 4.1, 4.7] 1.4 All Stabilizing Controllers [SP05, Sec. 4.8] Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.

12 Frequency Response for SISO Systems [Ex.] Bode Plot (Gain) 12

13 Frequency Response for MIMO Systems [Ex.] SISO MIMO? 13

14 Singular Value Decomposition [SP05, Ex. 3.3] (p. 74) [SP05, A.3] svd(g) A. J. Laub Minor Axis Major Axis :Unitary Matrices Singular Values : -th eigenvalue Maximum Singular Value Minimum Singular Value 14

15 -plot SISO: MIMO: [SP05, p. 79] Absolute value Singular value plot [Ex.] -plot of Extension of Bode gain plot to MIMO Systems MATLAB Command num = { [10 10], 1; [1 2], [5 5] }; den = { [ ], [1 1]; [ ], [1 5 6] }; G = tf( num, den ); figure sigma(g) 15

16 Motivating Example for Internal Stability in SISO Systems [SP05, Ex. 4.16] (p. 144) ー Closed Loop Transfer Function Stable? Another Closed Loop Transfer Function C.A. Desoer Unstable!! 3 5 C.A. Desoer and W.S. Chan, Journal of the Franklin Institute, 300 (5-6) , 1975 Why? Unstable Pole/Zero Cancellation 16

17 Gang of Four (SISO) In order to avoid pole/zero cancellation, consider input injection & output measurement for each dynamic block. ー [AM08] K. J. Astrom and R. Murray, Feedback Systems, Princeton University Press, 2008 Sensitivity Complementary Sensitivity Load Sensitivity Noise Sensitivity 17

18 Internal Stability of Multivariable Feedback Systems Nominal Stability [SP05, Fig. 4.3] (p. 145) ー : Transfer function matrices Well-posedness: (Gang of Four: well-defined and proper) : Vectors [SP05, Theorem 4.6] (p. 145) Nominal Stability(NS) Test Assume contain no unstable hidden modes. Then, the feedback system in the figure is internally stable if and only if all four closed-loop transfer matrices are stable. 18

19 Internal Stability of Multivariable Feedback Systems Nominal Stability [SP05, Fig. 4.3] (p. 145) ー State-space representation: [SP05, p. 124] [ZD97, Theorem 5.5](p. 70) Nominal Stability(NS) Test The system is internally stable iff is stable [ZD97] K. Zhou and J. C. Doyle, Essentials of Robust control, Prentice Hall,

20 Youla-parameterization (Q-parameterization) Stable Plant Plant : Proper Stable Transfer Function Matrices [SP05, p. 148] Gang of Four Model All Stabilizing Controllers Surprising Fact: Necessary and Sufficient Internally stable Internally stable 20

21 Youla-Kucera-parameterization Unstable Plant Left Coprime Factorization (can be also on the right) [SP05, p. 149] [SP05, p. 122] M. Vidyasagar, The MIT Press,1985 Coprime: No common unstable zeros iff (Bezout Identity) : Stable coprime transfer funcion matrices All Stabilizing Controllers : Stable transfer function matrix satisfying 21

22 Youla-Kucera-parameterization (Unstable Plants) [SP05, Ex. 4.1] [SP05, p. 149] (*) :(*) Bezout Identity A Stabilizing Controller! Stable Plant Case All Stabilizing Controllers! 22

23 State-Space Computation of All Stabilizing Controllers State Space Representation [SP05, p. 124] 6 All Stabilizing Controllers Let matrices, be such that, are stable Matrix Computation System Structure on Controllers If, then is State Feedback + Observer 23

24 Completion of Linear Feedback System Theory A stabilizing controller State feedback/observer All stabilizing controllers (Youla) Parametrization Transfer Function Pole/Zero Structure Controllability, Observability State Space Form (Data Structure) State - 24

25 1. Multivariable Feedback Control and Nominal Stability 1.1 Multivariable Feedback Control [SP05, Sec. 3.5] 1.2 Multivariable Frequency Response Analysis [SP05, Sec. 3.3, A.3, A.5] 1.3 Internal Stability [SP05, Sec. 4.1, 4.7] 1.4 All Stabilizing Controllers [SP05, Sec. 4.8] Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.

26 2. Nominal Performance 2.1 Weighted Sensitivity [SP05, Sec. 2.8, 3.3, 4.10, 6.2, 6.3] 2.2 Nominal Performance [SP05, Sec. 2.8, 3.2, 3.3] 2.3 Sensitivity Minimization [SP05, Sec. 3.2, 3.3, 9.3] 2.4 Remarks on Fundamental Limitations 2.5 1st Report [SP05, Sec. 6.2] Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.

27 Relative Gain Array [SP05, Sec. 3.4] [SP05, Ex. 3.9] (pp. 85) Transfer Function Matrix 1 Relative Gain Array element wise multiplication Pairing rule 1 Prefer paring on RGA elements close to 1 Use to control and use to control Pairing rule 2 Avoid pairing on negative RGA elements Pairing rule 2 is satisfied for this choice Rule 1 Rule 2 27

28 Control of Multivariable Plants Steady-State Decoupling Controller [SP05, pp ]

29 Poles [SP05, 4.4] [SP05, Theorem 4.4] (p. 135) The pole polynomial corresponding to a minimal realization of a system with transfer function is the least common denominator of all non-identically zero minors of all orders of. [SP05, Ex. 4.10] (pp. 136, 139) 3 The minors of order 1 The minors of order 2 The least common denominator of all the minors Poles 29

30 Zeros [SP05, Sec. 4.5] [SP05, Theorem 4.5] (p. 139) The zero polynomial, corresponding to a minimal realization of the system, is the greatest common divisor of all the numerators of all order- minors of, where is the normal rank of, provided that these minors have been adjusted in such a way as to have the pole polynomial as their denominator. [SP05, Ex. 4.10] (pp. 136, 139) (Cont.) 4 Normal rank: 2 The minors of order 2 The greatest common divisor of numerator Zeros 30

31 Pole/Zero Cancellation [SP05, Sec. 4.5] 5 Poles Poles Poles of and : Poles Poles of, is cancelled 31

32 Two degrees of freedom Controller [SP05, p. 147] 6 Parameterize : Stable matrix 32

Lecture plan: Control Systems II, IDSC, 2017

Lecture plan: Control Systems II, IDSC, 2017 Control Systems II MAVT, IDSC, Lecture 8 28/04/2017 G. Ducard Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems -Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal

More information

Multivariable Control. Lecture 05. Multivariable Poles and Zeros. John T. Wen. September 14, 2006

Multivariable Control. Lecture 05. Multivariable Poles and Zeros. John T. Wen. September 14, 2006 Multivariable Control Lecture 05 Multivariable Poles and Zeros John T. Wen September 4, 2006 SISO poles/zeros SISO transfer function: G(s) = n(s) d(s) (no common factors between n(s) and d(s)). Poles:

More information

MIMO analysis: loop-at-a-time

MIMO analysis: loop-at-a-time MIMO robustness MIMO analysis: loop-at-a-time y 1 y 2 P (s) + + K 2 (s) r 1 r 2 K 1 (s) Plant: P (s) = 1 s 2 + α 2 s α 2 α(s + 1) α(s + 1) s α 2. (take α = 10 in the following numerical analysis) Controller:

More information

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process D.Angeline Vijula #, Dr.N.Devarajan * # Electronics and Instrumentation Engineering Sri Ramakrishna

More information

The Generalized Nyquist Criterion and Robustness Margins with Applications

The Generalized Nyquist Criterion and Robustness Margins with Applications 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA The Generalized Nyquist Criterion and Robustness Margins with Applications Abbas Emami-Naeini and Robert L. Kosut Abstract

More information

Achievable performance of multivariable systems with unstable zeros and poles

Achievable performance of multivariable systems with unstable zeros and poles Achievable performance of multivariable systems with unstable zeros and poles K. Havre Λ and S. Skogestad y Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.

More information

Decoupled Feedforward Control for an Air-Conditioning and Refrigeration System

Decoupled Feedforward Control for an Air-Conditioning and Refrigeration System American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July, FrB1.4 Decoupled Feedforward Control for an Air-Conditioning and Refrigeration System Neera Jain, Member, IEEE, Richard

More information

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction

MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 11/2/214 Outline Solving State Equations Variation

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

HANKEL-NORM BASED INTERACTION MEASURE FOR INPUT-OUTPUT PAIRING

HANKEL-NORM BASED INTERACTION MEASURE FOR INPUT-OUTPUT PAIRING Copyright 2002 IFAC 15th Triennial World Congress, Barcelona, Spain HANKEL-NORM BASED INTERACTION MEASURE FOR INPUT-OUTPUT PAIRING Björn Wittenmark Department of Automatic Control Lund Institute of Technology

More information

Robust Performance Example #1

Robust Performance Example #1 Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER

DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER th June 4. Vol. 64 No. 5-4 JATIT & LLS. All rights reserved. ISSN: 99-8645 www.jatit.org E-ISSN: 87-395 DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER

More information

Richiami di Controlli Automatici

Richiami di Controlli Automatici Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

More information

Optimizing simultaneously over the numerator and denominator polynomials in the Youla-Kučera parametrization

Optimizing simultaneously over the numerator and denominator polynomials in the Youla-Kučera parametrization Optimizing simultaneously over the numerator and denominator polynomials in the Youla-Kučera parametrization Didier Henrion Vladimír Kučera Arturo Molina-Cristóbal Abstract Traditionally when approaching

More information

Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14)

Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14) Appendix J Additional Closed-Loop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. Closed-Loop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain

More information

SMITH MCMILLAN FORMS

SMITH MCMILLAN FORMS Appendix B SMITH MCMILLAN FORMS B. Introduction Smith McMillan forms correspond to the underlying structures of natural MIMO transfer-function matrices. The key ideas are summarized below. B.2 Polynomial

More information

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc

Chapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Second Edition This version: August 29, 2001

Second Edition This version: August 29, 2001 MULTIVARIABLE FEEDBACK CONTROL Analysis and design Sigurd Skogestad Norwegian University of Science and Technology Ian Postlethwaite University of Leicester Second Edition This version: August 29, 2001

More information

Pole Placement Design

Pole Placement Design Department of Automatic Control LTH, Lund University 1 Introduction 2 Simple Examples 3 Polynomial Design 4 State Space Design 5 Robustness and Design Rules 6 Model Reduction 7 Oscillatory Systems 8 Summary

More information

GT-POWER linearization and engine advanced control design applications

GT-POWER linearization and engine advanced control design applications GT-POWER linearization and engine advanced control design applications Kenny Follen Ali Borhan Ed Hodzen Cummins Inc. North American GT Conference 2016 November 14-15, 2016 Michigan, USA Outline Background

More information

ESE319 Introduction to Microelectronics. Feedback Basics

ESE319 Introduction to Microelectronics. Feedback Basics Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability

More information

Computation of Stabilizing PI and PID parameters for multivariable system with time delays

Computation of Stabilizing PI and PID parameters for multivariable system with time delays Computation of Stabilizing PI and PID parameters for multivariable system with time delays Nour El Houda Mansour, Sami Hafsi, Kaouther Laabidi Laboratoire d Analyse, Conception et Commande des Systèmes

More information

Lecture 13: Internal Model Principle and Repetitive Control

Lecture 13: Internal Model Principle and Repetitive Control ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)

More information

Analysis of SISO Control Loops

Analysis of SISO Control Loops Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

More information

Trajectory tracking & Path-following control

Trajectory tracking & Path-following control Cooperative Control of Multiple Robotic Vehicles: Theory and Practice Trajectory tracking & Path-following control EECI Graduate School on Control Supélec, Feb. 21-25, 2011 A word about T Tracking and

More information

3 Stabilization of MIMO Feedback Systems

3 Stabilization of MIMO Feedback Systems 3 Stabilization of MIMO Feedback Systems 3.1 Notation The sets R and S are as before. We will use the notation M (R) to denote the set of matrices with elements in R. The dimensions are not explicitly

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

More information

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

More information

Mixed Parametric/Unstructured LFT Modelling for Robust Controller Design

Mixed Parametric/Unstructured LFT Modelling for Robust Controller Design 2 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July, 2 Mixed Parametric/Unstructured LFT Modelling for Robust Controller Design Harald Pfifer and Simon Hecker Abstract

More information

Control Systems I. Lecture 1: Introduction. Suggested Readings: Åström & Murray Ch. 1, Guzzella Ch. 1. Emilio Frazzoli

Control Systems I. Lecture 1: Introduction. Suggested Readings: Åström & Murray Ch. 1, Guzzella Ch. 1. Emilio Frazzoli Control Systems I Lecture 1: Introduction Suggested Readings: Åström & Murray Ch. 1, Guzzella Ch. 1 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 22, 2017 E. Frazzoli

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #1 Monday, January 6, 2003 Instructor: Dr. Ian C. Bruce Room CRL-229, Ext. 26984 ibruce@mail.ece.mcmaster.ca Office Hours: TBA Teaching Assistants:

More information

MULTIVARIABLE ROBUST CONTROL OF AN INTEGRATED NUCLEAR POWER REACTOR

MULTIVARIABLE ROBUST CONTROL OF AN INTEGRATED NUCLEAR POWER REACTOR Brazilian Journal of Chemical Engineering ISSN 0104-6632 Printed in Brazil Vol. 19, No. 04, pp. 441-447, October - December 2002 MULTIVARIABLE ROBUST CONTROL OF AN INTEGRATED NUCLEAR POWER REACTOR A.Etchepareborda

More information

Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of

Chapter Stability Robustness Introduction Last chapter showed how the Nyquist stability criterion provides conditions for the stability robustness of Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Stability

More information

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control

More information

Robust Control with Classical Methods QFT

Robust Control with Classical Methods QFT Robust Control with Classical Methods QT Per-Olof utman Review of the classical Bode-Nichols control problem QT in the basic Single nput Single Output (SSO) case undamental Design Limitations dentification

More information

Mike Grimble Industrial Control Centre, Strathclyde University, United Kingdom

Mike Grimble Industrial Control Centre, Strathclyde University, United Kingdom Copyright 2002 IFAC 15th Triennial World Congress, Barcelona, Spain IMPLEMENTATION OF CONSTRAINED PREDICTIVE OUTER-LOOP CONTROLLERS: APPLICATION TO A BOILER CONTROL SYSTEM Fernando Tadeo, Teresa Alvarez

More information

A Convex Characterization of Distributed Control Problems in Spatially Invariant Systems with Communication Constraints

A Convex Characterization of Distributed Control Problems in Spatially Invariant Systems with Communication Constraints A Convex Characterization of Distributed Control Problems in Spatially Invariant Systems with Communication Constraints Bassam Bamieh Petros G. Voulgaris Revised Dec, 23 Abstract In this paper we consider

More information

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:

More information

Mechanical Systems Part A: State-Space Systems Lecture AL12

Mechanical Systems Part A: State-Space Systems Lecture AL12 AL: 436-433 Mechanical Systems Part A: State-Space Systems Lecture AL Case study Case study AL: Design of a satellite attitude control system see Franklin, Powell & Emami-Naeini, Ch. 9. Requirements: accurate

More information

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch. 2-3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 29, 2017 E. Frazzoli

More information

State feedback, Observer, and State feedback using an observer

State feedback, Observer, and State feedback using an observer Control and system theory 9/5/28 State feedback, Observer, and State feedback using an observer KOSEKI, Takafumi The University of Tokyo Fundamentals i What is a state observer? ii State feedback and classical

More information

Lecture 1: Feedback Control Loop

Lecture 1: Feedback Control Loop Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

More information

Chap 8. State Feedback and State Estimators

Chap 8. State Feedback and State Estimators Chap 8. State Feedback and State Estimators Outlines Introduction State feedback Regulation and tracking State estimator Feedback from estimated states State feedback-multivariable case State estimators-multivariable

More information

University of Science and Technology, Sudan Department of Chemical Engineering.

University of Science and Technology, Sudan Department of Chemical Engineering. ISO 91:28 Certified Volume 3, Issue 6, November 214 Design and Decoupling of Control System for a Continuous Stirred Tank Reactor (CSTR) Georgeous, N.B *1 and Gasmalseed, G.A, Abdalla, B.K (1-2) University

More information

Chapter 7 - Solved Problems

Chapter 7 - Solved Problems Chapter 7 - Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal

More information

STUDIES ON CONTROLLABILITY ANALYSIS AND CONTROL STRUCTURE DESIGN

STUDIES ON CONTROLLABILITY ANALYSIS AND CONTROL STRUCTURE DESIGN STUDIES ON CONTROLLABILITY ANALYSIS AND CONTROL STRUCTURE DESIGN by Kjetil Havre A Thesis Submitted for the Degree of Dr. Ing. Department of Chemical Engineering Norwegian University of Science and Technology

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013

Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 Today s Objectives ENGR 105: Feedback Control Design Winter 2013 Lecture 14 - Using the MATLAB Control System Toolbox and Simulink Friday, February 8, 2013 1. introduce the MATLAB Control System Toolbox

More information

2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO: HAVE-DASH-II BTT MISSILE

2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO: HAVE-DASH-II BTT MISSILE 2-DOF BLOCK POLE PLACEMENT CONTROL APPLICATION TO: HAVE-DASH-II BTT MISSILE BEKHITI Belkacem 1 DAHIMENE Abdelhakim 1 NAIL Bachir 2 and HARICHE Kamel 1 1 Electronics and Electrotechnics Institute, University

More information

reality is complex process

reality is complex process ISS0080 Automation and Process Control Lecture 5 1 Process models the desire to describe reality Model of the process, model simplication, identication. model reality is complex process Replaces the original;

More information

A Method to Teach the Parameterization of All Stabilizing Controllers

A Method to Teach the Parameterization of All Stabilizing Controllers Preprints of the 8th FAC World Congress Milano (taly) August 8 - September, A Method to Teach the Parameterization of All Stabilizing Controllers Vladimír Kučera* *Czech Technical University in Prague,

More information

AA/EE/ME 548: Problem Session Notes #5

AA/EE/ME 548: Problem Session Notes #5 AA/EE/ME 548: Problem Session Notes #5 Review of Nyquist and Bode Plots. Nyquist Stability Criterion. LQG/LTR Method Tuesday, March 2, 203 Outline:. A review of Bode plots. 2. A review of Nyquist plots

More information

Modeling and Control Overview

Modeling and Control Overview Modeling and Control Overview D R. T A R E K A. T U T U N J I A D V A N C E D C O N T R O L S Y S T E M S M E C H A T R O N I C S E N G I N E E R I N G D E P A R T M E N T P H I L A D E L P H I A U N I

More information

Definitions. Decade: A ten-to-one range of frequency. On a log scale, each 10X change in frequency requires the same distance on the scale.

Definitions. Decade: A ten-to-one range of frequency. On a log scale, each 10X change in frequency requires the same distance on the scale. Circuits II EECS 3220 Lecture notes on making Bode plots Definitions Network Transfer Function: The function H s Xout s X in s where X out represents the voltage or current response of the network to X

More information

Application of Neuro Fuzzy Reduced Order Observer in Magnetic Bearing Systems

Application of Neuro Fuzzy Reduced Order Observer in Magnetic Bearing Systems Application of Neuro Fuzzy Reduced Order Observer in Magnetic Bearing Systems M. A., Eltantawie, Member, IAENG Abstract Adaptive Neuro-Fuzzy Inference System (ANFIS) is used to design fuzzy reduced order

More information

Teaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK

Teaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK Teaching State Variable Feedback to Technology Students Using MATLAB and SIMULINK Kathleen A.K. Ossman, Ph.D. University of Cincinnati Session 448 I. Introduction This paper describes a course and laboratory

More information

University of Alberta ENGM 541: Modeling and Simulation of Engineering Systems Laboratory #7. M.G. Lipsett & M. Mashkournia 2011

University of Alberta ENGM 541: Modeling and Simulation of Engineering Systems Laboratory #7. M.G. Lipsett & M. Mashkournia 2011 ENG M 54 Laboratory #7 University of Alberta ENGM 54: Modeling and Simulation of Engineering Systems Laboratory #7 M.G. Lipsett & M. Mashkournia 2 Mixed Systems Modeling with MATLAB & SIMULINK Mixed systems

More information

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang CBE507 LECTURE III Controller Design Using State-space Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III -1 Overview States What

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture

More information

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Ufuk Bakirdogen*, Matthias Liermann** *Institute for Fluid Power Drives and Controls (IFAS),

More information

Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith

Control Systems 2. Lecture 4: Sensitivity function limits. Roy Smith Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017-3-14 4.1 Input-output controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure

More information

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes Control of MIMO processes Control of Multiple-Input, Multiple Output (MIMO) Processes Statistical Process Control Feedforward and ratio control Cascade control Split range and selective control Control

More information

Observer design for rotating shafts excited by unbalances

Observer design for rotating shafts excited by unbalances Observer design for rotating shafts excited by unbalances R. S. Schittenhelm, Z. Wang, S. Rinderknecht Institute for Mechatronic Systems in Mechanical Engineering, Technische Universität Darmstadt, Germany

More information

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006 Multivariable Control Lecture 3 Description of Linear Time Invariant Systems John T. Wen September 7, 26 Outline Mathematical description of LTI Systems Ref: 3.1-3.4 of text September 7, 26Copyrighted

More information

Control Systems! Copyright 2017 by Robert Stengel. All rights reserved. For educational use only.

Control Systems! Copyright 2017 by Robert Stengel. All rights reserved. For educational use only. Control Systems Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017 Analog vs. digital systems Continuous- and Discretetime Dynamic Models Frequency Response Transfer Functions

More information

MEM Chapter 2. Sensitivity Function Matrices

MEM Chapter 2. Sensitivity Function Matrices Applied Robust Control, Chap 2, 2012 Spring 1 MEM800-007 Chapter 2 Sensitivity Function Matrices r e K u d y G Loop transfer function matrix: L GK Sensitivity function matrix: S ( I L) Complementary Sensitivity

More information

Introduction to MVC. least common denominator of all non-identical-zero minors of all order of G(s). Example: The minor of order 2: 1 2 ( s 1)

Introduction to MVC. least common denominator of all non-identical-zero minors of all order of G(s). Example: The minor of order 2: 1 2 ( s 1) Introduction to MVC Definition---Proerness and strictly roerness A system G(s) is roer if all its elements { gij ( s)} are roer, and strictly roer if all its elements are strictly roer. Definition---Causal

More information

Design of a Heading Autopilot for Mariner Class Ship with Wave Filtering Based on Passive Observer

Design of a Heading Autopilot for Mariner Class Ship with Wave Filtering Based on Passive Observer Design of a Heading Autopilot for Mariner Class Ship with Wave Filtering Based on Passive Observer 1 Mridul Pande, K K Mangrulkar 1, Aerospace Engg Dept DIAT (DU), Pune Email: 1 mridul_pande000@yahoo.com

More information

Appendix 3B MATLAB Functions for Modeling and Time-domain analysis

Appendix 3B MATLAB Functions for Modeling and Time-domain analysis Appendix 3B MATLAB Functions for Modeling and Time-domain analysis MATLAB control system Toolbox contain the following functions for the time-domain response step impulse initial lsim gensig damp ltiview

More information

Frequency domain analysis

Frequency domain analysis Automatic Control 2 Frequency domain analysis Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011

More information

Vehicle longitudinal speed control

Vehicle longitudinal speed control Vehicle longitudinal speed control Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin February 10, 2015 1 Introduction 2 Control concepts Open vs. Closed Loop Control

More information

Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares Andrei Dorobantu Department of Aerospace Engineering & Mechanics University of Minnesota, Minneapolis, MN, 55455, USA Luis G.

More information

W 1 æw 2 G + 0 e? u K y Figure 5.1: Control of uncertain system. For MIMO systems, the normbounded uncertainty description is generalized by assuming

W 1 æw 2 G + 0 e? u K y Figure 5.1: Control of uncertain system. For MIMO systems, the normbounded uncertainty description is generalized by assuming Chapter 5 Robust stability and the H1 norm An important application of the H1 control problem arises when studying robustness against model uncertainties. It turns out that the condition that a control

More information

Feedback: Still the simplest and best solution

Feedback: Still the simplest and best solution Feedback: Still the simplest and best solution Sigurd Skogestad Department of Chemical Engineering Norwegian Univ. of Science and Tech. (NTNU) Trondheim, Norway skoge@ntnu.no Abstract Most engineers are

More information

An LQ R weight selection approach to the discrete generalized H 2 control problem

An LQ R weight selection approach to the discrete generalized H 2 control problem INT. J. CONTROL, 1998, VOL. 71, NO. 1, 93± 11 An LQ R weight selection approach to the discrete generalized H 2 control problem D. A. WILSON², M. A. NEKOUI² and G. D. HALIKIAS² It is known that a generalized

More information

System Identification Using a Retrospective Correction Filter for Adaptive Feedback Model Updating

System Identification Using a Retrospective Correction Filter for Adaptive Feedback Model Updating 9 American Control Conference Hyatt Regency Riverfront, St Louis, MO, USA June 1-1, 9 FrA13 System Identification Using a Retrospective Correction Filter for Adaptive Feedback Model Updating M A Santillo

More information

Comparative study of three practical IMC algorithms with inner controller of first and second order

Comparative study of three practical IMC algorithms with inner controller of first and second order Journal of Electrical Engineering, Electronics, Control and Computer Science JEEECCS, Volume 2, Issue 4, pages 2-28, 206 Comparative study of three practical IMC algorithms with inner controller of first

More information

Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and Richard D. Braatz*

Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and Richard D. Braatz* Ind. Eng. Chem. Res. 996, 35, 3437-344 3437 PROCESS DESIGN AND CONTROL Improved Filter Design in Internal Model Control Ian G. Horn, Jeffery R. Arulandu, Christopher J. Gombas, Jeremy G. VanAntwerp, and

More information

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation Lecture 9: State Feedback and s [IFAC PB Ch 9] State Feedback s Disturbance Estimation & Integral Action Control Design Many factors to consider, for example: Attenuation of load disturbances Reduction

More information

Inverted Pendulum. Objectives

Inverted Pendulum. Objectives Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives

More information

Multivariable feedback control of a Dividing Wall Column

Multivariable feedback control of a Dividing Wall Column Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Multivariable feedback control of a Dividing Wall Column A thesis

More information

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1 Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position

More information

Product Specification

Product Specification This information may be changed without a previous notice. Specification No. JECXDE-9004E Product Specification Issued Date: 17 / Dec. / 2014 Part Description: Supercapacitor (EDLC) Customer Part No.:

More information

Singular Value Decomposition Analysis

Singular Value Decomposition Analysis Singular Value Decomposition Analysis Singular Value Decomposition Analysis Introduction Introduce a linear algebra tool: singular values of a matrix Motivation Why do we need singular values in MIMO control

More information

Methods for analysis and control of. Lecture 6: Introduction to digital control

Methods for analysis and control of. Lecture 6: Introduction to digital control Methods for analysis and of Lecture 6: to digital O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename 6th May 2009 Outline Some interesting books:

More information

HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013

HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013 HONORS LINEAR ALGEBRA (MATH V 2020) SPRING 2013 PROFESSOR HENRY C. PINKHAM 1. Prerequisites The only prerequisite is Calculus III (Math 1201) or the equivalent: the first semester of multivariable calculus.

More information

Example on Root Locus Sketching and Control Design

Example on Root Locus Sketching and Control Design Example on Root Locus Sketching and Control Design MCE44 - Spring 5 Dr. Richter April 25, 25 The following figure represents the system used for controlling the robotic manipulator of a Mars Rover. We

More information

OKLAHOMA STATE UNIVERSITY

OKLAHOMA STATE UNIVERSITY OKLAHOMA STATE UNIVERSITY ECEN 4413 - Automatic Control Systems Matlab Lecture 1 Introduction and Control Basics Presented by Moayed Daneshyari 1 What is Matlab? Invented by Cleve Moler in late 1970s to

More information

Lecture 7 Open-loop & closedloop experiments. The Bias Formula goes closed-loop and the returns

Lecture 7 Open-loop & closedloop experiments. The Bias Formula goes closed-loop and the returns Lecture 7 Open-loop & closedloop experiments The Bias Formula goes closed-loop and the returns Closed-loop vs open-loop Open-loop system disturbance Feedback-free system input output Control input independent

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

APPLICATION OF MODAL PARAMETER DERIVATION IN ACTIVE SUPPRESSION OF THERMO ACOUSTIC INSTABILITIES

APPLICATION OF MODAL PARAMETER DERIVATION IN ACTIVE SUPPRESSION OF THERMO ACOUSTIC INSTABILITIES ICSV14 Cairns Australia 9-12 July, 2007 Abstract APPLICATION OF MODAL PARAMETER DERIVATION IN ACTIVE SUPPRESSION OF THERMO ACOUSTIC INSTABILITIES J.D.B.J. van den Boom, I. Lopez, V.N. Kornilov, L.P.H.

More information

Essence of the Root Locus Technique

Essence of the Root Locus Technique Essence of the Root Locus Technique In this chapter we study a method for finding locations of system poles. The method is presented for a very general set-up, namely for the case when the closed-loop

More information

Quantitative Feedback Theory based Controller Design of an Unstable System

Quantitative Feedback Theory based Controller Design of an Unstable System Quantitative Feedback Theory based Controller Design of an Unstable System Chandrima Roy Department of E.C.E, Assistant Professor Heritage Institute of Technology, Kolkata, WB Kalyankumar Datta Department

More information

Neural Networks Lecture 10: Fault Detection and Isolation (FDI) Using Neural Networks

Neural Networks Lecture 10: Fault Detection and Isolation (FDI) Using Neural Networks Neural Networks Lecture 10: Fault Detection and Isolation (FDI) Using Neural Networks H.A. Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011.

More information

Longitudinal Automatic landing System - Design for CHARLIE Aircraft by Root-Locus

Longitudinal Automatic landing System - Design for CHARLIE Aircraft by Root-Locus International Journal of Scientific and Research Publications, Volume 3, Issue 7, July 2013 1 Longitudinal Automatic landing System - Design for CHARLIE Aircraft by Root-Locus Gaber El-Saady, El-Nobi A.Ibrahim,

More information