Effect of Uniform Horizontal Magnetic Field on Thermal Instability in A Rotating Micropolar Fluid Saturating A Porous Medium


 Sherman Merritt
 1 years ago
 Views:
Transcription
1 IOSR Journal of Mathematics (IOSRJM) eissn: , pissn: X. Volume, Issue Ver. III (Jan.  Fe. 06), Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar Fluid Saturating orous Medium Bhupander Singh, Department of Mathematics,Meerut College, Meerut U.. INDI5ooo stract: This paper deals with the theoretical investigation of thermal instaility of a thin layer of electrically nonconducting, incompressile, rotating micropolar fluid saturating a porous medium in the presence of horizontal magnetic heated from elow. dispersion relation is otained for a flat fluid layer contained etween two free oundaries using a linear staility analysis theory and normal mode analysis method. The influence of various parameters like medium permeaility, rotation, coupling parameter, micropolar coefficient, magnetic field and micropolar heat conduction parameter has een analyzed on the onset of stationary convection and results are depicted graphically. The principle of exchange (ES) is found valid. The sufficient condition for nonexistence of overstaility are also otained. Keywords: Thermal Instaility; Micropolar Fluid; Horizontal Magnetic Fluid; Rotation; orous Medium I. Introduction Eringen[] was the first who introduced a continuum theory of microfluids in 964 which takes into account the local motions and deformations of the sustructure of the fluid. Compared to the classical Newtonian fluids, micropolar fluids are characterized y two supplementary variales such as the spin and microinertia tensor. Microrotation takes place due to spin whereas the microinertia tensor descries the distriutions of atoms and molecules inside the fluid elements. Moreover, the stress tensor in no longer symmetric. Liquid crystals, colloidal fluids, lood etc. are examples of micropolar fluids. Thermal effects in microfluids have also een discussed y Eringen[] and Kazakia et. al[0]. Sastry and Rao[9] discussed the staility of a hot rotating micropolar fluid layer etween two rigid oundaries without taking into account the rotation effect in the angular momentum equation. On the other hand Bhattacharyya and as[8] took into account the rotation effect in oth momentum equations with free oundaries. Sastry and Rao[9] noticed that when the fluid is heated from elow, the rotation of the system delays the onset of staility. Further, for small or moderate values of Taylor numer T, the system is more stale as the micropolar parameter increases. Y. Qin and.n. Kaloni[] studied the effect of rotation on thermal convection in micropolar fluid and found that the effect of rotation in a stationary convection is stailizing and that higher the values of the micropolar parameters, the more the stailizing effect. For overstaility to e possile, r (andtl numer) must e less than / ( k), where k is a coupling parameter. Sharma and Kumar[3] studied the effect of rotation on thermal convection in micropolar fluid in nonporous medium and found that the presence of coupling etween thermal and micropolar effects and uniform rotation may introduce oscillatory modes in the system. Sharma and Kumar[4] studied the effect of rotation on thermal convection in micropolar fluid in porous medium and found that the presence of rotation and coupling etween spin and heat fluxes may ring overstaility in the system and the medium permeaility also rings in overstaility in the system. The permeaility has a stailizing effect on stationary convection. Sharma and Kumar[5, 6] also studied the effect of magnetic field on the micropolar fluids heated from elow in a nonporous and porous medium, they found that in the presence of various coupling parameters, the magnetic field has a stailizing effect whereas the medium permeaility has destailizing effect on stationary convection. Reena and Rana[7] have studied the thermal convection of rotating micropolar fluid in hydromagnetic saturating a porous medium, they took the vertical magnetic field and found that the oscillatory modes are introduced due to the presence of rotation and magnetic field. For stationary convection, the medium permeaility has destailizing effect under the condition 8 H and the magnetic field has a stailizing effect under the condition andtl numer. and H 8, where is the magnetic DOI: / age
2 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. II. Mathematical Formulation In this prolem, we consider an infinite, horizontal, electrically nonconducting, incompressile micropolar fluid layer of thickness d. This layer is heated from elow such that the lower oundary is held at constant temperature T T and the upper oundary is held at fixed temperature 0 T T so that T 0 T, therefore a uniform temperature gradient dt is maintained. The physical structure of the prolem is one of infinite dz extent in x and y directions ounded y the planes z 0 and z d. The fluid layer is assumed to e flowing through an isotropic and homogeneous porous medium of poricity and the medium permeaility, which is acted upon y a uniform rotation (0, 0, 0) and gravity field g (0, 0, g). uniform magnetic field H ( H0, 0, 0) is applied along xaxis. The magnetic Raynold numer is assumed to very small so that the induced magnetic field can e neglected in comparison to the applied field. We also assumed that oth the oundaries are free and no external couples and the heat sources are present. Fig. The equations governing the motion of micropolar rotating fluids saturating a porous medium following Boussinesq approximation are as follows : The equation of continuity for an incompressile fluid is. q 0...() The equation of momentum, following Darcy law, is given y o q (. ) p g eˆ q q t z q N o e ( q Ω) ( H) H...() 4 The equation of internal momentum is given y o i N ( q. ) N ( ) (. N) N q N...(3) t The equation of energy is given y T ocv scs ( ) o Cv ( q. ) T T T ( N ). T...(4) t and the equation of state is o [ ( T T0 )]...(5) Where q, N, p,, o, s,,, e,, j,,,, T, t, T,,, To, Cv, Cs and e ˆz denote respectively filter velocity, microrotation, pressure, fluid density, reference density, density of solid matrix, fluid viscosity, coupling viscosity coefficient, magnetic permeaility, medium permeaility, microinertia coefficient, micropolar viscosity coefficients, temperature, time, thermal conductivity, micropolar heat conduction coefficient, coefficient of thermal expansion, reference temperature, specific heat at constant volume, specific heat of solid matrix and unit vector along zdirection. The Maxwell s equations ecome H ( q H) m H...(6) t and. H 0...(7) where m is the magnetic viscosity. III. Basic State Of The olem The asic state of the prolem is taken as q q (0, 0, 0), N N (0, 0, 0), Ω Ω (0, 0, 0), p p( z), ( z) and HH H0 (, 0, 0) DOI: / age
3 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. Using this asic state, equations () to (7) yield dp g 0 dz...(8) T z T 0...(9) and o ( z)...(0) IV. Dispersion Relation Making use of the following perturations q q q, N N N,, T T, H H h and following non dimensional variales and dropping the stars, * * * x x d, y y d, z z d, * T q q, N T N, o t d t *, d * d d, T * * p p, Ω Ω d od * h H o h, where T T is the thermal diffusivity, and using normal mode analysis ocv [ w, z, z,, mz, hz ] [ W( z), X( z), G( z), ( z), M( z), B( z)] exp[ ikx iky t] Where is the staility parameter which is, in general, a complex constant and a k k is the wave numer and eliminating X, G,, M and B we have ( K) ( D a K ) W Ra E r ( D a ) W δ δ C( D a ) K ( D a ) W K K ( D a ) j C ( D a ) K W 0 K ( K ) j C ( D a ) K ( D a ) K 0 kx Q ( D a ) D W kx Q ( D a ) ( D a ) W m m.() V. Boundary Conditions Here, we consider the case when oth oundaries are free as well as eing perfect conductor of heat, while the adjoining medium is perfectly conducting, then we have w w 0, N 0 at z 0 and z and ( N ) z 0 at z 0,...() z The oundary conditions () now ecome W D W 0 DX M, 0, DB 0 at z 0 and lso DM 0, B 0 on a perfectly conducting 3 oundary also D 0, D G 0, D M 0, D B 0, 3 D X 0 at z 0 and z x y...(3) From equation (3), we oserve that ( n) D W 0, n is a positive integer at z 0, Therefore the proper solution W characterizing the lowest mode is W W 0 sin z, Where W 0 is a constant. Sustituting for W in equation (), we have E ( K ) [ C K ] r r m K r r k x Q C K j ( ) r K C K m K j m r j K r r k x Q C K j m r δ K Ra j C K ( ) r K C K m K j m K r r k x Q C K j m Where a 4 0 E r r C K E m j...(4) DOI: / age
4 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. VI. Stationary Convection For stationary marginal state we put 0 in (4), we get ( ) r K K C K kx Q [ C K ] m m ( ) r K K C K kx Q [ C K ] m m K δ ( ) [ ] r K 40 Ra C K K C k [ ( )[ ] r k x Q C K m C K m m m When Q 0 (in the asence of magnetic field), we have K K ( K)( C K) ( K)( C K) 40 ( C K) R a K δ K C K ( K)( C K) When 0 0 (In the asence of rotation) we have K ( K )( C K ) R a δk ( C K)..(5)..(6)...(7) When 0 (In the asence of coupling etween spin and heat fluxes), equation (7) reduces to the expression otained y Sharma and Kumar (997). From (5), we get m ( K) ( ) K k x Q ( ) 4 0 ( ) R m a ( δ ) ( K) ( ) K k x Q ( ) Where K C...(8) To investigate the effects of medium permeaility K, rotation 0, coupling parameter K, micro coefficient, magnetic field Q, and micropolar heat conduction parameter δ, we examine the ehaviour of dr dr dr dr dr dr,,,,, analytically. d d0 dk d dq dδ From (8), we otain m ( K) ( ) K k x Q ( ) ( K) ( ) ( K) ( ) 3 m ( K) ( ) K k x Q ( ) r 4 0( ) dr dk a ( δ ) ( m K) ( ) K k x Q ( ) Thus, the medium permeaility has a destailizing effect when δ and 0 max.{, } Q. mkx...(9) In the asence of micropolar heat conduction parameter ( δ 0) and rotation ( 0 0), equation (9) reduces to dr ( K)( ) ( K) dk a ( ) a DOI: / age
5 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. Which is always negative, thus in this case the medium permeaility always has a destailizing effect on the system for stationary convection in porous medium whatever the strength of magnetic field is applied. In the asence of rotation ( 0 0), equation (9) reduces to dr ( K)( ) dk a ( ) dr 0 dk if dr δ and 0 if δ d Thus, the medium permeaility may have dual role in the asence of rotation whatever the strength of magnetic field is applied. In the asence of magnetic field ( Q 0), equation (9) reduces to ( K)( ) ( K)( ) K 4 0( ) K dr K dk a ( δ ) ( ) ( K) K K Thus, in the asence of magnetic field the medium permeaility has destailizing effect when From (8), we have max.{ δ, } and 0 ( ) dr 8 0 ( ) d 0 a ( δ ) m ( K)( ) K k x Q( )...(0) Thus, the rotation has destailizing effect if max.{ δ, k}. Whatever the magnetic field is applied. In the asence of micropolar heat conduction parameter ( δ 0), equation (0) reduces to dr 8 0 ( ) d0 m a ( K)( ) K k x Q( ) Thus, the rotation has stailizing effect when k, whatever the strength of magnetic field is applied in the asence of micropolar heat conduction parameter. From (8), we have m dr mk x( ) ( K) ( ) K k x Q ( ) 4 0 ( ) K dq a ( δ ) m ( K) ( ) K k x Q ( ) r..() Thus, the magnetic field has a stailizing effect when max. { δ, k} and 0 Q. k In the asence of micropolar heat conduction parameter ( δ 0) and rotation ( 0 0), we have dr dq mk x 0, a which is always positive, therefore, the magnetic field has a stailizing effect, whatever the strength of magnetic field is applied. From (8), we have m x DOI: / age
6 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. dr dk m ( K) ( ) K k x Q ( ) ( ) K 4 0( ) a ( δ ) m ( K) ( ) k k x Q( ) r Thus, the coupling parameter has stailizing effect for all 0 In the asence of rotation ( 0 0), equation () reduces to ( ) dr K dk a ( ) K if max., K...() δ, and 0 Q. mkx Thus the coupling parameter has a stailizing effect if max.{ δ, }. Whatever the strength of magnetic field is applied. In the asence of magnetic field ( Q 0), the equation () reduces to ( ) ( K)( ) K 4 ( ) K 0 dr dk a ( δ ) ( K)( ) K k Thus, in the asence of magnetic field, the coupling parameter has a stailizing effect if max.{ δ, } and 0 ( ) From (8),we have m ( δ ) ( K) K k x Q m ( K) ( ) K k x Q ( ) 4 0( ) 4 0 ( ) ( 4 δ δ ) m ( K) ( ) K k x Q ( ) 3 dr m ( δ ) ( K) ( ) K k x Q ( ) r d K...(3) a m ( δ ) ( K) ( ) K k x Q ( ) Thus, the micropolar coefficient has a stailizing effect if ( K) δ, K and 0 Q K mkx In this asence of rotation ( 0 0), equation (3) reduces to m ( δ ) ( K) K k x Q m ( δ ) ( K)( ) K k x Q( ) dr d a ( δ ) Thus, the micropolar coefficient has a stailizing effect in the asence of rotation if δ and ( K), whatever the strength of magnetic field is applied. K In the asence of micropolar heat conduction parameter ( δ 0), equation (3) reduces to DOI: / age
7 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. 4 K ( K) ( ) K m kx Q ( ) 4 0 ( ) dr r d a ( ) ( K) ( ) K m K k x Q( ) Thus, the micropolar coefficient has destailizing effect in the asence of micropolar heat conduction parameter ( δ 0) if ( K) and o Q. K k In the asence of rotation ( 0 0) and micropolar heat conduction parameter ( δ 0) 4 dr K d a ( ) DOI: / age m x, equation (3) reduces to Which is always negative, thus in the asence of rotation and micropolar heat conduction parameter, the micropolar coefficient has destailizing effect whatever the strength of magnetic field is applied. From (8), we have m ( K)( ) K k x Q ( ) r dr 4 0 ( ) d m a ( δ ) ( K)( ) K k x Q( ) Thus, the micrpolar heat conduction parameter has a stailizing effect if VII. Oscillatory Convection Equation (4) can e rewritten as [ ] ( )( l )( ) K( ) ( l ) m m 3 δ Ra ( m ) l ( )( l )( m ) k ( m ) 3 ( l ) Where ( K). K 4 0( )( l ) ( m )...(4) j K Kx Q m K E, ( K), l,, 3, K C C C ut i i in (4) and separating real and imaginary parts, we have ( ) i 4 0 ( 5 6) 5 6 i R a ( 3 4 ) and i( ) 4 0 i( 5 6) 56 R a ( 3 4 ) Where ( )( ) K ( l) l 3 m i i 3 ( l ) i m ( ) i ( 3 l Km ) i lm i δ 3 lm i δ δ 4 li m i l m i 5 ( ) lm i 6 m ( ) i li m ( ) l i Eliminating R etween (5) and (6), we get ( 3 4 ) ( ) i 4 0 ( ( 3 4 ) i( ) 4 0 i( 5 6) 5 6 i...(5)...(6)
8 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. fter putting the expressions for,, 3, 4, 5 and 6, we otain a0 i a i ai a3i a4i a5 0 or i 0 Where δ m a0 l m l m ( m l) l m m l...(7) δ l m 4 4 l m ( m lm ) l m ( m ) l m ( l m ) 4 δ δ a l m ( m l) l m ( m l) m l l m ( m l) δ 3 l m ( m l) lm ( m l) l m lm ( m l) l m δ m l l δ m 3l m δ l m ( m l)( l ) l m ( m l) l m ( l ) m l δ l m ( l ) m ( m l) lm ( K) l m ( l ) m ( m l)( l ) ( m l)( m Km δ l m m ( m l) ( m l)( l ) m l m δ m l lm 3( m l) ( l ) m 3 l m m ( l m Km) l m 3 l m ( l m Km ) ( l ) m l l m l l m l l m 3 ( ) ( ) ( ) l m ( m l)( m 3 l) ( l ) m ( l m Km δ lm ( l ) m l m 4 m ( m l)( l) δ lm 3( l ) m ( m l) 3 l m m l ( m 3 l) 3 3 m l m Km 3 l m ( m 3l ) l m 3 l m m 3 l l 3 3 ( ) 3 ( )( ) ( ) ( ) 3 3 lm m l m lm l m 3 l m ( m ( m 3 l) 4 0 l 3 m 3 ( m l) l m l δ m 8 0 l m ( m l) 4 0l m l m ( l ) 8 0 l m 6 0 l m Similarly a, a3, a4, a 5 are defined as the coefficients of i, i, i and i in equation (7). Let i r, then equation (7) ecomes a0r ar ar a3r a4r a5 0...(8) Since r, which is always positive, so that the sum of roots of equation (8) is positive ut this is impossile i a if a0 0 and a 0, ecause the sum of roots of equation (8) is 0 a. Thus, a0 0 and a 0 are the sufficient conditions for the nonexistence of overstaility. Clearly, a0 0 and DOI: / age
9 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. E 4 0 if rk a δ, E δ 6 K, 0 m, ( K) 3 E /3 0l min, 0 E 0δ 0 ( m ) 4 0 r and max., min r Q, 3kx m 0kx m 3l kx m 3 kx m...(9) Hence for the conditions given in (9), overstaility cannot occur and the principle of exchange of staility (ES) is valid. VIII. Conclusions: For stationary Convection :. The critical Rayleigh numer increases as the medium permeaility decreases when 0 Q k m x max.{ δ, } and, thus the medium permeaility has a destailizing effect (see figure ). In the asence of rotation and micropolar heat conduction, the medium permeaility has destailizing effect whatever the strength of magnetic field is applied(see figure 3). In the asence of rotation, the critical Rayleigh numer increases as the medium permeaility decreases when δ and the critical Rayleigh numer increases as the medium permeaility increases when δ, thus, in the asence of rotation the medium permeaility may have dual role, whatever the strength of magnetic field is applied (see figure 4). In the asence of magnetic field, the medium permeaility has destailizing effects according to the conditions max.{ δ, }, 0 (see figure 5). ( ). When δ, the critical Rayleigh numer increases with the decreasing of rotation, thus the max.{, } rotation has destailizing effect when max.{ δ, }, whatever the magnetic field is applied (see figure 6 ) In the asence of micropolar heat conduction parameter, the rotation has stailizing effect when (see figure 7). 3. When max.{ δ, } and 0 Q, the critical Rayleigh numer increases with the increasing of k m x Chandrashekhar numer, thus the magnetic field has a stailizing effect when max.{ δ, } and 0 Q (see figure 8).In the asence of micropolar heat conduction parameter and rotation, the k m x magnetic field also has a stailizing effect without any condition (see figure 9). 4. When max.{, } and 0 Q, the coupling parameter has a stailizing effect (see figure 0). In k m x the asence of magnetic field, the coupling parameter has a stailizing effect when max.{ δ, } and 0 (see figure ).In the asence of rotation, the coupling parameter has a stailizing effect ( ) when max.{ δ, } ( see figure ). 5. When ( K) δ, K and 0 Q, the critical Rayleigh numer increases with the K k m x increasing of micropolar coefficient, thus, the micropolar coefficient has a stailizing effect under the aove conditions (see figure 3). In the asence of rotation, the micropolar coefficient has a stailizing effect when ( K) δ and, whatever the strength of magnetic field is applied. In the asence of K micropolar heat conduction parameter, the micropolar coefficient has destailizing effect when K DOI: / age
10 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. ( K) 0 and r K Q. In the asence of rotation and micropolar heat conduction parameter, the K k m x micropolar coefficient has destailizing effect without any condition. 6. When ( K), the critical Rayleigh numer increases as the micropolar heat conduction parameter K increases, thus, the micropolar heat conduction parameter has a stailizing effect if ( K). K For oscillatory Convection : The sufficient conditions for the nonexistence of overstaility are given y conditions (9). References []..C. Eringen, Theory of thermomicrofluids, J. Math. nal. ppl., vol. 38, pp. 480, (97). []..C. Eringen, Int. J. Eng. Sci., 89, (964). [3]. R.C. Sharma and. Kumar, Effect of rotation on thermal convection in micropolar fluids, Int. J. Engg. Sci., vol. 3(3), pp , (994). [4]. R.C. Sharma and. Kumar, Effect of rotation on thermal convection in micropolar fluids in porous medium, Int. J. ure ppl. Math. 9, 95 (998). [5]. R.C. Sharma and. Kumar, On micropolar fluids heated from elow in hydromagnetics, J. NonEquilirium Thermodynamics, vol. 0, pp , (995). [6]. R.C. Sharma and. Kumar, On micropolar fluids heated from elow in hydromagnetic in porous medium, Czech. J. hys, 47, 647 (997). [7]. Reena and U.S. Rana, Thermal convection of rotating micropolar fluid in hydromagnetic saturating a porous medium, IJE Transaction, 375, (008). [8]. S.. Battacharyya and M. as, Int. J. Eng. Sci. 3, 37 (985). [9]. V.U.K. Shastry and V.R. Rao, Int. J. Eng. Sci. 5, 449 (983). [0]. Y. Kazakia and T. riman, Heat conducting micropolar fluids, Rheol. cta, 0, 39 (97). []. Y. Qin and.n. Kaloni, thermal instaility prolem in a rotating micropolar fluid, Int. J. Eng. Sci. 30, 7 (99). List of Figures Fig.: Marginal instaility curve for the variation of R v/s K (Medium permeaility) for =0.5, r =, m =4, k x =0.05, δ =0.05, K=, =0.5, a=. Fig. 3: Marginal instaility curve for the variation of R v/s K (Medium permeaility) for =0.5, =0.5, K=, δ =0, Ω 0 =0, r =, m =4, k x =0.05, a= DOI: / age
11 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. Fig. 4: Marginal instaility curve for the variation of R v/s K (Medium permeaility) for r =, m =4, K=, k x =0.05, Ω 0 =0. δ =0.05, Q=45000, Fig. 5: Marginal instaility curve for the variation of R vs K (Medium permeaility) for δ =0.05, Q=0, r =, m =4, K=, k x =0.05, Ω 0 =0.5, =0.5, =0.5. Fig. 6: Marginal instaility curve for the variation of R vs Ω 0 (Rotation) for =0.5, =0.5, K=, k x =0.05, r =, m =4, δ =0.05, K =0.03, Q= DOI: / age
12 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. Fig. 7: Marginal instaility curve for the variation of R vs Rotation ( Ω 0 ) for =0.05, =0.5, r =, m =4, K=, K =0.03, δ =0, Q=45000, k x =0.05. Fig. 8: Marginal instaility curve for the variation of R vs Q for the =0.05, =0.5, r =, m =4, K=, k x =0.05, K =0.03, δ =0.05, Ω 0 =0. Fig. 9: Marginal instaility curve for the variation of R v/s Q for the =0.5, =0.5, r =, m =4, K=, K =0.03, δ =0, Ω 0 =0, k x =0.05. DOI: / age
13 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. Fig.0: Marginal instaility curve for the variation of R v/s K for =0.5, =0.5, K =0.03, k x =0.05, δ =0.05, r =, m =4, Ω 0 =0, Q= Fig.: Marginal instaility curve for the variation of R v/s K for =0.5, =0.5, K =0.03, k x =0.05, δ =0.05, r =, m =4, Ω 0 =0, Q= Fig. : Marginal instaility curve for the variation of R vs K for =0.5, =0.5, K =0.03, δ =0.05, 0 Ω =0.5, r =, m =4, k x =0.05, Q=0. DOI: / age
14 Effect of Uniform Horizontal Magnetic Field on Thermal Instaility in Rotating Micropolar. Fig. 3: Marginal instaility curve for the variation of R v/s δ (Micropolar heat conduction parameter) for =0.5, =0.5, r =, m =4, K=, K =0.03, k x =0.05, Q=45000, Ω 0 =0. DOI: / age
On Temporal Instability of Electrically Forced Axisymmetric Jets with Variable Applied Field and Nonzero Basic State Velocity
Availale at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 19966 Vol. 6, Issue 1 (June 11) pp. 7 (Previously, Vol. 6, Issue 11, pp. 1767 178) Applications and Applied Mathematics: An International Journal
More informationUNSTEADY POISEUILLE FLOW OF SECOND GRADE FLUID IN A TUBE OF ELLIPTICAL CROSS SECTION
THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume, Numer 4/0, pp. 9 95 UNSTEADY POISEUILLE FLOW OF SECOND GRADE FLUID IN A TUBE OF ELLIPTICAL CROSS SECTION
More informationEffect of Rotation on TripleDiffusive Convection. in a Magnetized Ferrofluid with Internal Angular. Momentum Saturating a Porous Medium
Applied Mathematical Sciences, Vol. 6, 2012, no. 65, 32453258 Effect of Rotation on TripleDiffusive Convection in a Magnetized Ferrofluid with Internal Angular Momentum Saturating a Porous Medium Suresh
More informationEngineering Thermodynamics. Chapter 3. Energy Transport by Heat, Work and Mass
Chapter 3 Energy Transport y Heat, ork and Mass 3. Energy of a System Energy can e viewed as the aility to cause change. Energy can exist in numerous forms such as thermal, mechanical, kinetic, potential,
More informationCorresponding Author: Kandie K.Joseph. DOI: / Page
IOSR Journal of Mathematics (IOSRJM) eissn: 22785728, pissn: 2319765X. Volume 13, Issue 5 Ver. 1 (Sep.  Oct. 2017), PP 3747 www.iosrjournals.org Solution of the NonLinear Third Order Partial Differential
More informationCHAPTER 2 THERMAL EFFECTS IN STOKES SECOND PROBLEM FOR UNSTEADY MICROPOLAR FLUID FLOW THROUGH A POROUS
CHAPTER THERMAL EFFECTS IN STOKES SECOND PROBLEM FOR UNSTEADY MICROPOLAR FLUID FLOW THROUGH A POROUS MEDIUM. Introduction The theory of micropolar fluids introduced by Eringen [34,35], deals with a class
More informationExact Shape Functions for Timoshenko Beam Element
IOSR Journal of Computer Engineering (IOSRJCE) eiss: 7866,pISS: 78877, Volume 9, Issue, Ver. IV (May  June 7), PP  www.iosrjournals.org Exact Shape Functions for Timoshenko Beam Element Sri Tudjono,
More informationStability Domain of a Linear Differential Equation with Two Delays
ELSEVIER An International Journal Availale online at www.sciencedirect.com computers &.c,..c. ~~c,..c.. mathematics with applications Computers and Mathematics with Applications 51 (2006) 153159 www.elsevier.com/locate/camwa
More informationParash Moni Thakur. Gopal Ch. Hazarika
International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 6, June 2014, PP 554566 ISSN 2347307X (Print) & ISSN 23473142 (Online) www.arcjournals.org Effects of
More informationKabita Nath Department of Mathematics Dibrugarh University Dibrugarh, Assam, India
Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Separation of a Binary Fluid Mixture in MHD Natural Convection Flow in Porous Media B.R.Sharma Department of Mathematics Dibrugarh
More informationEffect of Gravity Modulation and Internal Heat Generation on RayleighBénard Convection in Couple Stress Fluid with MaxwellCattaneo Law
Effect of Gravity Modulation and Internal Heat Generation on RayleighBénard Convection in Couple Stress Fluid with MaxwellCattaneo Law Maria Thomas Research scholar, Department of Mathematics, CHRIST
More informationMODELING AND SIMULATION OF FREE FLUID OVER A POROUS MEDIUM BY MESHLESS METHOD
6th uropean Conference on Computational echanics (CC 6) 7th uropean Conference on Computational Fluid Dynamics (CFD 7) 5 June 8, Glasgow, UK ODLING AND SIULATION OF FR FLUID OVR A POROUS DIU BY SLSS TOD
More informationA Stable and Convergent Finite Difference Scheme for 2D Incompressible Nonlinear Viscoelastic Fluid Dynamics Problem
Applied and Computational Mathematics 2018; (1): 1118 http://www.sciencepulishinggroup.com/j/acm doi: 10.11648/j.acm.2018001.12 ISSN: 23285605 (Print); ISSN: 23285613 (Online) A Stale and Convergent
More informationThermal Convection in a CoupleStress Fluid in the Presence of Horizontal Magnetic Field with Hall Currents
Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93966 Vol. 8, Issue (June 3), pp. 677 Applications and Applied Mathematics: An International Journal (AAM) hermal Convection in a CoupleStress
More informationG. C. Hazarika 2 Department of Mathematics Dibrugarh University, Dibrugarh
Effects of Variable Viscosity and Thermal Conductivity on Heat and Mass Transfer Flow of Micropolar Fluid along a Vertical Plate in Presence of Magnetic Field Parash Moni Thakur 1 Department of Mathematics
More informationP = ρ{ g a } + µ 2 V II. FLUID STATICS
II. FLUID STATICS From a force analysis on a triangular fluid element at rest, the following three concepts are easily developed: For a continuous, hydrostatic, shear free fluid: 1. Pressure is constant
More informationOnset of convection of a reacting fluid layer in a porous medium with temperaturedependent heat source
AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2011, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153649X doi:10.5251/ajsir.2011.2.6.860.864 Onset of convection of a reacting fluid layer in
More informationHeat absorption and chemical reaction effects on peristaltic motion of micropolar fluid through a porous medium in the presence of magnetic field
Vol. 6(5), pp. 94101, May 2013 DOI: 10.5897/AJMCSR 2013.0473 ISSN 20069731 2013 Academic Journals http://www.academicjournals.org/ajmcsr African Journal of Mathematics and Computer Science Research Full
More informationSolving Homogeneous Trees of SturmLiouville Equations using an Infinite Order Determinant Method
Paper CivilComp Press, Proceedings of the Eleventh International Conference on Computational Structures Technology,.H.V. Topping, Editor), CivilComp Press, Stirlingshire, Scotland Solving Homogeneous
More informationHydromagnetic oscillatory flow through a porous medium bounded by two vertical porous plates with heat source and soret effect
Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2012, 3 (4):21692178 ISSN: 09768610 CODEN (USA): AASRFC Hydromagnetic oscillatory flow through a porous medium
More informationCombined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection
International Journal of Fluid Mechanics & Thermal Sciences 17; 3(4): 4145 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.1734.1 ISSN: 469815 (Print); ISSN: 4698113 (Online) ombined
More informationTravel Grouping of Evaporating Polydisperse Droplets in Oscillating Flow Theoretical Analysis
Travel Grouping of Evaporating Polydisperse Droplets in Oscillating Flow Theoretical Analysis DAVID KATOSHEVSKI Department of Biotechnology and Environmental Engineering BenGurion niversity of the Negev
More informationMath 216 Second Midterm 28 March, 2013
Math 26 Second Midterm 28 March, 23 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that
More informationUnsteady Magnetopolar free Convection flow embedded in a Porous Medium with Radiation and variable Suction in a Slip flow Regime
International Journal of Mathematics and Statistics Invention (IJMSI) EISSN: 2321 4767 PISSN: 23214759 Volume 1 Issue 1 ǁ Aug. 2013ǁ PP0111 Unsteady Magnetopolar free Convection flow embedded in a
More informationSection 8.5. z(t) = be ix(t). (8.5.1) Figure A pendulum. ż = ibẋe ix (8.5.2) (8.5.3) = ( bẋ 2 cos(x) bẍ sin(x)) + i( bẋ 2 sin(x) + bẍ cos(x)).
Difference Equations to Differential Equations Section 8.5 Applications: Pendulums MassSpring Systems In this section we will investigate two applications of our work in Section 8.4. First, we will consider
More informationINFLUENCE OF MICROPOLAR PARAMETERS ON THE STABILITY DOMAIN IN A RAYLEIGHBÉNARD CONVECTION PROBLEM A RELIABLE NUMERICAL STUDY
italian journal of pure and applied mathematics n. 31 2013 (49 62) 49 INFLUENCE OF MICROPOLAR PARAMETERS ON THE STABILITY DOMAIN IN A RAYLEIGHBÉNARD CONVECTION PROBLEM A RELIABLE NUMERICAL STUDY F.I.
More informationExact Free Vibration of Webs Moving Axially at High Speed
Eact Free Viration of Wes Moving Aially at High Speed S. HATAMI *, M. AZHARI, MM. SAADATPOUR, P. MEMARZADEH *Department of Engineering, Yasouj University, Yasouj Department of Civil Engineering, Isfahan
More informationTransient free convective flow of a micropolar fluid between two vertical walls
Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 20085621) Vol. 5, No. 2, 2013 Article ID IJIM00311, 9 pages Research Article Transient free convective flow of a micropolar
More informationBuckling Behavior of Long Symmetrically Laminated Plates Subjected to Shear and Linearly Varying Axial Edge Loads
NASA Technical Paper 3659 Buckling Behavior of Long Symmetrically Laminated Plates Sujected to Shear and Linearly Varying Axial Edge Loads Michael P. Nemeth Langley Research Center Hampton, Virginia National
More informationHeat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface
Heat source/sink and thermal conductivity effects on micropolar nanofluid flow over a MHD radiative stretching surface Srinivas Maripala 1 and Kishan Naikoti 2 1Department of mathematics, Sreenidhi Institute
More informationMHD Free convection flow of couple stress fluid in a vertical porous layer
Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, (6:5 ISSN: 97686 CODEN (USA: AASRFC MHD Free convection flow of couple stress fluid in a vertical porous layer
More informationTHE EFFECT OF COMPRESSIBILITY, ROTATION AND MAGNETIC FIELD ON THERMAL INSTABILITY OF WALTERS FLUID PERMEATED WITH SUSPENDED PARTICLES IN POROUS MEDIUM
Aggarwal, A. K., Verma, A.: The Effect of Compressibility, Rotation and Magnetic THERMAL SCIENCE, Year 04, Vol. 8, Suppl., pp. S539S550 S539 THE EFFECT OF COMPRESSIBILITY, ROTATION AND MAGNETIC FIELD
More informationEFFECT OF MAGNETIC FIELD ON THERMAL INSTABILITY OF A ROTATING RIVLINERICKSEN VISCOELASTIC FLUID
EFFECT OF MAGNETIC FIELD ON THERMAL INSTABILITY OF A ROTATING RIVLINERICKSEN VISCOELASTIC FLUID PARDEEP KUMAR, HARI MOHAN, AND ROSHAN LAL Received 22 February 25; Revised 6 September 25; Accepted 23 October
More informationSome Consideration in Microstretch Thermoelastic Diffusive Medium with Mass DiffusionA Review
2014 1 st International Congress on Computer, Electronics, Electrical, and Communication Engineering (ICCEECE2014) IPCSIT vol. 59 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2014.V59.17 Some
More informationOn the onset of triplediffusive convection in a layer of nanofluid
JMEH Vol. 47 No. June 6 pp 6777 OI:.59/jcamech.6.5956 On the onset o triplediusive convection in a layer o nanoluid Gian. Rana Ramesh hand Veena harma 3 hilasha harda 4 stract epartment o Mathematics
More informationDistributed control of "ball on beam" system
XI International PhD Workshop OWD 29, 17 2 Octoer 29 Distriuted control of "all on eam" system Michał Ganois, University of Science and Technology AGH Astract This paper presents possiilities of control
More informationTotal energy in volume
General Heat Transfer Equations (Set #3) ChE 1B Fundamental Energy Postulate time rate of change of internal +kinetic energy = rate of heat transfer + surface work transfer (viscous & other deformations)
More informationarxiv:physics/ v1 [physics.plasmph] 7 Apr 2006
Europhysics Letters PREPRINT arxiv:physics/6455v [physics.plasmph] 7 Apr 26 Olique electromagnetic instailities for an ultra relativistic electron eam passing through a plasma A. Bret ETSI Industriales,
More informationAnalysis of Vorticity Transport in Magnetic CoupleStress Fluid
Analysis of Vorticity Transport in Magnetic CoupleStress Fluid PARDEEP KUMAR Department of Mathematics ICDEOL Himachal Pradesh UniversitySummerhill Shimla7005 INDIA pkdureja@gmail.com VIVEK KUMAR Department
More information( ), such motions are possible, and in particular PES is valid.
Int. Jnl. of Multiphysics Volume 6 Number 4 4 A semicircle theorem in couplestress fluid in the presence of rotation Ajaib S. Banyal* Department of Mathematics Govt. College Nadaun Hamirpur (HP) INDIA
More informationlog 10 [ j/(a cm2) ]
CHEM465/865, 63, Lecture 18, Oct. 16, 6 Mass Transport Tafel plot: reduction of Mn(IV) to Mn(III) at Pt in 7.5 M H SO 4 at 98 K, various concentrations. log 1 [ /(A cm) ] E E [V] vs. SHE η = E E Corresponds
More informationBuoyancy Driven Convection in Micropolar Fluid with Controller and Variable Boundaries
Buoyancy Driven Convection in Micropolar Fluid with Controller and Variable Boundaries. F. M. MOKHTAR a,b *, I. K. KHALID a,. M. ARIFI b a Department of Mathematics Universiti Putra Malaysia 43400 UPM,
More informationSchool of Business. Blank Page
Equations 5 The aim of this unit is to equip the learners with the concept of equations. The principal foci of this unit are degree of an equation, inequalities, quadratic equations, simultaneous linear
More informationHydrodynamic and Hydromagnetic Stability of Two. Superposed Walters B' Viscoelastic Fluids. in Porous Medium
Adv. Theor. Appl. Mech., Vol. 4, 0, no. 3, 3  Hydrodynamic and Hydromagnetic Stability of Two Superposed Walters B' Viscoelastic Fluids in Porous Medium S. K. Kango Department of Mathematics, Govt. College,
More informationPropagation of Plane Waves in Microstretch Elastic Solid in Special Case
Global Journal of Pure and Applied Mathematics. ISSN 973768 Volume 3, Number 6 (7), pp. 435 Research India Publications http://www.ripublication.com Propagation of Plane Waves in Microstretch Elastic
More informationINTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 2, 2011
Volume, No, 11 Copyright 1 All rights reserved Integrated Pulishing Association REVIEW ARTICLE ISSN 976 459 Analysis of free virations of VISCO elastic square plate of variale thickness with temperature
More informationTRIPLEDIFFUSIVE CONVECTION IN WALTERS (MODEL B') FLUID WITH VARYING GRAVITY FIELD SATURATING A POROUS MEDIUM
Studia Geotechnica et Mechanica, Vol. XXXV, No. 3, 3 DOI:.478/sgem39 TRILEDIFFUSIVE CONVECTION IN WALTERS (MODEL B') FLUID WITH VARYING GRAVITY FIELD SATURATING A OROUS MEDIUM S.K. KANGO Department
More informationUnsteady Couette Flow through a Porous Medium in a Rotating System
International Journal of Computational Science and Mathematics. ISSN 9743189 Volume 2, Number 3 (21), pp. 38139 International Research Publication House http://www.irphouse.com Unsteady Couette Flow
More informationHydromagnetic Flow Near a Stagnation Point on a Stretching Sheet with Variable Thermal Conductivity and Heat Source/Sink
International Journal of Applied Science and Engineering 2013. 11, 3: 331341 Hydromagnetic Flow Near a Stagnation Point on a Stretching Sheet with Variable Thermal Conductivity and Heat Source/Sink J.
More informationState Space Solution to the Unsteady Slip Flow of a Micropolar Fluid between Parallel Plates
International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 2, Issue 10, October 2014, PP 827836 ISSN 2347307X (Print) & ISSN 23473142 (Online) www.arcjournals.org State
More informationIMPLEMENTATION OF FULLY COUPLED HEAT AND MASS TRANSPORT MODEL TO DETERMINE TEMPERTATURE AND MOISTURE STATE AT ELEVATED TEMPERATURES.
11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM ) 6th European Conference on Computational Fluid Dynamics (ECFD I) IMPLEMENTATION OF FULLY
More information1Number ONLINE PAGE PROOFS. systems: real and complex. 1.1 Kick off with CAS
1Numer systems: real and complex 1.1 Kick off with CAS 1. Review of set notation 1.3 Properties of surds 1. The set of complex numers 1.5 Multiplication and division of complex numers 1.6 Representing
More informationROUNDOFF ERRORS; BACKWARD STABILITY
SECTION.5 ROUNDOFF ERRORS; BACKWARD STABILITY ROUNDOFF ERROR  error due to the finite representation (usually in floatingpoint form) of real (and complex) numers in digital computers. FLOATINGPOINT
More informationMATH 225: Foundations of Higher Matheamatics. Dr. Morton. 3.4: Proof by Cases
MATH 225: Foundations of Higher Matheamatics Dr. Morton 3.4: Proof y Cases Chapter 3 handout page 12 prolem 21: Prove that for all real values of y, the following inequality holds: 7 2y + 2 2y 5 7. You
More informationMHD and Thermal DispersionRadiation Effects on NonNewtonian Fluid Saturated NonDarcy Mixed Convective Flow with Melting Effect
ISSN 975333 Mapana J Sci,, 3(22), 25232 https://doi.org/.2725/mjs.22.4 MHD and Thermal DispersionRadiation Effects on NonNewtonian Fluid Saturated NonDarcy Mixed Convective Flow with Melting Effect
More informationImproving gradient evaluation in Smoothed Particle Hydrodynamics
Improving gradient evaluation in Smoothed Particle Hydrodynamics Domingo García Senz José A. Escartín Antonio Relaño Ruén M. Caezón Alino Perego Matthias Lieendörfer Gradients in SPH < f r > = f r W r
More informationFirst Axisymmetric Problem of Micropolar Elasticity with Voids
International Journal of Applied ScienceResearch and Review (IJAS) www.ijas.org.uk Original Article First Axisymmetric Problem of Micropolar Elasticity with Voids Navneet Rana* Dept. of Mathematics Guru
More informationThe Use of COMSOL for Integrated Hydrological Modeling
The Use of for Integrated Hydrological Modeling Ting Fong May Chui *, David L. Freyerg Department of Civil and Environmental Engineering, Stanford University *Corresponding author: 380 Panama Mall, Terman
More informationNumerical Study of Heat Propagation in Living Tissue Subjected to Instantaneous Heating
Indian Journal of Biomechanics: Special Issue (NCBM 78 March 9) Numerical Study of Heat Propagation in Living Tissue Sujected to Instantaneous Heating P. R. Sharma 1, Sazid Ali, V. K. Katiyar 1 Department
More informationMHD MICROPOLAR FLUID FLOW THROUGH VERTICAL POROUS MEDIUM
ISSN: 39553 Volume, Issue 3, November MHD MICROPOLAR FLID FLOW THROGH VERTICAL POROS MEDIM Ariful Islam Assistant Professor Mathematics Discipline, Khulna niversity BANGLADESH is_arif@yahoo.com Md. Haider
More informationRATIONAL EXPECTATIONS AND THE COURNOTTHEOCHARIS PROBLEM
RATIONAL EXPECTATIONS AND THE COURNOTTHEOCHARIS PROBLEM TÖNU PUU Received 18 April 006; Accepted 1 May 006 In dynamic models in economics, often rational expectations are assumed. These are meant to show
More informationComments on A Time Delay Controller for Systems with Uncertain Dynamics
Comments on A Time Delay Controller for Systems with Uncertain Dynamics QingChang Zhong Dept. of Electrical & Electronic Engineering Imperial College of Science, Technology, and Medicine Exhiition Rd.,
More informationThe University cannot take responsibility for any misprints or errors in the presented formulas. Please use them carefully and wisely.
Aide Mémoire Suject: Useful formulas for flow in rivers and channels The University cannot take responsiility for any misprints or errors in the presented formulas. Please use them carefully and wisely.
More information6.2 Governing Equations for Natural Convection
6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed
More informationFinQuiz Notes
Reading 9 A time series is any series of data that varies over time e.g. the quarterly sales for a company during the past five years or daily returns of a security. When assumptions of the regression
More informationNUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER
Int. J. Chem. Sci.: 1(4), 14, 14871499 ISSN 97768X www.sadgurupublications.com NUMERICAL SOLUTION OF MHD FLOW OVER A MOVING VERTICAL POROUS PLATE WITH HEAT AND MASS TRANSFER R. LAKSHMI a, K. JAYARAMI
More informationHighorder approximations for unsteadystate diffusion and reaction in slab, cylinder and sphere catalyst
Korean J. Chem. Eng., 9(, 448 (0 DOI: 0.007/s840007 INVITED REVIEW PPER Highorder approximations for unsteadystate diffusion and reaction in sla, cylinder and sphere catalyst Dong Hyun Kim and Jitae
More informationEffects of Radiation Absorption and Thermodiffusion on MHD Heat and Mass Transfer Flow of a Micropolar Fluid in the Presence of Heat Source
Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 19329466 Vol. 9 Issue 2 (December 214) pp. 763779 Applications and Applied Mathematics: An International Journal (AAM) Effects of Radiation Absorption
More informationLaplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface
International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin
More informationThermomagnetic convection in stratified ferrofluids permeated with dusty particles through a porous medium
Kumar et al., 6 J. asic appl. Res (): 65 Thermomagnetic convection in stratified ferrofluids permeated with dust particles through a porous medium Kapil Kumar *, Rajan Singh, nand Kumar Department of
More informationEstimation of Hottest Spot Temperature in Power Transformer Windings with NDOF and DOF Cooling
Transactions D: Computer Science & Engineering and Electrical Engineering Vol. 16, No. 2, pp. 163{170 c Sharif University of Technology, Decemer 2009 Research Note Estimation of Hottest Spot Temperature
More informationSoret and Dufour Effects on Mixed Convection in a NonDarcy Micropolar Fluid. 1 Introduction
ISSN 17493889 (print), 17493897 (online) International Journal of Nonlinear Science Vol.11(2011) No.2,pp.246255 Soret and Dufour Effects on Mixed Convection in a NonDarcy Micropolar Fluid D.Srinivasacharya,
More informationModeling of Water Flows around a Circular Cylinder with the SPH Method
Archives of HydroEngineering and Environmental Mechanics Vol. 61 (2014), No. 1 2, pp. 39 60 DOI: 10.1515/heem20150003 IBW PAN, ISSN 1231 3726 Modeling of Water Flows around a Circular Cylinder with
More informationInplane free vibration analysis of combined ringbeam structural systems by wave propagation
Inplane free viration analysis of comined ringeam structural systems y wave propagation Benjamin Chouvion, Colin Fox, Stewart Mcwilliam, Atanas Popov To cite this version: Benjamin Chouvion, Colin Fox,
More informationPreliminary Examination  Day 1 Thursday, August 10, 2017
UNL  Department of Physics and Astronomy Preliminary Examination  Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions
More informationFlow of Micropolar Fluids over a Stretchable Disk
World Applied Sciences Journal 25 (4): 600606, 2013 ISSN 18184952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.25.04.1302 Flow of Micropolar Fluids over a Stretchable Disk 1 2 Sajjad Hussain
More informationRayleighBénard Convection in A Horizontal Layer Of Porous Medium Saturated With A Thermally Radiating Dielectric Fluid
IOSR Journal of Mathematics (IOSRJM) eissn: 78578, pissn: 319765X. Volume 11, Issue 3 Ver. III (May  Jun. 015), PP 0110 www.iosrjournals.org RayleighBénard Convection in A Horizontal Layer Of Porous
More informationFinite difference solution of the mixed convection flow of MHD micropolar fluid past a moving surface with radiation effect
Finite difference solution of the mixed convection flo of MHD micropolar fluid past a moving surface ith radiation effect LOKENDRA KUMAR, G. SWAPNA, BANI SINGH Department of Mathematics Jaypee Institute
More informationarxiv:physics/ v1 [physics.plasmph] 19 Oct 2004
Staility of offaxis motion for intense particle eams in periodically focusing channels J.S. Moraes a,, R. Pakter a, and F.B. Rizzato a a Instituto de Física, Universidade Federal do Rio Grande do Sul,
More informationEffect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium
Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Vertical Surface in Porous Medium M.B.K.MOORTHY, K.SENTHILVADIVU Department of Mathematics, Institute of Road
More informationPreliminary Examination  Day 1 Thursday, May 10, 2018
UNL  Department of Physics and Astronomy Preliminary Examination  Day Thursday, May, 28 This test covers the topics of Classical Mechanics (Topic ) and Electrodynamics (Topic 2). Each topic has 4 A questions
More informationSimilarities and differences:
How does the system reach equilibrium? I./9 Chemical equilibrium I./ Equilibrium electrochemistry III./ Molecules in motion physical processes, nonreactive systems III./57 Reaction rate, mechanism, molecular
More informationDesign Parameter Sensitivity Analysis of HighSpeed Motorized Spindle Systems Considering HighSpeed Effects
Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation August 58, 2007, Harin, China Design Parameter Sensitivity Analysis of HighSpeed Motorized Spindle Systems Considering
More informationBrief Note V. SHARMA, SUNIL 1), U. GUPTA 2) Notations. Himachal Pradesh University, Summer Hill Shimla , India
Arch. Mech., 58, 1, pp. 187 197, Warszawa 006 Brief Note Stability of stratified elasticoviscous Walters (Model B ) fluid in the presence of horizontal magnetic field and rotation in porous medium V.
More informationInfluence of chemical reaction and thermal radiation effects on MHD boundary layer flow over a moving vertical porous plate
International Research Journal of Engineering and Technology (IRJET) eissn: 239556 Volume: 2 Issue: 7 Oct25 www.irjet.net pissn: 239572 Influence of chemical reaction and thermal radiation effects
More informationSteady State Modeling of Doubly Fed Induction Generator
Steady State Modeling of Douly Fed Induction Generator Bhola Jha 1, Dr. K. R. M Rao 2 1 Dept. of Electrical Engg., G. B. Pant Engg. College, PauriGarhwal, India 2 Dept. of Electrical Engg., M. J. College
More informationThe effect of rigidity on torsional vibrations in a two layered poroelastic cylinder
Int. J. Adv. Appl. Math. and Mech. 3(1) (2015) 116 121 (ISSN: 23472529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics The effect of rigidity on
More informationAbelian Theorem for Generalized MellinWhittaker Transform
IOSR Journal of Mathematics (IOSRJM) ISSN: 22785728 Volume 1, Issue 4 (JulyAug 212), PP 1923 Aelian Theorem for Generalized MellinWhittaker Transform A. S. Gudadhe 1, R. V. Kene 2 1, 2 (Head Department
More informationOPAC102. The Acoustic Wave Equation
OPAC102 The Acoustic Wave Equation Acoustic waves in fluid Acoustic waves constitute one kind of pressure fluctuation that can exist in a compressible fluid. The restoring forces responsible for propagating
More informationDynamic Fields, Maxwell s Equations (Chapter 6)
Dynamic Fields, Maxwell s Equations (Chapter 6) So far, we have studied static electric and magnetic fields. In the real world, however, nothing is static. Static fields are only approximations when the
More informationJ10M.1  Rod on a Rail (M93M.2)
Part I  Mechanics J10M.1  Rod on a Rail (M93M.2) J10M.1  Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the xz plane. One end of the rod is suspended from a straight
More informationAN EFFICIENT SECONDORDER ACCURATE SHOCKCAPTURING SCHEME FOR MODELING ONE AND TWOPHASE WATER HAMMER FLOWS
AN EFFICIENT SECONDORDER ACCURATE SHOCKCAPTURING SCHEME FOR MODELING ONE AND TWOPHASE WATER HAMMER FLOWS Arturo S. León 1, Mohamed S. Ghidaoui, M. ASCE 2, Arthur R. Schmidt, M. ASCE 3, Marcelo H. García,
More informationOn Exchange of Stabilities in Ferromagnetic Convection in a Rotating Ferrofluid Saturated Porous Layer
Journal of Applied Fluid Mechanics, Vol. 7, No. 1, pp. 147154, 2014. Available online at www.jafmonline.net, ISSN 17353572, EISSN 17353645. On Exchange of Stabilities in Ferromagnetic Convection in
More informationCHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS
CHAPTER 4 ANALYTICAL SOLUTIONS OF COUPLE STRESS FLUID FLOWS THROUGH POROUS MEDIUM BETWEEN PARALLEL PLATES WITH SLIP BOUNDARY CONDITIONS Introduction: The objective of this chapter is to establish analytical
More informationUnsteady free convection MHD flow between two heated vertical plates one adiabatic
International Journal of Advances in Applied athematics and echanics Volume, Issue : (3) pp. 656 IJAA Available online at www.ijaamm.com ISSN: 3759 Unsteady free convection HD flow between two heated
More informationAMS 147 Computational Methods and Applications Lecture 13 Copyright by Hongyun Wang, UCSC
Lecture 13 Copyright y Hongyun Wang, UCSC Recap: Fitting to exact data *) Data: ( x j, y j ), j = 1,,, N y j = f x j *) Polynomial fitting Gis phenomenon *) Cuic spline Convergence of cuic spline *) Application
More informationInternational Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)
ISSN(Online): 2398753 Influence of Chemical Reaction, Heat Source, Soret and Dufour Effects on Heat And Mass Transfer in Boundary Layer Flow Over a Stretching Cylinder Embedded in a Porous Medium using
More informationEffect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium
Effect of Variable Viscosity on Convective Heat and Mass Transfer by Natural Convection from Horizontal Surface in Porous Medium M. B. K. MOORTHY, K. SENTHILVADIVU Department of Mathematics, Institute
More informationGraphs and polynomials
1 1A The inomial theorem 1B Polnomials 1C Division of polnomials 1D Linear graphs 1E Quadratic graphs 1F Cuic graphs 1G Quartic graphs Graphs and polnomials AreAS of STud Graphs of polnomial functions
More informationFREE CONVECTION AROUND A SLENDER PARABOLOID OF NON NEWTONIAN FLUID IN A POROUS MEDIUM
FREE CONVECTION AROUND A SLENDER PARABOLOID OF NON NEWTONIAN FLUID IN A POROUS MEDIUM Rishi Raj KAIRI, Department of Mathematics, Islampur College, Uttar Dinajpur, West Bengal, India. Email: rishirajkairi@gmail.com
More information