Robust Control. 1st class. Spring, 2017 Instructor: Prof. Masayuki Fujita (S5303B) Tue., 11th April, 2017, 10:45~12:15, S423 Lecture Room


 Nigel Wilkinson
 1 years ago
 Views:
Transcription
1 Robust Control Spring, 2017 Instructor: Prof. Masayuki Fujita (S5303B) 1st class Tue., 11th April, 2017, 10:45~12:15, S423 Lecture Room
2 Reference: [H95] R.A. Hyde, Aerospace Control Design: A VSTOL Flight Application, Springer, Harrier Jump Jet 2
3 Robust Control for Flight Control Process Control Automotive Control Mechatronics Smart Grid 3
4 Motivating Example: Spinning Satellite s Attitude Control JAXA: ETSVIII Spinning Satellite Yaw =10rad/s Inputs: Outputs: Torque Angular velocity Roll Pitch MultiInput MultiOutput System (MIMO System) SingleInput SingleOutput System (SISO System) 4
5 Multivariable Plants 古典制御の時代が最初に壁にぶつかったのが 多変数 の問題である [Tsien54] H. S. Tsien:Engineering Cybernetics, McGrawHill, 1954 [ 木村 89] 木村 : 制御技術と制御理論, システム / 制御 / 情報,33(6) 257/263, 1989 Spinning Satellite Transfer Function Matrix Interaction (Coupling) 1 State Space Representation Unified treatment for SISO/MIMO 5
6 Control of Multivariable Plants [SP05, pp ] 1. Diagonal Controller (Decentralized Control) Controller Interaction (Coupling) 0  MATLAB Command P11 = tf([1100],[ ]) ; K = pidtune( P11, PID ) ; 6
7 Control of Multivariable Plants [SP05, pp ] 2. Dynamic Decoupling Loop Shaping Design Target Loop (Desired Loop) Inversebased Controller dB/dec 30 Stabilization Delay 48 [rad/s] 40dB/dec? 7
8 Control of Multivariable Plants [SP05, pp ] Inversebased Controller Controller Uncertainty 0  Uncertainty 8
9 Control of Multivariable Plants 3. Robust Controller Robust Controller Uncertainty Uncertainty 9
10 Robust Control Instructor: Prof. Masayuki Fujita (S5303B) Schedule: Units: 11 th, 18 th, 25 th April, 2 nd, 9 th, 16 th, 23 rd, 30 th May 1 unit Teaching Assistants (TA): Riku Funada, Made Widhi Surya Atman (S5303A) Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, [ZD97] K. Zhou and J. C. Doyle, Essentials of Robust Control, Prentice Hall, [M17] Robust Control Toolbox User s Guide R2017a, MathWorks, Grading: Reports on 2nd (15%), 4th (30%) and 6 th (55%) classes ( MATLAB: Robust Control Toolbox)
11 1. Multivariable Feedback Control and Nominal Stability 1.1 Multivariable Feedback Control [SP05, Sec. 3.5] 1.2 Multivariable Frequency Response Analysis [SP05, Sec. 3.3, A.3, A.5] 1.3 Internal Stability [SP05, Sec. 4.1, 4.7] 1.4 All Stabilizing Controllers [SP05, Sec. 4.8] Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.
12 Frequency Response for SISO Systems [Ex.] Bode Plot (Gain) 12
13 Frequency Response for MIMO Systems [Ex.] SISO MIMO? 13
14 Singular Value Decomposition [SP05, Ex. 3.3] (p. 74) [SP05, A.3] svd(g) A. J. Laub Minor Axis Major Axis :Unitary Matrices Singular Values : th eigenvalue Maximum Singular Value Minimum Singular Value 14
15 plot SISO: MIMO: [SP05, p. 79] Absolute value Singular value plot [Ex.] plot of Extension of Bode gain plot to MIMO Systems MATLAB Command num = { [10 10], 1; [1 2], [5 5] }; den = { [ ], [1 1]; [ ], [1 5 6] }; G = tf( num, den ); figure sigma(g) 15
16 Motivating Example for Internal Stability in SISO Systems [SP05, Ex. 4.16] (p. 144) ー Closed Loop Transfer Function Stable? Another Closed Loop Transfer Function C.A. Desoer Unstable!! 3 5 C.A. Desoer and W.S. Chan, Journal of the Franklin Institute, 300 (56) , 1975 Why? Unstable Pole/Zero Cancellation 16
17 Gang of Four (SISO) In order to avoid pole/zero cancellation, consider input injection & output measurement for each dynamic block. ー [AM08] K. J. Astrom and R. Murray, Feedback Systems, Princeton University Press, 2008 Sensitivity Complementary Sensitivity Load Sensitivity Noise Sensitivity 17
18 Internal Stability of Multivariable Feedback Systems Nominal Stability [SP05, Fig. 4.3] (p. 145) ー : Transfer function matrices Wellposedness: (Gang of Four: welldefined and proper) : Vectors [SP05, Theorem 4.6] (p. 145) Nominal Stability(NS) Test Assume contain no unstable hidden modes. Then, the feedback system in the figure is internally stable if and only if all four closedloop transfer matrices are stable. 18
19 Internal Stability of Multivariable Feedback Systems Nominal Stability [SP05, Fig. 4.3] (p. 145) ー Statespace representation: [SP05, p. 124] [ZD97, Theorem 5.5](p. 70) Nominal Stability(NS) Test The system is internally stable iff is stable [ZD97] K. Zhou and J. C. Doyle, Essentials of Robust control, Prentice Hall,
20 Youlaparameterization (Qparameterization) Stable Plant Plant : Proper Stable Transfer Function Matrices [SP05, p. 148] Gang of Four Model All Stabilizing Controllers Surprising Fact: Necessary and Sufficient Internally stable Internally stable 20
21 YoulaKuceraparameterization Unstable Plant Left Coprime Factorization (can be also on the right) [SP05, p. 149] [SP05, p. 122] M. Vidyasagar, The MIT Press,1985 Coprime: No common unstable zeros iff (Bezout Identity) : Stable coprime transfer funcion matrices All Stabilizing Controllers : Stable transfer function matrix satisfying 21
22 YoulaKuceraparameterization (Unstable Plants) [SP05, Ex. 4.1] [SP05, p. 149] (*) :(*) Bezout Identity A Stabilizing Controller! Stable Plant Case All Stabilizing Controllers! 22
23 StateSpace Computation of All Stabilizing Controllers State Space Representation [SP05, p. 124] 6 All Stabilizing Controllers Let matrices, be such that, are stable Matrix Computation System Structure on Controllers If, then is State Feedback + Observer 23
24 Completion of Linear Feedback System Theory A stabilizing controller State feedback/observer All stabilizing controllers (Youla) Parametrization Transfer Function Pole/Zero Structure Controllability, Observability State Space Form (Data Structure) State  24
25 1. Multivariable Feedback Control and Nominal Stability 1.1 Multivariable Feedback Control [SP05, Sec. 3.5] 1.2 Multivariable Frequency Response Analysis [SP05, Sec. 3.3, A.3, A.5] 1.3 Internal Stability [SP05, Sec. 4.1, 4.7] 1.4 All Stabilizing Controllers [SP05, Sec. 4.8] Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.
26 2. Nominal Performance 2.1 Weighted Sensitivity [SP05, Sec. 2.8, 3.3, 4.10, 6.2, 6.3] 2.2 Nominal Performance [SP05, Sec. 2.8, 3.2, 3.3] 2.3 Sensitivity Minimization [SP05, Sec. 3.2, 3.3, 9.3] 2.4 Remarks on Fundamental Limitations 2.5 1st Report [SP05, Sec. 6.2] Reference: [SP05] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.
27 Relative Gain Array [SP05, Sec. 3.4] [SP05, Ex. 3.9] (pp. 85) Transfer Function Matrix 1 Relative Gain Array element wise multiplication Pairing rule 1 Prefer paring on RGA elements close to 1 Use to control and use to control Pairing rule 2 Avoid pairing on negative RGA elements Pairing rule 2 is satisfied for this choice Rule 1 Rule 2 27
28 Control of Multivariable Plants SteadyState Decoupling Controller [SP05, pp ]
29 Poles [SP05, 4.4] [SP05, Theorem 4.4] (p. 135) The pole polynomial corresponding to a minimal realization of a system with transfer function is the least common denominator of all nonidentically zero minors of all orders of. [SP05, Ex. 4.10] (pp. 136, 139) 3 The minors of order 1 The minors of order 2 The least common denominator of all the minors Poles 29
30 Zeros [SP05, Sec. 4.5] [SP05, Theorem 4.5] (p. 139) The zero polynomial, corresponding to a minimal realization of the system, is the greatest common divisor of all the numerators of all order minors of, where is the normal rank of, provided that these minors have been adjusted in such a way as to have the pole polynomial as their denominator. [SP05, Ex. 4.10] (pp. 136, 139) (Cont.) 4 Normal rank: 2 The minors of order 2 The greatest common divisor of numerator Zeros 30
31 Pole/Zero Cancellation [SP05, Sec. 4.5] 5 Poles Poles Poles of and : Poles Poles of, is cancelled 31
32 Two degrees of freedom Controller [SP05, p. 147] 6 Parameterize : Stable matrix 32
Robust and Optimal Control, Spring A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization
Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5303B) A: SISO Feedback Control A.1 Internal Stability and Youla Parameterization A.2 Sensitivity and Feedback Performance A.3
More informationRobust Control. 2nd class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room
Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) 2nd class Tue., 17th April, 2018, 10:45~12:15, S423 Lecture Room 2. Nominal Performance 2.1 Weighted Sensitivity [SP05, Sec. 2.8,
More informationRobust Control. 8th class. Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room
Robust Control Spring, 2018 Instructor: Prof. Masayuki Fujita (S5303B) 8th class Tue., 29th May, 2018, 10:45~11:30, S423 Lecture Room 1 8. Design Example 8.1 HiMAT: Control (Highly Maneuverable Aircraft
More informationLecture plan: Control Systems II, IDSC, 2017
Control Systems II MAVT, IDSC, Lecture 8 28/04/2017 G. Ducard Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded
More informationEECE 460 : Control System Design
EECE 460 : Control System Design SISO Pole Placement Guy A. Dumont UBC EECE January 2011 Guy A. Dumont (UBC EECE) EECE 460: Pole Placement January 2011 1 / 29 Contents 1 Preview 2 Polynomial Pole Placement
More informationLecture 7 (Weeks 1314)
Lecture 7 (Weeks 1314) Introduction to Multivariable Control (SP  Chapters 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 7 (Weeks 1314) p.
More informationMRAGPC Control of MIMO Processes with Input Constraints and Disturbance
Proceedings of the World Congress on Engineering and Computer Science 9 Vol II WCECS 9, October , 9, San Francisco, USA MRAGPC Control of MIMO Processes with Input Constraints and Disturbance A. S. Osunleke,
More informationSimulation of Quadruple Tank Process for Liquid Level Control
Simulation of Quadruple Tank Process for Liquid Level Control Ritika Thusoo 1, Sakshi Bangia 2 1 M.Tech Student, Electronics Engg, Department, YMCA University of Science and Technology, Faridabad 2 Assistant
More informationClosedloop system 2/1/2016. Generally MIMO case. Twodegreesoffreedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become
Closedloop system enerally MIMO case Twodegreesoffreedom (2 DOF) control structure (2 DOF structure) 2 The closed loop equations become solving for z gives where is the closed loop transfer function
More informationMatrix Equations in Multivariable Control
Matrix Euations in Multivariable Control OMAN POKOP, JIŘÍ KOBEL Tomas Bata University in Zlín Nám. T.G.M. 5555, 76 Zlín CZECH EPUBLIC prokop@fai.utb.cz http://www.utb.cz/fai Abstract:  The contribution
More informationEL2520 Control Theory and Practice
So far EL2520 Control Theory and Practice r Fr wu u G w z n Lecture 5: Multivariable systems Fy Mikael Johansson School of Electrical Engineering KTH, Stockholm, Sweden SISO control revisited: Signal
More informationMIMO analysis: loopatatime
MIMO robustness MIMO analysis: loopatatime y 1 y 2 P (s) + + K 2 (s) r 1 r 2 K 1 (s) Plant: P (s) = 1 s 2 + α 2 s α 2 α(s + 1) α(s + 1) s α 2. (take α = 10 in the following numerical analysis) Controller:
More informationMultivariable Control. Lecture 05. Multivariable Poles and Zeros. John T. Wen. September 14, 2006
Multivariable Control Lecture 05 Multivariable Poles and Zeros John T. Wen September 4, 2006 SISO poles/zeros SISO transfer function: G(s) = n(s) d(s) (no common factors between n(s) and d(s)). Poles:
More informationDesign of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process
Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process D.Angeline Vijula #, Dr.N.Devarajan * # Electronics and Instrumentation Engineering Sri Ramakrishna
More informationAdvanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano
Advanced Aerospace Control Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano ICT for control systems engineering School of Industrial and Information Engineering Aeronautical Engineering
More informationThe Generalized Nyquist Criterion and Robustness Margins with Applications
51st IEEE Conference on Decision and Control December 1013, 2012. Maui, Hawaii, USA The Generalized Nyquist Criterion and Robustness Margins with Applications Abbas EmamiNaeini and Robert L. Kosut Abstract
More informationFeedback Structures for Vapor Compression Cycle Systems
Proceedings of the 27 American Control Conference Marriott Marquis Hotel at imes Square New York City, USA, July 11, 27 FrB5.1 Feedback Structures for Vapor Compression Cycle Systems Michael C. Keir,
More informationFEL3210 Multivariable Feedback Control
FEL3210 Multivariable Feedback Control Lecture 8: Youla parametrization, LMIs, Model Reduction and Summary [Ch. 1112] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 8: Youla, LMIs, Model Reduction
More informationDesign Methods for Control Systems
Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 20022003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9
More informationDecoupled Feedforward Control for an AirConditioning and Refrigeration System
American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3July, FrB1.4 Decoupled Feedforward Control for an AirConditioning and Refrigeration System Neera Jain, Member, IEEE, Richard
More informationAchievable performance of multivariable systems with unstable zeros and poles
Achievable performance of multivariable systems with unstable zeros and poles K. Havre Λ and S. Skogestad y Chemical Engineering, Norwegian University of Science and Technology, N7491 Trondheim, Norway.
More informationMEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction
MEM 355 Performance Enhancement of Dynamical Systems MIMO Introduction Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 11/2/214 Outline Solving State Equations Variation
More informationRobust Control 2 Controllability, Observability & Transfer Functions
Robust Control 2 Controllability, Observability & Transfer Functions Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /26/24 Outline Reachable Controllability Distinguishable
More informationThM062. Coprime Factor Based ClosedLoop Model Validation Applied to a Flexible Structure
Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA, December 2003 ThM062 Coprime Factor Based ClosedLoop Model Validation Applied to a Flexible Structure Marianne Crowder
More informationCDS 101/110a: Lecture 81 Frequency Domain Design
CDS 11/11a: Lecture 81 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve
More informationLecture 4 Stabilization
Lecture 4 Stabilization This lecture follows Chapter 5 of DoyleFrancisTannenbaum, with proofs and Section 5.3 omitted 17013 IOCUPC, Lecture 4, November 2nd 2005 p. 1/23 Stable plants (I) We assume that
More informationAnalysis and Synthesis of SingleInput SingleOutput Control Systems
Lino Guzzella Analysis and Synthesis of SingleInput SingleOutput Control Systems l+kja» \Uja>)W2(ja»\ um Contents 1 Definitions and Problem Formulations 1 1.1 Introduction 1 1.2 Definitions 1 1.2.1 Systems
More informationParametrization of All Strictly Causal Stabilizing Controllers of Multidimensional Systems singleinput singleoutput case
Parametrization of All Strictly Causal Stabilizing Controllers of Multidimensional Systems singleinput singleoutput case K. Mori Abstract We give a parametrization of all strictly causal stabilizing
More informationMULTILOOP CONTROL APPLIED TO INTEGRATOR MIMO. PROCESSES. A Preliminary Study
MULTILOOP CONTROL APPLIED TO INTEGRATOR MIMO PROCESSES. A Preliminary Study Eduardo J. Adam 1,2*, Carlos J. Valsecchi 2 1 Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) (Universidad
More informationAPPLICATION OF DK ITERATION TECHNIQUE BASED ON H ROBUST CONTROL THEORY FOR POWER SYSTEM STABILIZER DESIGN
APPLICATION OF DK ITERATION TECHNIQUE BASED ON H ROBUST CONTROL THEORY FOR POWER SYSTEM STABILIZER DESIGN Amitava Sil 1 and S Paul 2 1 Department of Electrical & Electronics Engineering, Neotia Institute
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationMIMO Toolbox for Matlab
MIMO Toolbox for Matlab Oskar Vivero School of Electric and Electronic Engineering University of Manchester, Manchester, UK M60 1QD Email: oskar.vivero@postgrad.manchester.ac.uk Jesús LiceagaCastro Departamento
More informationOn Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について
The 4th Workshop on JAXA: Astrodynamics and Flight Mechanics, Sagamihara, July 015. On Attitude Control of Microsatellite Using Shape Variable Elements By Kyosuke Tawara 1) and Saburo Matunaga ) 1) Department
More informationIntroduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31
Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured
More informationA Comparative Study on Automatic Flight Control for small UAV
Proceedings of the 5 th International Conference of Control, Dynamic Systems, and Robotics (CDSR'18) Niagara Falls, Canada June 7 9, 18 Paper No. 13 DOI: 1.11159/cdsr18.13 A Comparative Study on Automatic
More informationTheory of Robust Control
Theory of Robust Control Carsten Scherer Mathematical Systems Theory Department of Mathematics University of Stuttgart Germany Contents 1 Introduction to Basic Concepts 6 1.1 Systems and Signals..............................
More informationMultiInput Multioutput (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES. Professor Dae Ryook Yang
MultiInput Multioutput (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University
More informationLMI Based Model Order Reduction Considering the Minimum Phase Characteristic of the System
LMI Based Model Order Reduction Considering the Minimum Phase Characteristic of the System Gholamreza Khademi, Haniyeh Mohammadi, and Maryam Dehghani School of Electrical and Computer Engineering Shiraz
More informationHINFINITY CONTROLLER DESIGN FOR A DC MOTOR MODEL WITH UNCERTAIN PARAMETERS
Engineering MECHANICS, Vol. 18, 211, No. 5/6, p. 271 279 271 HINFINITY CONTROLLER DESIGN FOR A DC MOTOR MODEL WITH UNCERTAIN PARAMETERS Lukáš Březina*, Tomáš Březina** The proposed article deals with
More informationRobust Performance Example #1
Robust Performance Example # The transfer function for a nominal system (plant) is given, along with the transfer function for one extreme system. These two transfer functions define a family of plants
More informationAnalyzing the Stability Robustness of Interval Polynomials
1 Analyzing the Stability Robustness of Interval Polynomials Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Correspondence concerning this paper should be sent to
More informationDecentralized Feedback Structures of a Vapor Compression Cycle System
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 1, JANUARY 2010 185 Decentralized Feedback Structures of a Vapor Compression Cycle System Neera Jain, Bin Li, Michael Keir, Brandon Hencey,
More informationEECE 460. Decentralized Control of MIMO Systems. Guy A. Dumont. Department of Electrical and Computer Engineering University of British Columbia
EECE 460 Decentralized Control of MIMO Systems Guy A. Dumont Department of Electrical and Computer Engineering University of British Columbia January 2011 Guy A. Dumont (UBC EECE) EECE 460  Decentralized
More informationThe parameterization of all. of all twodegreeoffreedom strongly stabilizing controllers
The parameterization stabilizing controllers 89 The parameterization of all twodegreeoffreedom strongly stabilizing controllers Tatsuya Hoshikawa, Kou Yamada 2, Yuko Tatsumi 3, Nonmembers ABSTRACT
More information3.1 Overview 3.2 Process and controlloop interactions
3. Multivariable 3.1 Overview 3.2 and controlloop interactions 3.2.1 Interaction analysis 3.2.2 Closedloop stability 3.3 Decoupling control 3.3.1 Basic design principle 3.3.2 Complete decoupling 3.3.3
More informationLecture 9: Input Disturbance A Design Example Dr.Ing. Sudchai Boonto
DrIng Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand d u g r e u K G y The sensitivity S is the transfer function
More informationLecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:3012:30
289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (23 sessions) Final Exam on 12/21/2015 (Monday)10:3012:30 Today: Recap
More informationMechatronics Assignment # 1
Problem # 1 Consider a closedloop, rotary, speedcontrol system with a proportional controller K p, as shown below. The inertia of the rotor is J. The damping coefficient B in mechanical systems is usually
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationROBUST CONTROL SYSTEM DESIGN FOR SMALL UAV USING H2OPTIMIZATION
Technical Sciences 151 ROBUST CONTROL SYSTEM DESIGN FOR SMALL UAV USING H2OPTIMIZATION Róbert SZABOLCSI Óbuda University, Budapest, Hungary szabolcsi.robert@bgk.uniobuda.hu ABSTRACT Unmanned aerial vehicles
More informationDesign of decoupler for an interacting tanks system
IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) eissn: 781676,pISSN: 33331, Volume 7, Issue 4 (Sep.  Oct. 13), PP 4853 Design of decoupler for an interacting tanks system Parag
More information1 Loop Control. 1.1 Openloop. ISS0065 Control Instrumentation
Lecture 4 ISS0065 Control Instrumentation 1 Loop Control System has a continuous signal (analog) basic notions: openloop control, closeloop control. 1.1 Openloop Openloop / avatud süsteem / открытая
More informationComparative analysis of decoupling control methodologies and multivariable robust control for VSVP wind turbines
Comparative analysis of decoupling control methodologies and multivariable robust control for VSVP wind turbines Sergio Fragoso, Juan Garrido, Francisco Vázquez Department of Computer Science and Numerical
More informationFEL3210 Multivariable Feedback Control
FEL3210 Multivariable Feedback Control Lecture 5: Uncertainty and Robustness in SISO Systems [Ch.7(8)] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 5:Uncertainty and Robustness () FEL3210 MIMO
More informationCHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER
114 CHAPTER 5 ROBUSTNESS ANALYSIS OF THE CONTROLLER 5.1 INTRODUCTION Robust control is a branch of control theory that explicitly deals with uncertainty in its approach to controller design. It also refers
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationAutomatic Control Systems theory overview (discrete time systems)
Automatic Control Systems theory overview (discrete time systems) Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations
More informationProcess Modelling, Identification, and Control
Jan Mikles Miroslav Fikar 2008 AGIInformation Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Process Modelling, Identification, and
More informationChapter 9 Robust Stability in SISO Systems 9. Introduction There are many reasons to use feedback control. As we have seen earlier, with the help of a
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Robust
More informationAvailable online at ScienceDirect. Procedia Engineering 100 (2015 )
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 100 (015 ) 345 349 5th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM 014 Control of Airflow
More informationFall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian. NTUEE Sep07 Jan08
Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian NTUEE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.
More informationH inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case study on the Longitudinal Dynamics of Hezarfen UAV
Proceedings of the 2nd WSEAS International Conference on Dynamical Systems and Control, Bucharest, Romania, October 1617, 2006 105 H inf. Loop Shaping Robust Control vs. Classical PI(D) Control: A case
More informationHANKELNORM BASED INTERACTION MEASURE FOR INPUTOUTPUT PAIRING
Copyright 2002 IFAC 15th Triennial World Congress, Barcelona, Spain HANKELNORM BASED INTERACTION MEASURE FOR INPUTOUTPUT PAIRING Björn Wittenmark Department of Automatic Control Lund Institute of Technology
More informationDECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER
th June 4. Vol. 64 No. 54 JATIT & LLS. All rights reserved. ISSN: 998645 www.jatit.org EISSN: 87395 DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER
More informationMethods for analysis and control of. Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March
More informationProblem Set 4 Solution 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 4 Solution Problem 4. For the SISO feedback
More informationMultivariable MRAC with State Feedback for Output Tracking
29 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 112, 29 WeA18.5 Multivariable MRAC with State Feedback for Output Tracking Jiaxing Guo, Yu Liu and Gang Tao Department
More informationRichiami di Controlli Automatici
Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici
More informationCDS 101/110a: Lecture 101 Robust Performance
CDS 11/11a: Lecture 11 Robust Performance Richard M. Murray 1 December 28 Goals: Describe how to represent uncertainty in process dynamics Describe how to analyze a system in the presence of uncertainty
More informationTHE PARAMETERIZATION OF ALL ROBUST STABILIZING MULTIPERIOD REPETITIVE CONTROLLERS FOR MIMO TD PLANTS WITH THE SPECIFIED INPUTOUTPUT CHARACTERISTIC
International Journal of Innovative Computing, Information Control ICIC International c 218 ISSN 13494198 Volume 14, Number 2, April 218 pp. 387 43 THE PARAMETERIZATION OF ALL ROBUST STABILIZING MULTIPERIOD
More informationChapter 7 Interconnected Systems and Feedback: WellPosedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected
More informationPole Placement Design
Department of Automatic Control LTH, Lund University 1 Introduction 2 Simple Examples 3 Polynomial Design 4 State Space Design 5 Robustness and Design Rules 6 Model Reduction 7 Oscillatory Systems 8 Summary
More informationSMITH MCMILLAN FORMS
Appendix B SMITH MCMILLAN FORMS B. Introduction Smith McMillan forms correspond to the underlying structures of natural MIMO transferfunction matrices. The key ideas are summarized below. B.2 Polynomial
More informationMULTIVARIABLE ZEROS OF STATESPACE SYSTEMS
Copyright F.L. Lewis All rights reserved Updated: Monday, September 9, 8 MULIVARIABLE ZEROS OF SAESPACE SYSEMS If a system has more than one input or output, it is called multiinput/multioutput (MIMO)
More informationGAIN SCHEDULING CONTROL WITH MULTILOOP PID FOR 2 DOF ARM ROBOT TRAJECTORY CONTROL
GAIN SCHEDULING CONTROL WITH MULTILOOP PID FOR 2 DOF ARM ROBOT TRAJECTORY CONTROL 1 KHALED M. HELAL, 2 MOSTAFA R.A. ATIA, 3 MOHAMED I. ABU ELSEBAH 1, 2 Mechanical Engineering Department ARAB ACADEMY
More informationFeedback Control of Linear SISO systems. Process Dynamics and Control
Feedback Control of Linear SISO systems Process Dynamics and Control 1 OpenLoop Process The study of dynamics was limited to openloop systems Observe process behavior as a result of specific input signals
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design
AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationChapter Robust Performance and Introduction to the Structured Singular Value Function Introduction As discussed in Lecture 0, a process is better desc
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter Robust
More informationAdditional ClosedLoop Frequency Response Material (Second edition, Chapter 14)
Appendix J Additional ClosedLoop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. ClosedLoop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain
More informationModel Uncertainty and Robust Stability for Multivariable Systems
Model Uncertainty and Robust Stability for Multivariable Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Representing model uncertainty.
More informationChapter 2 Review of Linear and Nonlinear Controller Designs
Chapter 2 Review of Linear and Nonlinear Controller Designs This Chapter reviews several flight controller designs for unmanned rotorcraft. 1 Flight control systems have been proposed and tested on a wide
More informationAnalysis of multivariable controller designs for diesel engine air system control
Graduate Theses and Dissertations Graduate College 2013 Analysis of multivariable controller designs for diesel engine air system control Daniel Albert Humke Iowa State University Follow this and additional
More informationSecond Edition This version: August 29, 2001
MULTIVARIABLE FEEDBACK CONTROL Analysis and design Sigurd Skogestad Norwegian University of Science and Technology Ian Postlethwaite University of Leicester Second Edition This version: August 29, 2001
More informationControl System Design
ELEC ENG 4CL4: Control System Design Notes for Lecture #14 Wednesday, February 5, 2003 Dr. Ian C. Bruce Room: CRL229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Chapter 7 Synthesis of SISO Controllers
More informationStructured Uncertainty and Robust Performance
Structured Uncertainty and Robust Performance ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Devron Profile Control Solutions Outline Structured uncertainty: motivating example. Structured
More informationLecture 13: Internal Model Principle and Repetitive Control
ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)
More informationGTPOWER linearization and engine advanced control design applications
GTPOWER linearization and engine advanced control design applications Kenny Follen Ali Borhan Ed Hodzen Cummins Inc. North American GT Conference 2016 November 1415, 2016 Michigan, USA Outline Background
More informationComputation of Stabilizing PI and PID parameters for multivariable system with time delays
Computation of Stabilizing PI and PID parameters for multivariable system with time delays Nour El Houda Mansour, Sami Hafsi, Kaouther Laabidi Laboratoire d Analyse, Conception et Commande des Systèmes
More informationROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ]
ROBUST STABILITY AND PERFORMANCE ANALYSIS* [8 # ] General control configuration with uncertainty [8.1] For our robustness analysis we use a system representation in which the uncertain perturbations are
More information(Continued on next page)
(Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic
More informationFEL3210 Multivariable Feedback Control
FEL3210 Multivariable Feedback Control Lecture 6: Robust stability and performance in MIMO systems [Ch.8] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 6: Robust Stability and Performance () FEL3210
More informationAnalysis of SISO Control Loops
Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities
More informationMethods for analysis and control of dynamical systems Lecture 4: The root locus design method
Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsalab, CNRSINPG, FRANCE Olivier.Sename@gipsalab.inpg.fr www.gipsalab.fr/ o.sename 5th February 2015 Outline
More informationImproving Inferential Performance of Flexible Motion Systems. S.L.H. Verhoeven
Improving Inferential Performance of Flexible Motion Systems S.L.H. Verhoeven DCT Report 2.6 APT5366 Master of Science Thesis Committee: Dr. ir. M.M.J. van de Wal (main supervisor) Dr. ir. J.J.M. van
More informationLecture 6. Chapter 8: Robust Stability and Performance Analysis for MIMO Systems. Eugenio Schuster.
Lecture 6 Chapter 8: Robust Stability and Performance Analysis for MIMO Systems Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 6 p. 1/73 6.1 General
More informationOptimizing simultaneously over the numerator and denominator polynomials in the YoulaKučera parametrization
Optimizing simultaneously over the numerator and denominator polynomials in the YoulaKučera parametrization Didier Henrion Vladimír Kučera Arturo MolinaCristóbal Abstract Traditionally when approaching
More informationTrajectory tracking & Pathfollowing control
Cooperative Control of Multiple Robotic Vehicles: Theory and Practice Trajectory tracking & Pathfollowing control EECI Graduate School on Control Supélec, Feb. 2125, 2011 A word about T Tracking and
More informationLinear State Feedback Controller Design
Assignment For EE5101  Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University
More information