-Stable Second Derivative Block Multistep Formula for Stiff Initial Value Problems

Size: px
Start display at page:

Download "-Stable Second Derivative Block Multistep Formula for Stiff Initial Value Problems"

Transcription

1 IAENG International Journal of Applied Mathematics, :3, IJAM 3_7 -Stable Second Derivative Bloc Multistep Formula for Stiff Initial Value Problems (Advance online publication: 3 August )

2 IAENG International Journal of Applied Mathematics, :3, IJAM 3_7 with a =, a3 = + 3, a = 7 + a = 3 + 7, a 6 = + 8, a = + [ C = a 3 = + 3, a = 7 y n, y n+ +, a = a 6 = + 8 B = [a, a, a, a 3, a, a ] T ] T, y n+, y n++, hf n+, h g n+ solving the system of equation () for variable B = [a, a, a, a 3, a, a ] T and substituting in (3), we obtain a continuous multistep formula y(x) = where α j (x)y n+j + j= α vj (x)y n+vj + hβ (x)f n+ j= = +h δ (x)g n+ () α (x) = 7 x + 96 x 7 x3 + 9 x 38 x α v (x) = ( 6 ( + 36 x ( + + ( 8 + x 3 + ( x x 8 ) x α (x) = x + 78 x 777 x3 + 7 x 3 α v = ( ( + ( 8 ( x x + x 3 + ( 8 x β = x + x 3 x3 + 6 x 3 x δ = x 3 7 x x 9 x + x ) x Evaluating () at x = x n+ yields the main method, while differentiating () and evaluating at x = {x n+, x n+, x n++ } together, yields the bloc method represented in bloc matrix finite difference form where A= ( AY m = BY m + hcf m + h DG m (6) ) ( 9 ( ( 3 8 ( ( ( 6 9 ( ( B = ( 3 ( ( 3 C = ( 8 ( ( D = ( 8 +. The -dimensional vector Y m, Y m, F m and G m have collocation points specified as, Y m = [y n+v, y n+, y n+v, y n+ ] T, Y m = [y n v, y n, y n v, y n ] T, F m = [f n+v, f n+, f n+v, f n+ ] T, G m = [g n+v, g n+, g n+v, g n+ ] T., (Advance online publication: 3 August )

3 IAENG International Journal of Applied Mathematics, :3, IJAM 3_7 3 Analysis of the Method The analysis of the L(α)-stable bloc multistep method is presented in this section. Numerical Properties such as Order and Error constant, consistency, stability and convergence are investigated. Order and Error Constant Let the individual linear multistep method with Chebyshev collocation points be associated with the formula L[y(x n ; h)] = j= α j y(x + jh) + α vj y(x + v j h) hβ j y (x + jh) hβ vj y (x + v j h) h δ y (x n + h) (7) where y(x) is an arbitrary smooth function on [a, b]. Expanding (8) with Taylor series expansions of y(x + jh), y(x + v j h), y (x + jh), y (x + v j h) and y (x + h), j =, v,, v,,..., v, to obtain the expression L[y(x n ; h)] = C y(x)+c hy (x)+ +C p h p y (p) (x)+ where C i are vectors in the form, Using the appropriate coefficients in (6), methods are of order p = [,,, ] T with error constants C 6 = [.38 3, 9.,.88, 6.39 ]. T Consistency Since the bloc multistep method is of order p =, therefore it is consistent. Henrici [6] Zero Stability of Bloc Multistep Method Applying the bloc multistep method (6) to the test problem y = λy, with z = λh, solving the characteristic equation det ξ (A Cz Dz ) B = for ξ at z, the roots {,,, } of the resulting equation are less than or equal to, therefore the numerical method is zero-stable. Convergence C = C = C = C q = α j + j= jα j + j= (! α vj (8) j= v j α vj β j + j= j= j= β vj (9) j= j α j + ) j= v j α v ( j j= jβ j + ) j= v () jβ vj δ ( q! (q )! j= jq α j + ) j= vq j α v ( j j= jq β j + ) j= vq j β vj (q )! q δ q =,,,, p. () Since the Bloc multistep method is consistent and zero-stable, we can safely assert the convergence of the new method. (Henrici [6]) Region of Absolute Stability of new method Solving characteristic equation det ξ (A Cz Dz ) B = for ξ, we obtain the stability function as + 7z + z + z 3 R(z) = + 68z z + z 3 z + z () Definition 3. The bloc multistep method with Chebyshev collocation points (6) and the associated linear difference operator is said to be of order p if, C = C = C = = C p =, C p+. () Definition 3. The term C p+ is called the Error Constant (EC) and the local truncation error for the method is given by, t n+ = C p+ h p+ y (p+) x n + O(h (p+) ). (3) Solving (), we obtain the stability region S = [(, ) (., )]. The bloc multistep method is A -Stable and satisfies A(α)-Stability with stiff stability properties α = 89.8, D =.66 and y =.. Hence, The method is Stiffly Stable. The region of absolute stability is presented in Figure. Test for L(α)-Stability The numerical method is A(α)-stable and lim z R(z) =, we say that bloc multistep method is L(α)-Stable. (Advance online publication: 3 August )

4 IAENG International Journal of Applied Mathematics, :3, IJAM 3_7 Table : Problem.: Maximum Absolute Error: max<i<n y (x) y, n for h = n n New Method GBDF8 ATBM7 (Rate) (Rate) (Rate) (.99) (6.).8 7 (7.8). 3 (.99) (7.).8 9 (7.6) (.) 3. 9 (.) (6.6) 9. (6.8) (8.36).69 (7.9) Figure : RAS of SDBDF for = Experimental Problems Problem.: A linear stiff problem The linear system of 3 first order ordinary differential equations solved by Ainfenwa [], Brugnano and Trigiante [3] and Ramos and Garcia-Rubio [] given by, y = y + 9y y3, y = 9y y + y3, y3 = y y + y3, y () =, y () =, y () =, () on the interval < x < is solved with the newly derived bloc multistep method. We compare the maximum absolute errors ( y(x) yn ) on the interval < x < with the Adams Type Bloc method of Ainfenwa [] of order p = 7 (ATBM7) and Generalized Bacward Differentiation formula of Brugnano and Trigiante [3] (GBDF8), n =,,, 3 and for nuusing step lengths h = n merical solution of y(x). The order of the methods are also verified by calculating the rate of convergence with the formula errh Rateh = log, errh where errh is the maximum absolute error at step length h. Also in the range x, AbsErr(tf ) in [] is obtained by the new method in comparison with the CBDF of degree s = in Ramos and Garcia-Rubio [] and the following results are presented Remar.: Clearly from Table, it can be seen that the new method even though it is of order p =, performs better that the ATBM7 and the GBDF8, both of orders 7 and 8 respectively. Also, the rate of convergence of the new method conforms almost exactly with the order of our methods unlie the ATBM7 and GBDF8. Table shows that the new method is comparable with the CBDF in []. Numerical results also show that Table : Problem.: Numerical Results in comparison with CBDF in the range x Steps New Method Rate CBDF Rate the new method is consistent with order of the method as the step size decreases. Problem.: Cash []. We also consider the integration of the stiff system using the problem whose Jacobian matrix J has imaginary eigenvalues given by y = αy βy + (α + β )e t, y = βy αy + (α β )e t, y () =, y () =, t, (6) It is noted that for any given value of parameter α and β, J is the matrix, α β, β α with eigenvalues of J as α±iβ and the required solution is y (t) y (t) = e t, = e t, For the case α = and β = with a fixed step size (Advance online publication: 3 August )

5 IAENG International Journal of Applied Mathematics, :3, IJAM 3_7 Acnowledgement (Advance online publication: 3 August )

6 IAENG International Journal of Applied Mathematics, :3, IJAM 3_7 [] J. R. Cash, Two New Finite Difference Schemes for Parabolic Equations, SIAM Journal of Numerical Analysis,, (98), [6] P. Chartier, L-Stable Parallel One-Bloc Methods for Ordinary Differential Equations, SIAM Journal of Numerical Analysis, 3,, (99), - 7. [7] M. Chu and H. Hamilton, Parallel Solution of ODEs by multi-bloc methods, SIAM. J. Sci. Statist. Comput., 8, (9), [8] C. F. Curtiss and J. O. Hirschfelder, Integration of Stiff Equations, Proc. Nat. Acad. Sci., 38, (9), 3-3. [9] G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3, (963), 7-3. [] J. O. Ehigie, S. A. Ounuga and A. B. Sofoluwe, 3-point Bloc Methods for Direct Integration of Second Order Ordinary Differential Equations, Advances in Numerical Analysis, Hindawi, Vol., Article ID 38, (), pages, doi:.//38. [] J. O. Fatoun, Continuous approach for deriving self starting Multistep Method for Initial Value Problems in Ordinary Differential Equations, Journal of Engineering and Applied Sciences, Medwell, (3), (7), - 8. [] S. O. Fatunla, Parallel methods for Second Order ODEs in Monogragh- Computational Ordinary Differential Equations, Fatunla S. O. (ed.), University Press Plc, Ibadan, (99), [3] C. W. Gear, Hybrid methods for IVPs in ODEs, SIAM Journal on Numerical Analysis,, (96), [] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, New Jersey, 97. [] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential Algebraic Problems, Second Revised Edition, Springer Verlag, Germany, 996. [9] M. E. Milne, Numerical Solution of Differential Equations, Wiley, New Yor, 93. [] S. A. Ounuga and J. O. Ehigie, A New Derivation of Continuous Collocation Multistep methods Using Power Series as Basis Function, Journal of Modern Maths and Statistics, 3,, (9), 3 -. [] P. Onumanyi, D. O. Awoyemi, S. N. Jator, and U. W. Sirisena, New linear mutlistep methods with continuous coefficients for first order initial value problems, J. Niger. Math. Soc. 3, (99), 37. [] H. Ramos and R. Garcia-Rubio, Analysis of a Chebyshev-based Bacward Differentiation Formulae and Relation with Runge-Kutta Collocation Methods, International Journal of Computer Mathematics, 88, 3, (), [3] H. Ramos and J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, Journal of Computational and Applied Mathematics,, (7), [] J. B. Rosser, A Runge-Kutta for all seasons, SIAM Rev. 9, (967), 7 -. [] D. Sarafyan, Multistep methods for the numerical solution of ordinary differential equations made self-starting, WINSCONSIN UNIV. MADISON MATHEMATICS RESEARCH CENTER, Math. Res. Centre, Madison, Tech. Rep. 9, 96. [6] L. F. Shampine and H. A. Watts, Bloc implicit One-Step methods, Math. Comp. 3, (969), [7] J. Vigo-Aguiar and H. Ramos, A new eighthorder A-stable method for Solving Differential Systems arising in Chemical reactions, Journal of Mathematical Chemistry, (6),, doi:.7/s9-6-9-x. [8] H. A. Watts and L. F. Shampine, A-stable Bloc implicit One-Step methods, Nordis Tidsr Informationsbehandling (BIT), (97), [] O. Widlund, A Note on Unconditionally Stable LMM, BIT, 7, (967), 6-7. [6] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New Yor, 96 [7] S. N. Jator, Leaping type algorithms for Parabolic Differential Equations, Presented at the Conference of Scientific Computing, National Mathematical Centre, Abuja,. [8] J. D. Lambert, Computational methods in Ordinary Differential Equations, John Wiley and sons, New Yor, 973. (Advance online publication: 3 August )

Second Derivative Generalized Backward Differentiation Formulae for Solving Stiff Problems

Second Derivative Generalized Backward Differentiation Formulae for Solving Stiff Problems IAENG International Journal of Applied Mathematics, 48:, IJAM_48 Second Derivative Generalized Bacward Differentiation Formulae for Solving Stiff Problems G C Nwachuwu,TOor Abstract Second derivative generalized

More information

A Family of Block Methods Derived from TOM and BDF Pairs for Stiff Ordinary Differential Equations

A Family of Block Methods Derived from TOM and BDF Pairs for Stiff Ordinary Differential Equations American Journal of Mathematics and Statistics 214, 4(2): 121-13 DOI: 1.5923/j.ajms.21442.8 A Family of Bloc Methods Derived from TOM and BDF Ajie I. J. 1,*, Ihile M. N. O. 2, Onumanyi P. 1 1 National

More information

A Family of L(α) stable Block Methods for Stiff Ordinary Differential Equations

A Family of L(α) stable Block Methods for Stiff Ordinary Differential Equations American Journal of Computational and Applied Mathematics 214, 4(1): 24-31 DOI: 1.5923/.acam.21441.4 A Family of L(α) stable Bloc Methods for Stiff Ordinary Differential Equations Aie I. J. 1,*, Ihile

More information

A Zero-Stable Block Method for the Solution of Third Order Ordinary Differential Equations.

A Zero-Stable Block Method for the Solution of Third Order Ordinary Differential Equations. A Zero-Stable Block Method for the Solution of Third Order Ordinary Differential Equations. K. Rauf, Ph.D. 1 ; S.A. Aniki (Ph.D. in view) 2* ; S. Ibrahim (Ph.D. in view) 2 ; and J.O. Omolehin, Ph.D. 3

More information

CONVERGENCE PROPERTIES OF THE MODIFIED NUMEROV RELATED BLOCK METHODS

CONVERGENCE PROPERTIES OF THE MODIFIED NUMEROV RELATED BLOCK METHODS Vol 4 No 1 January 213 CONVERGENCE PROPERTIES OF THE MODIFIED NUMEROV RELATED BLOCK METHODS YS, Awari 1 and AA, Abada 2 1 Department of Mathematics & 2 Department of Statistics, BinghamUniversity, Karu,

More information

Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the Solution of First Order Ordinary Differential Equations

Uniform Order Legendre Approach for Continuous Hybrid Block Methods for the Solution of First Order Ordinary Differential Equations IOSR Journal of Mathematics (IOSR-JM) e-issn: 8-58, p-issn: 319-65X. Volume 11, Issue 1 Ver. IV (Jan - Feb. 015), PP 09-14 www.iosrjournals.org Uniform Order Legendre Approach for Continuous Hybrid Block

More information

Adebayo O. Adeniran1, Saheed O. Akindeinde2 and Babatunde S. Ogundare2 * Contents. 1. Introduction

Adebayo O. Adeniran1, Saheed O. Akindeinde2 and Babatunde S. Ogundare2 * Contents. 1. Introduction Malaya Journal of Matematik Vol. No. 73-73 8 https://doi.org/.37/mjm/ An accurate five-step trigonometrically-fitted numerical scheme for approximating solutions of second order ordinary differential equations

More information

A CLASS OF CONTINUOUS HYBRID LINEAR MULTISTEP METHODS FOR STIFF IVPs IN ODEs

A CLASS OF CONTINUOUS HYBRID LINEAR MULTISTEP METHODS FOR STIFF IVPs IN ODEs ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LVIII, 0, f. A CLASS OF CONTINUOUS HYBRID LINEAR MULTISTEP METHODS FOR STIFF IVPs IN ODEs BY R.I. OKUONGHAE Abstract.

More information

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations International Mathematics and Mathematical Sciences Volume 212, Article ID 767328, 8 pages doi:1.1155/212/767328 Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving

More information

Research Article P-Stable Higher Derivative Methods with Minimal Phase-Lag for Solving Second Order Differential Equations

Research Article P-Stable Higher Derivative Methods with Minimal Phase-Lag for Solving Second Order Differential Equations Hindawi Publishing Corporation Journal of Applied Mathematics Volume 2011, Article ID 407151, 15 pages doi:10.1155/2011/407151 Research Article P-Stable Higher Derivative Methods with Minimal Phase-Lag

More information

Runge Kutta Collocation Method for the Solution of First Order Ordinary Differential Equations

Runge Kutta Collocation Method for the Solution of First Order Ordinary Differential Equations Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 1, 17-26 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.5823 Runge Kutta Collocation Method for the Solution of First

More information

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft.

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft. International Journal of Mathematical Analysis Vol. 9, 015, no. 46, 57-7 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.57181 Developing a Single Step Hybrid Block Method with Generalized

More information

One-Step Hybrid Block Method with One Generalized Off-Step Points for Direct Solution of Second Order Ordinary Differential Equations

One-Step Hybrid Block Method with One Generalized Off-Step Points for Direct Solution of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 10, 2016, no. 29, 142-142 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6127 One-Step Hybrid Block Method with One Generalized Off-Step Points for

More information

A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations

A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations Rei-Wei Song and Ming-Gong Lee* d09440@chu.edu.tw, mglee@chu.edu.tw * Department of Applied Mathematics/

More information

369 Nigerian Research Journal of Engineering and Environmental Sciences 2(2) 2017 pp

369 Nigerian Research Journal of Engineering and Environmental Sciences 2(2) 2017 pp 369 Nigerian Research Journal of Engineering and Environmental Sciences 2(2) 27 pp. 369-374 Original Research Article THIRD DERIVATIVE MULTISTEP METHODS WITH OPTIMIZED REGIONS OF ABSOLUTE STABILITY FOR

More information

A NOTE ON EXPLICIT THREE-DERIVATIVE RUNGE-KUTTA METHODS (ThDRK)

A NOTE ON EXPLICIT THREE-DERIVATIVE RUNGE-KUTTA METHODS (ThDRK) BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 303-4874 (p), ISSN (o) 303-4955 www.imvibl.org / JOURNALS / BULLETIN Vol. 5(015), 65-7 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

More information

A family of A-stable Runge Kutta collocation methods of higher order for initial-value problems

A family of A-stable Runge Kutta collocation methods of higher order for initial-value problems IMA Journal of Numerical Analysis Advance Access published January 3, 2007 IMA Journal of Numerical Analysis Pageof20 doi:0.093/imanum/drl00 A family of A-stable Runge Kutta collocation methods of higher

More information

Modified block method for the direct solution of second order ordinary differential equations

Modified block method for the direct solution of second order ordinary differential equations c Copyright, Darbose International Journal of Applied Mathematics and Computation Volume 3(3),pp 181 188, 2011 http://ijamc.psit.in Modified block method for the direct solution of second order ordinary

More information

Implicit Second Derivative Hybrid Linear Multistep Method with Nested Predictors for Ordinary Differential Equations

Implicit Second Derivative Hybrid Linear Multistep Method with Nested Predictors for Ordinary Differential Equations American Scientiic Research Journal or Engineering, Technolog, and Sciences (ASRJETS) ISSN (Print) -44, ISSN (Online) -44 Global Societ o Scientiic Research and Researchers http://asretsournal.org/ Implicit

More information

Continuous Block Hybrid-Predictor-Corrector method for the solution of y = f (x, y, y )

Continuous Block Hybrid-Predictor-Corrector method for the solution of y = f (x, y, y ) International Journal of Mathematics and Soft Computing Vol., No. 0), 5-4. ISSN 49-8 Continuous Block Hybrid-Predictor-Corrector method for the solution of y = f x, y, y ) A.O. Adesanya, M.R. Odekunle

More information

A Class of an Implicit Stage-two Rational Runge-Kutta Method for Solution of Ordinary Differential Equations

A Class of an Implicit Stage-two Rational Runge-Kutta Method for Solution of Ordinary Differential Equations Journal of Applied Mathematics & Bioinformatics, vol.2, no.3, 2012, 17-31 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2012 A Class of an Implicit Stage-two Rational Runge-Kutta Method for

More information

Solution of First Order Initial Value Problem by Sixth Order Predictor Corrector Method

Solution of First Order Initial Value Problem by Sixth Order Predictor Corrector Method Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 6 (2017), pp. 2277 2290 Research India Publications http://www.ripublication.com/gjpam.htm Solution of First Order Initial

More information

The Milne error estimator for stiff problems

The Milne error estimator for stiff problems 13 R. Tshelametse / SAJPAM. Volume 4 (2009) 13-28 The Milne error estimator for stiff problems Ronald Tshelametse Department of Mathematics University of Botswana Private Bag 0022 Gaborone, Botswana. E-mail

More information

Research Article A Family of Trigonometrically Fitted Enright Second Derivative Methods for Stiff and Oscillatory Initial Value Problems

Research Article A Family of Trigonometrically Fitted Enright Second Derivative Methods for Stiff and Oscillatory Initial Value Problems Journal of Applied Mathematics Volume 2015, Article ID 343295, 17 pages http://dx.doi.org/10.1155/2015/343295 Research Article A Family of Trigonometrically Fitted Enright Second Derivative Methods for

More information

Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations

Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations 10.1098/rspa.2003.1130 R EVIEW PAPER Efficient numerical methods for the solution of stiff initial-value problems and differential algebraic equations By J. R. Cash Department of Mathematics, Imperial

More information

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly Global Journal of Pure and Applied Matematics. ISSN 0973-768 Volume 2, Number 2 (206), pp. 59-535 Researc India Publications ttp://www.ripublication.com/gjpam.tm Two Step Hybrid Block Metod wit Two Generalized

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

Mathematics for chemical engineers. Numerical solution of ordinary differential equations

Mathematics for chemical engineers. Numerical solution of ordinary differential equations Mathematics for chemical engineers Drahoslava Janovská Numerical solution of ordinary differential equations Initial value problem Winter Semester 2015-2016 Outline 1 Introduction 2 One step methods Euler

More information

Exponentially Fitted Error Correction Methods for Solving Initial Value Problems

Exponentially Fitted Error Correction Methods for Solving Initial Value Problems KYUNGPOOK Math. J. 52(2012), 167-177 http://dx.doi.org/10.5666/kmj.2012.52.2.167 Exponentially Fitted Error Correction Methods for Solving Initial Value Problems Sangdong Kim and Philsu Kim Department

More information

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations International journal of scientific and technical research in engineering (IJSTRE) www.ijstre.com Volume Issue ǁ July 206. Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential

More information

Sixth-Order and Fourth-Order Hybrid Boundary Value Methods for Systems of Boundary Value Problems

Sixth-Order and Fourth-Order Hybrid Boundary Value Methods for Systems of Boundary Value Problems Sith-Order and Fourth-Order Hybrid Boundary Value Methods for Systems of Boundary Value Problems GRACE O. AKILABI Department of Mathematics Covenant University, Canaanland, Ota, Ogun State IGERIA grace.akinlabi@covenantuniversity.edu.ng

More information

arxiv: v1 [math.na] 31 Oct 2016

arxiv: v1 [math.na] 31 Oct 2016 RKFD Methods - a short review Maciej Jaromin November, 206 arxiv:60.09739v [math.na] 3 Oct 206 Abstract In this paper, a recently published method [Hussain, Ismail, Senua, Solving directly special fourthorder

More information

On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems

On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems Nonlinear Analysis and Differential Equations, Vol. 6, 08, no., 5-64 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/nade.08.8 On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems

More information

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations ECE257 Numerical Methods and Scientific Computing Ordinary Differential Equations Today s s class: Stiffness Multistep Methods Stiff Equations Stiffness occurs in a problem where two or more independent

More information

Extended Runge Kutta-like formulae

Extended Runge Kutta-like formulae Applied Numerical Mathematics 56 006 584 605 www.elsevier.com/locate/apnum Extended Runge Kutta-like formulae Xinyuan Wu a Jianlin Xia b a State Key Laboratory for Novel Software Technology Department

More information

A definition of stiffness for initial value problems for ODEs SciCADE 2011, University of Toronto, hosted by the Fields Institute, Toronto, Canada

A definition of stiffness for initial value problems for ODEs SciCADE 2011, University of Toronto, hosted by the Fields Institute, Toronto, Canada for initial value problems for ODEs SciCADE 2011, University of Toronto, hosted by the Fields Institute, Toronto, Canada Laurent O. Jay Joint work with Manuel Calvo (University of Zaragoza, Spain) Dedicated

More information

Research Article An Accurate Block Hybrid Collocation Method for Third Order Ordinary Differential Equations

Research Article An Accurate Block Hybrid Collocation Method for Third Order Ordinary Differential Equations Applied Mathematics, Article ID 549597, 9 pages http://dx.doi.org/1.1155/14/549597 Research Article An Accurate Bloc Hybrid Collocation Method for Third Order Ordinary Differential Equations Lee Ken Yap,

More information

Math 660 Lecture 4: FDM for evolutionary equations: ODE solvers

Math 660 Lecture 4: FDM for evolutionary equations: ODE solvers Math 660 Lecture 4: FDM for evolutionary equations: ODE solvers Consider the ODE u (t) = f(t, u(t)), u(0) = u 0, where u could be a vector valued function. Any ODE can be reduced to a first order system,

More information

THE CONVERGENCE AND ORDER OF THE 3-POINT BLOCK EXTENDED BACKWARD DIFFERENTIATION FORMULA

THE CONVERGENCE AND ORDER OF THE 3-POINT BLOCK EXTENDED BACKWARD DIFFERENTIATION FORMULA VOL 7 NO DEEMBER ISSN 89-668 6- Asian Research Publishing Networ (ARPN) All rights reserved wwwarpnournalscom THE ONVERGENE AND ORDER OF THE -POINT BLOK EXTENDED BAKWARD DIFFERENTIATION FORMULA H Musa

More information

Block Algorithm for General Third Order Ordinary Differential Equation

Block Algorithm for General Third Order Ordinary Differential Equation ICASTOR Journal of Mathematical Sciences Vol. 7, No. 2 (2013) 127-136 Block Algorithm for General Third Order Ordinary Differential Equation T. A. Anake 1, A. O. Adesanya 2, G. J. Oghonyon 1 & M.C. Agarana

More information

Stability Ordinates of Adams Predictor-Corrector Methods

Stability Ordinates of Adams Predictor-Corrector Methods BIT manuscript No. will be inserted by the editor) Stability Ordinates of Adams Predictor-Corrector Methods Michelle L. Ghrist Bengt Fornberg Jonah A. Reeger Received: date / Accepted: date Abstract How

More information

AN OVERVIEW. Numerical Methods for ODE Initial Value Problems. 1. One-step methods (Taylor series, Runge-Kutta)

AN OVERVIEW. Numerical Methods for ODE Initial Value Problems. 1. One-step methods (Taylor series, Runge-Kutta) AN OVERVIEW Numerical Methods for ODE Initial Value Problems 1. One-step methods (Taylor series, Runge-Kutta) 2. Multistep methods (Predictor-Corrector, Adams methods) Both of these types of methods are

More information

A FAMILY OF EXPONENTIALLY FITTED MULTIDERIVATIVE METHOD FOR STIFF DIFFERENTIAL EQUATIONS

A FAMILY OF EXPONENTIALLY FITTED MULTIDERIVATIVE METHOD FOR STIFF DIFFERENTIAL EQUATIONS A FAMILY OF EXPONENTIALLY FITTED MULTIDERIVATIVE METHOD FOR STIFF DIFFERENTIAL EQUATIONS ABSTRACT. ABHULIMENC.E * AND UKPEBOR L.A Department Of Mathematics, Ambrose Alli University, Ekpoma, Nigeria. In

More information

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes Jim Lambers MAT 772 Fall Semester 21-11 Lecture 21 Notes These notes correspond to Sections 12.6, 12.7 and 12.8 in the text. Multistep Methods All of the numerical methods that we have developed for solving

More information

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Outline ODEs and initial conditions. Explicit and implicit Euler methods. Runge-Kutta methods. Multistep

More information

Generalized RK Integrators for Solving Ordinary Differential Equations: A Survey & Comparison Study

Generalized RK Integrators for Solving Ordinary Differential Equations: A Survey & Comparison Study Global Journal of Pure and Applied Mathematics. ISSN 7-78 Volume, Number 7 (7), pp. Research India Publications http://www.ripublication.com/gjpam.htm Generalized RK Integrators for Solving Ordinary Differential

More information

The family of Runge Kutta methods with two intermediate evaluations is defined by

The family of Runge Kutta methods with two intermediate evaluations is defined by AM 205: lecture 13 Last time: Numerical solution of ordinary differential equations Today: Additional ODE methods, boundary value problems Thursday s lecture will be given by Thomas Fai Assignment 3 will

More information

A NEW INTEGRATOR FOR SPECIAL THIRD ORDER DIFFERENTIAL EQUATIONS WITH APPLICATION TO THIN FILM FLOW PROBLEM

A NEW INTEGRATOR FOR SPECIAL THIRD ORDER DIFFERENTIAL EQUATIONS WITH APPLICATION TO THIN FILM FLOW PROBLEM Indian J. Pure Appl. Math., 491): 151-167, March 218 c Indian National Science Academy DOI: 1.17/s13226-18-259-6 A NEW INTEGRATOR FOR SPECIAL THIRD ORDER DIFFERENTIAL EQUATIONS WITH APPLICATION TO THIN

More information

HIGH ORDER VARIABLE MESH EXPONENTIAL FINITE DIFFERENCE METHOD FOR THE NUMERICAL SOLUTION OF THE TWO POINTS BOUNDARY VALUE PROBLEMS

HIGH ORDER VARIABLE MESH EXPONENTIAL FINITE DIFFERENCE METHOD FOR THE NUMERICAL SOLUTION OF THE TWO POINTS BOUNDARY VALUE PROBLEMS JOURNAL OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4866, ISSN (o) 2303-4947 www.imvibl.org /JOURNALS / JOURNAL Vol. 8(2018), 19-33 DOI: 10.7251/JMVI1801019P Former BULLETIN OF THE

More information

Applied Math for Engineers

Applied Math for Engineers Applied Math for Engineers Ming Zhong Lecture 15 March 28, 2018 Ming Zhong (JHU) AMS Spring 2018 1 / 28 Recap Table of Contents 1 Recap 2 Numerical ODEs: Single Step Methods 3 Multistep Methods 4 Method

More information

Backward error analysis

Backward error analysis Backward error analysis Brynjulf Owren July 28, 2015 Introduction. The main source for these notes is the monograph by Hairer, Lubich and Wanner [2]. Consider ODEs in R d of the form ẏ = f(y), y(0) = y

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

PAijpam.eu NEW SELF-STARTING APPROACH FOR SOLVING SPECIAL THIRD ORDER INITIAL VALUE PROBLEMS

PAijpam.eu NEW SELF-STARTING APPROACH FOR SOLVING SPECIAL THIRD ORDER INITIAL VALUE PROBLEMS International Journal of Pure and Applied Mathematics Volume 118 No. 3 218, 511-517 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 1.12732/ijpam.v118i3.2

More information

Numerical Differential Equations: IVP

Numerical Differential Equations: IVP Chapter 11 Numerical Differential Equations: IVP **** 4/16/13 EC (Incomplete) 11.1 Initial Value Problem for Ordinary Differential Equations We consider the problem of numerically solving a differential

More information

4 Stability analysis of finite-difference methods for ODEs

4 Stability analysis of finite-difference methods for ODEs MATH 337, by T. Lakoba, University of Vermont 36 4 Stability analysis of finite-difference methods for ODEs 4.1 Consistency, stability, and convergence of a numerical method; Main Theorem In this Lecture

More information

Construction and Implementation of Optimal 8 Step Linear Multistep

Construction and Implementation of Optimal 8 Step Linear Multistep Page 138 ORIGINAL RESEARCH Construction and Implementation of Optimal 8 Step Linear Multistep method Bakre Omolara Fatimah, Awe Gbemisola Sikirat and Akanbi Moses Adebowale Department of Mathematics, Lagos

More information

THREE- AND FOUR-DERIVATIVE HERMITE BIRKHOFF OBRECHKOFF SOLVERS FOR STIFF ODE

THREE- AND FOUR-DERIVATIVE HERMITE BIRKHOFF OBRECHKOFF SOLVERS FOR STIFF ODE THREE- AND FOUR-DERIVATIVE HERMITE BIRKHOFF OBRECHKOFF SOLVERS FOR STIFF ODE By Njwd Albishi February 2016 A Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Multistep Methods Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 1. Runge Kutta methods 2. Embedded RK methods

More information

Initial value problems for ordinary differential equations

Initial value problems for ordinary differential equations Initial value problems for ordinary differential equations Xiaojing Ye, Math & Stat, Georgia State University Spring 2019 Numerical Analysis II Xiaojing Ye, Math & Stat, Georgia State University 1 IVP

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

c 2012 Society for Industrial and Applied Mathematics

c 2012 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 50, No. 4, pp. 849 860 c 0 Society for Industrial and Applied Mathematics TWO RESULTS CONCERNING THE STABILITY OF STAGGERED MULTISTEP METHODS MICHELLE GHRIST AND BENGT FORNBERG

More information

16.7 Multistep, Multivalue, and Predictor-Corrector Methods

16.7 Multistep, Multivalue, and Predictor-Corrector Methods 740 Chapter 16. Integration of Ordinary Differential Equations 16.7 Multistep, Multivalue, and Predictor-Corrector Methods The terms multistepand multivaluedescribe two different ways of implementing essentially

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Numerical Methods - Initial Value Problems for ODEs

Numerical Methods - Initial Value Problems for ODEs Numerical Methods - Initial Value Problems for ODEs Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Initial Value Problems for ODEs 2013 1 / 43 Outline 1 Initial Value

More information

Numerical solution of stiff systems of differential equations arising from chemical reactions

Numerical solution of stiff systems of differential equations arising from chemical reactions Iranian Journal of Numerical Analysis and Optimization Vol 4, No. 1, (214), pp 25-39 Numerical solution of stiff systems of differential equations arising from chemical reactions G. Hojjati, A. Abdi, F.

More information

Applied Numerical Analysis

Applied Numerical Analysis Applied Numerical Analysis Using MATLAB Second Edition Laurene V. Fausett Texas A&M University-Commerce PEARSON Prentice Hall Upper Saddle River, NJ 07458 Contents Preface xi 1 Foundations 1 1.1 Introductory

More information

CS520: numerical ODEs (Ch.2)

CS520: numerical ODEs (Ch.2) .. CS520: numerical ODEs (Ch.2) Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca people.cs.ubc.ca/ ascher/520.html Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Linear Multistep methods Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 1. Runge-Kutta Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 1. Runge-Kutta Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-71309 email: anita.buie@gmail.com 1 . Chapter 8 Numerical Solution of

More information

One Step Continuous Hybrid Block Method for the Solution of

One Step Continuous Hybrid Block Method for the Solution of ISSN 4-86 (Paper) ISSN -9 (Online) Vol.4 No. 4 One Step Continuous Hybrid Block Method for the Solution of y = f ( x y y y ). K. M. Fasasi * A. O. Adesanya S. O. Adee Department of Mathematics Modibbo

More information

Geometric Numerical Integration

Geometric Numerical Integration Geometric Numerical Integration (Ernst Hairer, TU München, winter 2009/10) Development of numerical ordinary differential equations Nonstiff differential equations (since about 1850), see [4, 2, 1] Adams

More information

16.7 Multistep, Multivalue, and Predictor-Corrector Methods

16.7 Multistep, Multivalue, and Predictor-Corrector Methods 16.7 Multistep, Multivalue, and Predictor-Corrector Methods 747 } free_vector(ysav,1,nv); free_vector(yerr,1,nv); free_vector(x,1,kmaxx); free_vector(err,1,kmaxx); free_matrix(dfdy,1,nv,1,nv); free_vector(dfdx,1,nv);

More information

Lecture Notes on Numerical Differential Equations: IVP

Lecture Notes on Numerical Differential Equations: IVP Lecture Notes on Numerical Differential Equations: IVP Professor Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL. 60115 USA E mail: dattab@math.niu.edu URL:

More information

SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS

SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS ERNST HAIRER AND PIERRE LEONE Abstract. We prove that to every rational function R(z) satisfying R( z)r(z) = 1, there exists a symplectic Runge-Kutta method

More information

Southern Methodist University.

Southern Methodist University. Title: Continuous extensions Name: Lawrence F. Shampine 1, Laurent O. Jay 2 Affil./Addr. 1: Department of Mathematics Southern Methodist University Dallas, TX 75275 USA Phone: +1 (972) 690-8439 E-mail:

More information

Ivla.tema.tisk Seminar Universitetet i Oslo. No

Ivla.tema.tisk Seminar Universitetet i Oslo. No Ivla.tema.tisk Seminar Universitetet i Oslo No 3-969 AN A-STABLE MODIFICATION OF ADAMS-BASHFORTH's METHOD FOR THE NUMERICAL INTEGRATION OF ORDINARY STIFF DIFFERENTIAL EQUATIONS by Syvert P. N0rsett AN

More information

Comparative numerical solutions of stiff ordinary differential equations using Magnus series expansion method

Comparative numerical solutions of stiff ordinary differential equations using Magnus series expansion method NTMSCI, No. 1, 5-45 (215) 5 New Trends in Mathematical Sciences http://www.ntmsci.com Comparative numerical solutions of stiff ordinary differential equations using Magnus series expansion method Mehmet

More information

16.1 Runge-Kutta Method

16.1 Runge-Kutta Method 704 Chapter 6. Integration of Ordinary Differential Equations CITED REFERENCES AND FURTHER READING: Gear, C.W. 97, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs,

More information

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester HIGHER ORDER METHODS School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE

More information

Parallel Numerical Methods for Ordinary Differential Equations: a Survey

Parallel Numerical Methods for Ordinary Differential Equations: a Survey Parallel Numerical Methods for Ordinary Differential Equations: a Survey Svyatoslav I. Solodushkin 1,2 and Irina F. Iumanova 1 1 Ural Federal University, Yekaterinburg, Russia 2 Krasovskii Institute of

More information

+ h4. + h5. 6! f (5) i. (C.3) Since., it yields

+ h4. + h5. 6! f (5) i. (C.3) Since., it yields Appendix C. Derivation of the Numerical Integration Formulae C.1. Derivation of the Numerical Integration of dy(x) / dx = f (x) For a given analytical or taulated function f (x), the left column in Tale

More information

CHAPTER 5: Linear Multistep Methods

CHAPTER 5: Linear Multistep Methods CHAPTER 5: Linear Multistep Methods Multistep: use information from many steps Higher order possible with fewer function evaluations than with RK. Convenient error estimates. Changing stepsize or order

More information

Hybrid Methods for Solving Differential Equations

Hybrid Methods for Solving Differential Equations Hybrid Methods for Solving Differential Equations Nicola Oprea, Petru Maior University of Tg.Mureş, Romania Abstract This paper presents and discusses a framework for introducing hybrid methods share with

More information

Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation

Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. (8) 7-77 ISSN - Two Optimized Runge-Kutta Methods for the Solution of the Schrödinger Equation T.V. Triantafyllidis,

More information

P-Stable Symmetric Super-Implicit Methods for Periodic Initial Value Problems

P-Stable Symmetric Super-Implicit Methods for Periodic Initial Value Problems F_LSLW~.R An International Journal computers & Available online at www.sciencedirect.corn o,..o. @...o.. mathematics with appllcatlona Computers and Mathematics with Applications 50 (2005) 701-705 www,elsevier.com

More information

Numerical Integration of Equations of Motion

Numerical Integration of Equations of Motion GraSMech course 2009-2010 Computer-aided analysis of rigid and flexible multibody systems Numerical Integration of Equations of Motion Prof. Olivier Verlinden (FPMs) Olivier.Verlinden@fpms.ac.be Prof.

More information

Linearly implicit Runge Kutta methods for advection reaction diffusion equations

Linearly implicit Runge Kutta methods for advection reaction diffusion equations Applied Numerical Mathematics 37 (2001) 535 549 Linearly implicit Runge Kutta methods for advection reaction diffusion equations M.P. Calvo, J. de Frutos, J. Novo Departamento de Matemática Aplicada y

More information

Numerical solution of ODEs

Numerical solution of ODEs Numerical solution of ODEs Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology November 5 2007 Problem and solution strategy We want to find an approximation

More information

Linear Multistep Methods

Linear Multistep Methods Linear Multistep Methods Linear Multistep Methods (LMM) A LMM has the form α j x i+j = h β j f i+j, α k = 1 i 0 for the approximate solution of the IVP x = f (t, x), x(a) = x a. We approximate x(t) on

More information

1 Ordinary differential equations

1 Ordinary differential equations Numerical Analysis Seminar Frühjahrssemester 08 Lecturers: Prof. M. Torrilhon, Prof. D. Kressner The Störmer-Verlet method F. Crivelli (flcrivel@student.ethz.ch May 8, 2008 Introduction During this talk

More information

On the stability regions of implicit linear multistep methods

On the stability regions of implicit linear multistep methods On the stability regions of implicit linear multistep methods arxiv:1404.6934v1 [math.na] 8 Apr 014 Lajos Lóczi April 9, 014 Abstract If we apply the accepted definition to determine the stability region

More information

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems

Index. higher order methods, 52 nonlinear, 36 with variable coefficients, 34 Burgers equation, 234 BVP, see boundary value problems Index A-conjugate directions, 83 A-stability, 171 A( )-stability, 171 absolute error, 243 absolute stability, 149 for systems of equations, 154 absorbing boundary conditions, 228 Adams Bashforth methods,

More information

A New Embedded Phase-Fitted Modified Runge-Kutta Method for the Numerical Solution of Oscillatory Problems

A New Embedded Phase-Fitted Modified Runge-Kutta Method for the Numerical Solution of Oscillatory Problems Applied Mathematical Sciences, Vol. 1, 16, no. 44, 157-178 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ams.16.64146 A New Embedded Phase-Fitted Modified Runge-Kutta Method for the Numerical Solution

More information

Aug Vol. 5. No. 03 International Journal of Engineering and Applied Sciences EAAS & ARF. All rights reserved

Aug Vol. 5. No. 03 International Journal of Engineering and Applied Sciences EAAS & ARF. All rights reserved FORMULATION OF PREDICTOR-CORRECTOR METHODS FROM 2-STEP HYBRID ADAMS METHODS FOR THE SOLUTION OF INITIAL VALUE PROBLEMS OF ORDINARY DIFFERENTIAL EQUATIONS 1 ABUBAKAR M. BAKOJI, 2 ALI M. BUKAR, 3 MUKTAR

More information

Solving scalar IVP s : Runge-Kutta Methods

Solving scalar IVP s : Runge-Kutta Methods Solving scalar IVP s : Runge-Kutta Methods Josh Engwer Texas Tech University March 7, NOTATION: h step size x n xt) t n+ t + h x n+ xt n+ ) xt + h) dx = ft, x) SCALAR IVP ASSUMED THROUGHOUT: dt xt ) =

More information

Validated Explicit and Implicit Runge-Kutta Methods

Validated Explicit and Implicit Runge-Kutta Methods Validated Explicit and Implicit Runge-Kutta Methods Alexandre Chapoutot joint work with Julien Alexandre dit Sandretto and Olivier Mullier U2IS, ENSTA ParisTech 8th Small Workshop on Interval Methods,

More information

Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review

Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review G. Vanden Berghe and M. Van Daele Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan

More information

On second derivative 3-stage Hermite Birkhoff Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

On second derivative 3-stage Hermite Birkhoff Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize Computational Methods for Differential Equations http://cmdetabrizuacir Vol 5, No 4, 2017, pp 24-47 On second derivative -stage Hermite Birkhoff Obrechkoff methods for stiff ODEs: A-stable up to order

More information

Predictor Corrector Methods of High Order for Numerical Integration of Initial Value Problems

Predictor Corrector Methods of High Order for Numerical Integration of Initial Value Problems International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 4, Issue 2, February 2016, PP 47-55 ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) www.arcjournals.org Predictor

More information