Results, Status and Perspectives for 2010/11. Karsten Eggert on behalf of the TOTEM Collaboration

Size: px
Start display at page:

Download "Results, Status and Perspectives for 2010/11. Karsten Eggert on behalf of the TOTEM Collaboration"

Transcription

1 Results, Status and Perspectives for 2010/11 Karsten Eggert on behalf of the TOTEM Collaboration Workshop on Hadron Hadron & Cosmic-Ray Interactions at multi-tev Energies ECT* - Trento, Nov 29th Dec 3 rd, 2010 p. 1

2 TOTEM Physics Overview Total cross-section Elastic Scattering b Forward physics Diffraction: soft and hard b jet jet p. 2

3 Experimental IP5 Inelastic telescopes: charged particle & vertex reconstruction in inelastic events T1: 3.1 < < 4.7 T2: 5.3 < < 6.5 T1: mrad T2: 3 10 mrad IP5 HF (CMS) ~ 10 m ~ 14 m T1 CASTOR (CMS) T2 Roman Pots: measure elastic & diffractive protons close to outgoing beam IP5 RP147 RP220 p. 3

4 All T1 Modules Ready in the Test Beam Zone Successfully tested with pion and muon beams in May June Both arms are completely assembled and equipped in the test beam line H8. Both telescope arms ready for installation TOTEM aims at the installation of both T1 telescope arms during the winter technical stop to enable first total cross-section measurements in p. 4

5 efficiency T1 telescope performance Both arms successfully tested with pion and muon beams Pions on copper target to get many-tracks events reconstructed hits CSC efficiencies with muons (triple coincidences) Longitudinal vertex Cu target Transverse vertex Beam monitor frame p. 5

6 T2 Telescope 2 arms of GEMs for tracks and vertex reconstruction 5.2< <6.5 Df=2 Both arms installed and taking data p. 6

7 Installation of half T2 Telescope Half a telescope assembled in lab The GEMs are installed as pairs with a back-to-back configuration. Installation 7

8 The Roman Pot System p. 8

9 Roman Pot detector assembly Roman Pot System All 12 Roman Pots at ±220 m from IP5 are operational: delivering data with active triggers. RP147 detector assemblies to be installed in winter technical stop. Until June: data were taken with RP220 in retracted position. p. 9

10 11/30 p. 10 Units installed into the beam vacuum chamber allowing to put proton detectors as close as possible to the beam Beampipes Edgeless detectors to minimize d Each RP station has 2 units, 5m apart. Each unit has 2 vertical insertions ( pots ) and 1 horizontal Horizontal Pot Vertical Pot BPM

11 p. 11

12 dn ch /d [1/unit] TOTEM: Acceptance Inelastic Acceptance in : non-diffractive minimum bias events: Proton Acceptance in (t, x): (contour lines at A = 10 %) (x = Dp/p) Charged particles per event single-diffractive events: t = p 2 d 2 x = Dp /p All TOTEM detectors have trigger capability. p. 12

13 Overview first T2 run: tracks seen April T2 commissioning with beam, RP comm. in garage position, bunch-crossing trigger first tracks in RPs in garage position, active trigger first T2 data with squeezed optics b * = 2m 2 b., 2e10 p/b RP beam-based alignment 450 GeV, b * = 11m 1 b., 3e10 p/b later 9e10 p/b first T2 data with nominal bunches b * = 3.5m, 1e11 p/b (nom.) RP insertion to 30 s in stable beams 8 nom. b. RP insertion to 25 s (V) and 30 s (H) in stable beams 8 16 nom. b partial RP beam-based alignment 3.5 TeV, 1 nom. b. 1.5 nb -1 first 2 elastic candidates RP loss map measurement to qualify 20 s settings first RP insertion to 20 s (V) and 25 s (H) 16 nom. b. p. 13

14 Overview 2010 (continued) RP insertions to 20 s (V) and 25 s (H) 16 nom. b nb RP beam-based alignment and run at 7 s 1 nom. b nb RP insertions to 18 s (V) and 20 s (H) nom. b nb special run: RPs inserted to 7 s (V) and 16 s (H) pileup-free data for T2 (trigger on pilot) common run RP + T2 1 pilot b. (1e10) + 4 b. x 7e10 p/b. 8.6 nb -1 Total: 25 s 1.5 nb s 185 nb s 3867 nb -1 7 s 9.5 nb -1 p. 14

15 T2 Fully installed, operative and commissioned on data p. 15

16 HF HF 20/30 p. 16 Preliminary studies with Pythia + full Geant detector simulation Work in progress on: - Understanding secondary contribution and smearing effects - Proper tuning of detector performance simulation - Optimization of trk algorithm and selection cuts for improved rejection of secondary charged tracks, - Estimation of systematic uncertainties IP5 Beam Pipe cone at ~ 5.54 (>100 radiation lengths)

17

18 400K inelastic events from dedicated run with low proton density bunches. Raw distribution: - No smearing corrections - No efficiency corrections - No secondaries contribution subtraction Work ongoing on unfolding corrections

19 Collimation-Based Roman Pot Alignment w.r.t. the Beam Centre Alignment is the central problem of Roman Pot measurements LHC collimation system produces sharp beam edges used to align Roman Pots and to determine the centre of the beam (same procedure as collimator setup) Collimator cuts a sharp beam RP approaches this produces spike in Beam edge symmetrically to the centre edge until it scrapes Loss Monitor downstream second RP approaches When both top and bottom pots feel the edge: they are at the same number of sigmas from the beam centre as the collimator the beam centre is exactly in the middle between top and bottom pot p. 19

20 ( y(mm Measurement of Forward Diffractive and Elastic Protons: the principle Diffractive protons low = m Hit RP220 elastic scattering high 0 m y ~ y scatt ~ t y 1/2 10 x ~ p/p 10 Detect the proton via: its momentum loss (low ) ( its transverse momentum (high Detector requirements: To approach the beam as close as possible: almost edgeless detectors Reliable movement system with solid mechanical stability for reproducible alignment high resolution of typically 20mm Trigger capability with large flexibility p. 20

21 LHC Optics Large Chromaticity effects p. 21

22 Physics with RP detectors Elastic scattering, s = 7 TeV, β * = 2 m Elastically scattered proton flux RP220 [mb/mm 2 ] 10 σ beam envelope Vertical RPs contain all events s( t ) = GeV 2 ( t ) PPP3, 3 pomeron model: s acc 4 mb s el ~ 20 mbarn p. 22

23 Track map (side 4,5) for left right coincidences t x p. 23

24 Track map (side 5,6) for left right coincidences p. 24

25 Collinearity in q y Low x, i.e. x < 0.4 mm and 2s cut in Dq x * Compatible with the beam divergence p. 25

26 Collinearity in q x Low x, i.e. x < 0.4 mm and 2s cut in Dq y * Q x is measured with 5m lever arm spectrometer Compatible with the beam divergence p. 26

27 26/30 p. 27 Preliminary t-distribution 84K elastic scattering candidate events TOTEM special run (~ 8 nb -1 ) s = 7 TeV b* = 3.5 m 7 s (V) and 16 s (H) Raw distribution: - No smearing corrections - No acceptance corrections - No background subtraction Sys. err. sources under study: alignment, beam position and divergence, background, optical functions, efficiency,

28 t distribution : different models 50 k events in t- range: 2 5 GeV 2 p. 28

29 Elastic Scattering - from ISR to Tevatron ISR ~ 1.7 GeV 2 ~ 0.7 GeV 2 ~1.5 GeV 2 Diffractive minimum: analogous to Fraunhofer diffraction: t ~p 2 q 2 exponential slope B at low t increases minimum moves to lower t with increasing s interaction region grows (as also seen from s tot ) depth of minimum changes shape of proton profile changes depth of minimum differs between pp, pˉp different mix of processes p. 29

30 Total Cross-Section and Elastic Scattering at low t Coulomb scattering Coulomb-Nuclear interference Nuclear scattering ds = dt 4 2 ( c G ( t ( - G ( t f s s ( tot 16 t t ( c 2 tot e - Bt e - Bt/2 4 Optical Theorem: s = ( T ( t = 0) tot elastic, nuclear s TOTEM Approach: = Re / Im T elastic,nuclear (t = 0) Measure the exponential slope B in the t-range GeV 2, extrapolate ds/dt to t=0, measure total inelastic and elastic rates (all TOTEM detectors provide L1 triggers): f = fine structure constant = relative Coulomb-nuclear phase G(t) = nucleon el.-mag. form factor = (1 + t / 0.71) -2 Ls 2 tot 16 dn = 1 elastic, nuclear 2 dt t = 0 Ls tot = N elastic, nuclear N inelastic s tot 16 = 2 1 ( dn / dt ) N elastic, nuclear elastic, nuclear N t = 0 inelastic p. 30

31 Possibilities of measurement ( s) r = 2 p s tot ds ( s) d ln s asymptotic behaviour: 1 / ln s for s pred. ~ 0.13 at LHC tot Try to reach the Coulomb region and measure interference: move the detectors closer to the beam than 10 s mm run at lower s < 14 TeV

32 Measurement of the Inelastic Rate N inel = L s inel Inelastic double arm trigger: robust against background, inefficient at small M Inelastic single arm trigger: suffers from beam-gas + halo background, best efficiency Inelastic triggers and proton (SD, DPE): cleanest trigger, proton inefficiency to be extrapolated Trigger on non-colliding bunches to determine beam-gas + halo rates. Vertex reconstruction with T1, T2 to suppress background Extrapolation of diffractive cross-section to large 1/M 2 assuming ds/dm 2 ~ 1/M 2 simulated Loss at low diffractive masses M Acceptance single diffraction extrapolated detected s [mb] trigger loss [mb] systematic error after extrapolations [mb] Non-diffractive inelastic Single diffractive Double diffractive Double Pomeron Total p. 32

33 Combined Uncertainty in s tot s tot 16p el t= 0 2 r Nel Ni nel 1 dn / dt 2 1+ r ( N ) 2 el + Ninel = + + p dnel / dt t= 0 b * = 90 m 1540 m Extrapolation of elastic cross-section to t = 0: ± 4 % ± 0.2 % Total elastic rate (strongly correlated with extrapolation): ± 2 % ± 0.1 % Total inelastic rate: ± 1 % ± 0.8 % (error dominated by Single Diffractive trigger losses) Error contribution from (1+ 2 ) using full COMPETE error band d / = 33 % ± 1.2 % L = 16 Total uncertainty in s tot including correlations in the error propagation: b * = 90 m : ± 5 %, b * = 1540 m : ± (1 2) %. Slightly worse in L (~ total rate squared!) : ± 7 % (± 2 %). Precise Measurement with b * = 1540 m requires: improved knowledge of optical functions alignment precision < 50 mm p. 33

34 Central Diffraction (DPE) 5-dimensional differential cross-section: 5 d s 1 1 b t b t e 1 1 dt dt d x d x d f x x Any correlations? Mass spectrum: change variables (x 1,x 2 ) (M PP, y PP ): M PP 2 = x 1 x 2 s ; y PP = 1 x ln 1 2 x 2 normalised DPE Mass Distribution (acceptance corrected) 14 mb / GeV d 2 s ( dm dy M 1 s(m) = GeV b * =90m: s(m) = GeV s(m)/m = 2 % 1.4 nb / GeV 50 events / (h cm -2 s -1 sufficient statistics to measure the inclusive mass spectrum p. 34

35 Track distribution for an inclusive trigger (global OR ) Trigger on minibunch Average number of min. bias events per bunch crossing : 0.02 p. 35

36 Single diffraction low x sector 45 IP sector 56 RP T2 T2 RP p. 36

37 Single diffraction large x sector 45 IP sector 56 RP T2 T2 RP p. 37

38 Min. Bias and diffractive events p. 38

39 Double Pomeron Exchange sector 45 IP sector 56 RP T2 T2 RP low ξ high ξ p. 39

40 Expected Results from 2010 Elastic scattering t distribution from GeV 2 Double Pomeron: mass distribution and kinematics Single diffraction: correlation of and rapidity gaps Forward multiplicity distributions Multiplicity correlations over large rapidity gap p. 40

41 Running Strategy for 2011 Repeat RP alignment at nominal conditions to understand new optics approach the RP detectors to the sharp beam edges produced by the LHC collimators This will enable constant running at closer approaches to the beams (~15 s in normal runs improve statistics at large t-values Special runs with several low proton density bunches plus one normal bunch: approach RP to ~ 5 s to reach lowest t around 0.2 GeV 2 Add one low-intensity bunch to the standard bunch train if possible Take data with T2 at reduced pile-up (< 10-2 ) Prepare the b* = 90 m optics measure the total cross-section and luminosity Targets: Approaching the RP closer to the beams enables s tot and s el with b*=90m Rich programme with single diffraction and Double Pomeron Correlations between the forward proton and topologies in T1 and T2 With larger b* ~ m Coulomb region might be accessible p. 41

42 de/d dn ch /d CMS + TOTEM: Acceptance largest acceptance detector ever built at a hadron collider Studies in a new kinematical range might lead to unforeseen discoveries Roman Pots T1,T2 CMS T1,T2 Roman Pots Charged particles ZDC b * =90m RPs CMS T1 T2 central HCal CASTOR CMS Energy flux b * =1540m = - ln tg q/2 p. 42

43 The TOTEM Collaboration Penn State University, University Park Case Western Reserve Univ., Cleveland, Ohio USA Estonian Academy of Sciences, Tallinn, Estonia Academy of Sciences, Praha, Czech Republic CERN, Geneva, Switzerland INFN Sezione di Bari and Politecnico di Bari, Bari, Italy Università di Siena and Sezione INFN-Pisa, Italy MTA KFKI RMKI, Budapest, Hungary University of Helsinki and HIP Helsinki, Finland Università di Genova and Sezione INFN, Genova, Italy p. 43

44 End p. 44

45 p. 45

46 p. 46

47 50 µm Silicon Edgeless Sensor for Roman Pots Planar technology with CTS (Current Terminating Structure) Efficiency at the edge s = 20 µm p. 47

48 Log(-x) Log(-x) Single Diffraction, s = 7 TeV, b* = 2 m SD Pythia distribution [mb] SD accepted protons [mb/mm 2 ] RP220 s = 6.8 mb (per side) Log(-t/GeV 2 ) SD accepted protons RP220 [mb] 20s 10s 10s 20s s = 1.2 mb (per side) Log(-t/GeV 2 ) p. 48

49 Raw Data: Hit Map for Left-Right Coincidences 24/30 p. 49 Side 45 t x x = Dp/p; t = t x + t y ; t i ~ -(pq i *) 2 (x *, y * ): vertex position at IP (q x*,q y* ): emission angle at IP Hits related to elastic scattering candidates Tracks reconstructed in left (45) and right (56) sides

50 Log(-x) Log(-x) Single Diffraction, s = 7 TeV, b* = 2 m SD Pythia distribution [mb] SD accepted protons [mb/mm 2 ] RP220 s = 6.8 mb (per side) Log(-t/GeV 2 ) SD accepted protons RP220 [mb] 20s 10s 10s 20s s = 1.2 mb (per side) Log(-t/GeV 2 ) p. 50

51 Elastic Scattering, s = 7 TeV, b* = 2 m Elastic scattering cross-section KL/PP3 model, subrange of -t > 0.3 GeV 2 Elastically scattered proton flux [mb/mm 2 ] RP220 20s 10s acceptance 15s 20s 10 s beam envelope 10s GeV 2 p. 51

52 p. 52

53 Double Pomeron exchange sector 45 IP sector 56 RP T2 T2 RP low ξ high ξ T2 tracks in sector T2 tracks in sector p. 53

54 Hit distribution for an inclusive trigger (global OR ) p. 54

55 Acceptance for inelastic events (1) Uncertainties in inelastic cross sections large: 5 non-diffractive minimum bias (MB) mb single diffraction (SD) mb double diffraction (DD) 4-11 mb T2 T1 PHOJET s = 7 TeV T1 T2 Low multiplicities in diffraction Accepted event fraction: Efficiency increases p. 55

56 Acceptance Elastic Scattering Acceptances b* = m b* = 1540 m Detector distance to the beam: 10s+0.5mm b*=1540 m b*=90 m -t = 0.01 GeV 2 b*=2 m -t = GeV 2 Beam log(-t / GeV 2 ) Detector distance 1.3 mm 6 mm

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC Marco Bozzo INFN Genova and University of Genova (Italy) on behalf of the TOTEM Collaboration Overview: The experiment and

More information

János Sziklai. WIGNER RCP On behalf of the TOTEM Collaboration:

János Sziklai. WIGNER RCP On behalf of the TOTEM Collaboration: Elastic scattering, total cross-section and charged particle pseudorapidity density in 7 TeV pp reactions measured by the TOTEM Experiment at the LHC János Sziklai WIGNER RCP On behalf of the TOTEM Collaboration:

More information

First Measurements of Proton-Proton Elastic Scattering and Total Cross-Section at the LHC. EDS 2011 Qui Nhon, Vietnam

First Measurements of Proton-Proton Elastic Scattering and Total Cross-Section at the LHC. EDS 2011 Qui Nhon, Vietnam First Measurements of Proton-Proton Elastic Scattering and Total Cross-Section at the LHC EDS 2011 Qui Nhon, Vietnam Mario Deile on behalf of the TOTEM Collaboration p. 1 Experimental Setup @ IP5 Inelastic

More information

Frigyes Nemes (Eötvös University) on behalf of the TOTEM collaboration

Frigyes Nemes (Eötvös University) on behalf of the TOTEM collaboration Frigyes Nemes (Eötvös University) on behalf of the TOTEM collaboration http://totem.web.cern.ch/totem/ Hadron Structure'13 2013, 29 June 4 July Hadron Structure'13 6/18/2013 Frigyes Nemes, TOTEM 1 Total

More information

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC

Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC Marco Bozzo INFN Genova e Universita di Genova (Italy) [for the TOTEM collaboration] Marco Bozzo 1 Outlook The TOTEM experiment

More information

Measurements of Proton-Proton Elastic Scattering and Total Cross-Section at the LHC by TOTEM Diffraction 2012 Lanzarote, 15 September

Measurements of Proton-Proton Elastic Scattering and Total Cross-Section at the LHC by TOTEM Diffraction 2012 Lanzarote, 15 September Measurements of Proton-Proton Elastic Scattering and Total Cross-Section at the LHC by TOTEM Diffraction 2012 Lanzarote, 15 September Mario Deile on behalf of the TOTEM Collaboration p. 1 Experimental

More information

TOTEM Update BSM? Fredrik Oljemark (Helsinki Univ. & HIP) On behalf of the TOTEM Collaboration Jyväskylä, TOTEM p. 1

TOTEM Update BSM? Fredrik Oljemark (Helsinki Univ. & HIP) On behalf of the TOTEM Collaboration Jyväskylä, TOTEM p. 1 TOTEM Update Fredrik Oljemark (Helsinki Univ. & HIP) b BSM? On behalf of the TOTEM Collaboration Jyväskylä, 25.11.2016 TOTEM p. 1 TOTEM Physics Overview Total cross-section Elastic Scattering b Forward

More information

arxiv:hep-ex/ v1 27 Oct 2004

arxiv:hep-ex/ v1 27 Oct 2004 Proceedings of the DIS 2004, Štrbské Pleso, Slovakia TOTEM: FORWARD PHYSICS AT THE LHC arxiv:hep-ex/0410084v1 27 Oct 2004 MARIO DEILE ON BEHALF OF THE TOTEM COLLABORATION CERN 1211 Genève 23, Switzerland

More information

Elastic and Total Cross-Section Measurements by TOTEM: Past and Future

Elastic and Total Cross-Section Measurements by TOTEM: Past and Future Elastic and Total Cross-Section Measurements by TOTEM: Past and Future CERN (Also at Wigner RCP, Hungary) E-mail: fnemes@cern.ch The TOTEM experiment at the LHC has measured proton-proton elastic scattering

More information

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Motivation Measurements of the total and inelastic cross sections and their energy evolution probe the non-perturbative

More information

A Triple-GEM Telescope for the TOTEM Experiment

A Triple-GEM Telescope for the TOTEM Experiment A Triple-GEM Telescope for the TOTEM Experiment Giuseppe Latino (Siena University & Pisa INFN) IPRD06 Siena October 4, 2006 TOTEM Experiment @ LHC T2 Telescope 3-GEM Technology Detailed Detector Simulation

More information

Results from combined CMS-TOTEM data

Results from combined CMS-TOTEM data Department of Physics Engineering, Hacettepe University, Ankara, Turkey The University of Iowa, Iowa City, USA E-mail: Sercan.Sen@cern.ch The combined data taking of the CMS and TOTEM experiments allows

More information

Elastic and inelastic cross section measurements with the ATLAS detector

Elastic and inelastic cross section measurements with the ATLAS detector Elastic and inelastic cross section measurements with the ATLAS detector Simon Holm Stark Niels Bohr Institute University of Copenhagen MPI@LHC 2017 December 13, 2017, Shimla, India Outline: Physics motivation.

More information

Atlas results on diffraction

Atlas results on diffraction Atlas results on diffraction Alessia Bruni INFN Bologna, Italy for the ATLAS collaboration Rencontres du Viet Nam 14th Workshop on Elastic and Diffractive Scattering Qui Nhon, 16/12/2011 EDS 2011 Alessia

More information

Total pp cross section measurements at 2, 7, 8 and 57 TeV

Total pp cross section measurements at 2, 7, 8 and 57 TeV Total pp cross section measurements at 2, 7, 8 and 57 TeV A) One (out of several) theoretical framework B) Topologies of events in σ tot C) Direct measurement of σ inel : 1) cosmic-ray experiments 2) collider

More information

Measurements of the elastic, inelastic and total cross sections in pp collisions with ATLAS subdetectors

Measurements of the elastic, inelastic and total cross sections in pp collisions with ATLAS subdetectors Measurements of the elastic, inelastic and total cross sections in pp collisions with ATLAS subdetectors 1 On behalf of the ATLAS collaboration University of Bologna Viale Berti Pichat 6/2,40127 Bologna,

More information

Total Inelastic Cross Section at LHC. Sara Valentinetti, INFN and Univ. of Bologna (Italy) On behalf of ATLAS and CMS

Total Inelastic Cross Section at LHC. Sara Valentinetti, INFN and Univ. of Bologna (Italy) On behalf of ATLAS and CMS Total Inelastic Cross Section at LHC Sara Valentinetti, INFN and Univ. of Bologna (Italy) On behalf of ATLAS and CMS LC13 Workshop, ECT*, Villa Tambosi, Villazzano (TN), 16-20 Sep 2013 Outline Introduction

More information

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Christof Roland/ MIT For the CMS Collaboration Rencontres de Moriond QCD Session 14 th March, 2010 Moriond

More information

Total, elastic and inelastic p-p cross sections at the LHC

Total, elastic and inelastic p-p cross sections at the LHC Total, elastic and inelastic p-p cross sections at the LHC Tomáš Sýkora, Charles University in Prague on behalf of the ATLAS, CMS, LHCb and TOTEM collaborations ICHEP 2016, August 3-10, 2016, Chicago outline

More information

(Experimental) Soft Diffraction at LHC. Jan Kašpar. ISMD2017, Tlaxcala, Mexico 15 September, 2017

(Experimental) Soft Diffraction at LHC. Jan Kašpar. ISMD2017, Tlaxcala, Mexico 15 September, 2017 (Experimental) Soft Diffraction at LHC Jan Kašpar ISMD2017, Tlaxcala, Mexico 15 September, 2017 Introduction selected processes: Elastic scattering p + p p + p Single diffraction p + p p + X Double diffraction

More information

Recent results on soft QCD topics from ATLAS

Recent results on soft QCD topics from ATLAS Recent results on soft QCD topics from ATLAS Roman Lysák Institute of Physics, Prague on behalf of the ATLAS collaboration Bormio 2016 Overview Understanding of soft-qcd interactions has direct impact

More information

arxiv: v1 [hep-ex] 16 Aug 2010

arxiv: v1 [hep-ex] 16 Aug 2010 arxiv:8.75v1 [hep-ex] 16 Aug Measurement of inclusive diffractive deep inelastic scattering using VFPS at H1 Université Libre de Bruxelles E-mail: hreus@mail.desy.de Performances of the Very Forward Proton

More information

Recent forward physics and diffraction results from CMS

Recent forward physics and diffraction results from CMS Recent forward physics and diffraction results from CMS Gabor Veres (CERN) on behalf of the CMS Collaboration ISMD 2015 Conference, Wildbad Kreuth, Germany October 5th, 2015 Outline CMS: forward instrumentation

More information

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration

Luminosity measurement and K-short production with first LHCb data. Sophie Redford University of Oxford for the LHCb collaboration Luminosity measurement and K-short production with first LHCb data Sophie Redford University of Oxford for the LHCb collaboration 1 Introduction Measurement of the prompt Ks production Using data collected

More information

Tim Martin - University of Birmingham

Tim Martin - University of Birmingham Tim Martin - University of Birmingham 1 2 Overview Modeling Inelastic Diffraction Diffractive Events in ATLAS Large Rapidity Gaps Interpreting the Data 3 pp Cross Section Double Diff. Central Exclusive

More information

QCD Studies at LHC with the Atlas detector

QCD Studies at LHC with the Atlas detector QCD Studies at LHC with the Atlas detector Introduction Sebastian Eckweiler - University of Mainz (on behalf of the ATLAS Collaboration) Examples of QCD studies Minimum bias & underlying event Jet-physics

More information

FIRST MEASUREMENTS OF PROTON-PROTON ELASTIC SCATTERING AND TOTAL CROSS-SECTION AT THE LHC BY TOTEM

FIRST MEASUREMENTS OF PROTON-PROTON ELASTIC SCATTERING AND TOTAL CROSS-SECTION AT THE LHC BY TOTEM FIRST MEASUREMENTS OF PROTON-PROTON ELASTIC SCATTERING AND TOTAL CROSS-SECTION AT THE LHC BY TOTEM M. DEILE on behalf of the TOTEM Collaboration CERN, 111 Genève 3, Switzerland The TOTEM experiment at

More information

Some studies for ALICE

Some studies for ALICE Some studies for ALICE Motivations for a p-p programme in ALICE Special features of the ALICE detector Preliminary studies of Physics Performances of ALICE for the measurement of some global properties

More information

Physics with Tagged Forward Protons using the STAR Detector at RHIC. The Relativistic Heavy Ion Collider The pp2pp Experiment STAR 2009

Physics with Tagged Forward Protons using the STAR Detector at RHIC. The Relativistic Heavy Ion Collider The pp2pp Experiment STAR 2009 Physics with Tagged Forward Protons using the STAR Detector at RHIC The Relativistic Heavy Ion Collider The pp2pp Experiment 2002 2003 STAR 2009 Elastic and Diffractive Processes Elastic scattering Detect

More information

Diffraction Physics at LHCb

Diffraction Physics at LHCb Diffraction Physics at LHCb Michael Schmelling LHCb / MPI for Nuclear Physics The LHCb Experiment Energy Flow Central Exclusive Production New Developments Summary Diffraction Physis at LHCb M. Schmelling,

More information

October 4, :33 ws-rv9x6 Book Title main page 1. Chapter 1. Measurement of Minimum Bias Observables with ATLAS

October 4, :33 ws-rv9x6 Book Title main page 1. Chapter 1. Measurement of Minimum Bias Observables with ATLAS October 4, 2018 3:33 ws-rv9x6 Book Title main page 1 Chapter 1 Measurement of Minimum Bias Observables with ATLAS arxiv:1706.06151v2 [hep-ex] 23 Jun 2017 Jiri Kvita Joint Laboratory for Optics, Palacky

More information

Luminosity measurement at LHC

Luminosity measurement at LHC Luminosity measurement at LHC Corsi di Dottorato congiunti BO-FE-PD Corso di Fisica delle Alte Energie Aprile 2012 Per Grafstrom CERN Che cosa è la luminosita? Organizzazione Perche misurare la luminosita?

More information

Evidence for Non-Exponential Differential Cross-Section of pp Elastic Scattering at Low t and s=8tev by TOTEM

Evidence for Non-Exponential Differential Cross-Section of pp Elastic Scattering at Low t and s=8tev by TOTEM EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2016 Evidence for Non-Exponential Differential Cross-Section of

More information

Review of LHCb results on MPI, soft QCD and diffraction

Review of LHCb results on MPI, soft QCD and diffraction Review of LHCb results on MPI, soft QCD and diffraction Marcin Kucharczyk on behalf of LHCb collaboration HNI Krakow EDS Blois 2015, Borgo (Corse), 30.06.2015 Outline LHCb - general purpose forward experiment

More information

The majorityofevents with a leading proton with 0:6 < x L < 0:9. do not have a visible large pseudorapidity gap in the interval

The majorityofevents with a leading proton with 0:6 < x L < 0:9. do not have a visible large pseudorapidity gap in the interval Conclusions DIS events with a leading baryon show the same dependence on x y Q 2 W and track multiplicity as `normal' DIS. The majorityofevents with a leading proton with 0:6 < x L < 0:9 do not have a

More information

Photon photon and photon nucleus physics at the LHC

Photon photon and photon nucleus physics at the LHC Photon photon and photon nucleus physics at the LHC Michael Murray, University of Kansas 1 JPos17 13 th September 2017 Photon studies at the LHC 1) Search for new physics from ƔƔ => high mass ATLAS, CMS-TOTEM

More information

Results and Perspectives in Forward Physics with ATLAS

Results and Perspectives in Forward Physics with ATLAS Nuclear Physics B Proceedings Supplement 00 (2015) 1 9 Nuclear Physics B Proceedings Supplement Results and Perspectives in Forward Physics with ATLAS B. Giacobbe on behalf of the ATLAS Collaboration Istituto

More information

MBR Monte Carlo Simulation in PYTHIA8

MBR Monte Carlo Simulation in PYTHIA8 The Rockefeller University, 10 York Avenue, New York, NY 06, USA E-mail: robert.ciesielski@rockefeller.edu Konstantin Goulianos The Rockefeller University, 10 York Avenue, New York, NY 06, USA E-mail:

More information

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration QCD at CDF Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration Jet Inclusive Cross-Section Underlying event studies Jet Shapes Specific processes _ W+Jets, γ + γ, γ + b/c, b-jet / bb jet Diffraction

More information

Muon commissioning and Exclusive B production at CMS with the first LHC data

Muon commissioning and Exclusive B production at CMS with the first LHC data Muon commissioning and Exclusive B production at CMS with the first LHC data Silvia Taroni INFN Milano Bicocca On the behalf of the CMS collaboration Outline Introduction CMS detector Muon detection in

More information

Chamonix XII: LHC Performance Workshop. Requirements from the experiments in Year 1*

Chamonix XII: LHC Performance Workshop. Requirements from the experiments in Year 1* Chamonix XII: LHC Performance Workshop Requirements from the experiments in Year 1* 3-8 March, 2003 Experiments: Foreseen Status in April 2007 Physics Reach in the First Year Requirements from the Experiments

More information

Recent CMS results in the forward region with the CASTOR detector. Sebastian Baur for the CMS Collaboration

Recent CMS results in the forward region with the CASTOR detector. Sebastian Baur for the CMS Collaboration Recent CMS results in the forward region with the CASTOR detector Sebastian Baur for the CMS Collaboration The Forward Instrumentation of CMS 2 Overview CMS has an excellent calorimetric instrumentation

More information

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC

Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC WDS'12 Proceedings of Contributed Papers, Part III, 142 146, 212. ISBN 978-8-7378-226-9 MATFYZPRESS Non-collision Background Monitoring Using the Semi-Conductor Tracker of ATLAS at LHC I. Chalupková, Z.

More information

SOFT QCD AT ATLAS AND CMS

SOFT QCD AT ATLAS AND CMS SAHAL YACOOB UNIVERSITY OF CAPE TOWN ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS SOFT QCD AT ATLAS AND CMS 28th Rencontres de Blois INTRODUCTION IN 15 MINUTES 2 Inelastic cross section ATLAS and CMS

More information

arxiv: v1 [hep-ex] 5 Mar 2017

arxiv: v1 [hep-ex] 5 Mar 2017 Recent CMS Results on Diffraction arxiv:703.0604v [hep-ex] 5 Mar 207 Roland Benoît on behalf of the CMS Collaboration DESY - CMS Notkestrasse 85, 22603 Hamburg Germany Abstract Recent CMS results on diffraction

More information

LHC State of the Art and News

LHC State of the Art and News LHC State of the Art and News ATL-GEN-SLIDE-2010-139 16 June 2010 Arno Straessner TU Dresden on behalf of the ATLAS Collaboration FSP 101 ATLAS Vulcano Workshop 2010 Frontier Objects in Astrophysics and

More information

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC Michele Cascella Graduate Course in Physics University of Pisa The School of Graduate Studies in Basic

More information

Open-charm and J/ψ production at the ALICE experiment

Open-charm and J/ψ production at the ALICE experiment Open-charm and J/ψ production at the ALICE experiment Pietro Cortese Università del Piemonte Orientale and INFN Alessandria, Italy on behalf of the ALICE Collaboration Purdue University, Jan. 6, 2011 Pietro

More information

Forward QCD studies and prospects at the LHC

Forward QCD studies and prospects at the LHC Forward QCD studies and prospects at the LHC Pierre.VanMechelen@ua.ac.be (*) INT Workshop on Perturbative and Non-Perturbative Aspects of QCD at Collider Energies 1 Seattle, September 13-18, 2010 (*) As

More information

First TOTEM measurement of large t proton proton elastic scattering at the LHC energy of s =7 TeV

First TOTEM measurement of large t proton proton elastic scattering at the LHC energy of s =7 TeV SLAC-PUB-15997 First TOTEM measurement of large t proton proton elastic scattering at the LHC energy of s =7 TeV,6a,6b, On behalf of the TOTEM Collaboration. G. Antchev, P. Aspell 8, I. Atanassov 8, V.

More information

arxiv: v1 [hep-ex] 9 Sep 2017

arxiv: v1 [hep-ex] 9 Sep 2017 γγ and γp measurements with forward proton taggers in CMS+TOTEM J. Hollar, on behalf of the CMS and TOTEM Collaborations LIP, Lisbon, Portugal arxiv:179.985v1 [hep-ex] 9 Sep 17 1 Introduction Abstract

More information

Lavinia-Elena Giubega

Lavinia-Elena Giubega Lavinia-Elena Giubega *on behalf of LHCb collaboration Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania Beach 2018 - XIII International Conference on Beauty,

More information

XIth International Conference on Elastic and Diffractive Scattering Château de Blois, France, May 15-20, 2005 arxiv:hep-ex/ v1 31 Oct 2005

XIth International Conference on Elastic and Diffractive Scattering Château de Blois, France, May 15-20, 2005 arxiv:hep-ex/ v1 31 Oct 2005 XIth International Conference on Elastic and Diffractive Scattering Château de Blois, France, May 15-20, 2005 arxiv:hep-ex/0510078v1 31 Oct 2005 Elastic Cross-Section and Luminosity Measurement in ATLAS

More information

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington University of Texas, Arlington E-mail: brandta@uta.edu A brief description of the ATLAS forward detectors is given. XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects April

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on the CMS information server CMS CR 212/178 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH211 GENEVA 23, Switzerland 212//9 Measurement of isolated photon

More information

Mini-Bias and Underlying Event Studies at CMS

Mini-Bias and Underlying Event Studies at CMS Yuan Chao Department of Physics National Taiwan University 1617 Taipei, TAIWAN 1 Introduction The Tevatron experiments provide us very good information for the quantum chromodynamics (QCD) modelings of

More information

Luminosity determination at proton colliders. November 2015 Per Grafstrom CERN and University of Bologna

Luminosity determination at proton colliders. November 2015 Per Grafstrom CERN and University of Bologna Luminosity determination at proton colliders November 2015 Per Grafstrom CERN and University of Bologna 1 % Range of precision in luminosity measurements in % 6 5 4 Tevatron 3 2 SPS collider 1 ISR LHC

More information

Timing Measurements in the Vertical Roman Pots of the TOTEM Experiment Technical Design Report

Timing Measurements in the Vertical Roman Pots of the TOTEM Experiment Technical Design Report CERN-LHCC-2014-020 TOTEM-TDR-002 15 September 2014 TOTEM CERN-LHCC-2014-020 / TOTEM-TDR-002 18/09/2014 Timing Measurements in the Vertical Roman Pots of the TOTEM Experiment Technical Design Report CERN-LHCC-2014-020,

More information

Measurement of the baryon number transport with LHCb

Measurement of the baryon number transport with LHCb Measurement of the baryon number transport with LHCb Marco Adinolfi University of Bristol On behalf of the LHCb Collaboration 13 April 2011 / DIS 2011 Marco Adinolfi DIS 2011-13 April 2011 - Newport News

More information

Federico Antinori (INFN Padova, Italy) on behalf of the ALICE Collaboration

Federico Antinori (INFN Padova, Italy) on behalf of the ALICE Collaboration Federico Antinori (INFN Padova, Italy) on behalf of the ALICE Collaboration ALICE run 2009-2010 Detector performance First physics results A taste of other analyses in advanced stage Outlook / Conclusion

More information

Recent DØ results in Diffractive and Jet Physics

Recent DØ results in Diffractive and Jet Physics Recent DØ results in Diffractive and Jet Physics * Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 E-mail: odell@fnal.gov DØ measurements of the inclusive jet cross section and the

More information

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006 The LHCb Experiment II Detector XXXIV SLAC Summer Institute, 17-28 July, 2006 Tatsuya NAKADA CERN and Ecole Polytechnique Fédérale de Lausanne (EPFL) 1) Introduction Physics requirements for the detector

More information

Forward Physics at LHC

Forward Physics at LHC 1 Forward Physics at LHC Risto Orava University of Helsinki and Helsinki Institute of Physics Physics Objectives & Background A Case Study at LHC - ATLAS Detectors for the Forward Spectrometer Planned

More information

Tagging with Roman Pots at RHIC. Proton tagging at STAR

Tagging with Roman Pots at RHIC. Proton tagging at STAR Tagging with Roman Pots at RHIC Proton tagging at STAR Elastic and Diffractive Processes in High Energy Proton Scattering Elastic scattering Detect protons in very forward direction with Roman Pots (RPs)

More information

arxiv: v2 [hep-ex] 7 Nov 2014

arxiv: v2 [hep-ex] 7 Nov 2014 EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) CERN-PH-EP-2014-177 Submitted to: Nuclear Physics B arxiv:1408.5778v2 [hep-ex] 7 Nov 2014 Measurement of the total cross section from elastic scattering

More information

Charged particle multiplicity in proton-proton collisions with ALICE

Charged particle multiplicity in proton-proton collisions with ALICE Charged particle multiplicity in proton-proton collisions with ALICE Introduction on the motivations for a pp physics programme with ALICE A short review on the detectors used to reconstruct charged particle

More information

MBR Monte Carlo Simulation in PYTHIA8

MBR Monte Carlo Simulation in PYTHIA8 MBR Monte Carlo Simulation in PYTHIA8 Robert Ciesielski, Konstantin Goulianos The Rockefeller University, 130 York Avenue, New York, NY 10065, USA E-mail: robert.ciesielski@rockefeller.edu, dino@rockefeller.edu

More information

Exclusive Central π+π- Production in Proton Antiproton Collisions at the CDF

Exclusive Central π+π- Production in Proton Antiproton Collisions at the CDF Exclusive Central π+π- Production in Proton Antiproton Collisions at the CDF Maria Żurek Research Center Jülich University of Cologne on behalf of the CDF Collaboration XLV International Symposium on Multiparticle

More information

Physics at Hadron Colliders Part II

Physics at Hadron Colliders Part II Physics at Hadron Colliders Part II Marina Cobal Università di Udine 1 The structure of an event One incoming parton from each of the protons enters the hard process, where then a number of outgoing particles

More information

The TOTEM Detector at LHC

The TOTEM Detector at LHC The TOTEM Detector at LHC G. Antchev 1, P. Aspell 1, I. Atanassov 1, V. Avati 1,9, V. Berardi 4, M. Berretti 5, M. Bozzo 2, E. Brücken 6, A. Buzzo 2, F. Cafagna 4, M. Calicchio 4, M. G. Catanesi 4, M.

More information

Forward detectors at ATLAS

Forward detectors at ATLAS Forward Physics at LHC Manchester 12 14 December 2010 Forward detectors at ATLAS Sara Valentinetti University of Bologna & INFN On behalf of the ATLAS collaboration 1 Summary Why Forward Detectors: Forward

More information

Early physics with ALICE

Early physics with ALICE IL NUOVO CIMENTO Vol. 33 C, N. 5 Settembre-Ottobre 21 DOI 1.1393/ncc/i211-1713-5 Colloquia: LaThuile1 Early physics with ALICE F. Prino for the ALICE Collaboration INFN, Sezione di Torino - Torino, Italy

More information

Lecture LHC How to measure cross sections...

Lecture LHC How to measure cross sections... Lecture 5b:Luminosity @ LHC How to measure cross sections... Cross Section & Luminosity Luminosities in run-i @ LHC How to measure luminosity Cross Section & Luminosity Methods for Luminosity Measurement

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Commissioning of the CMS Detector Available on CMS information server CMS CR -2009/113 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 15 May 2009 Commissioning of the CMS

More information

Status of the LHCb experiment and minimum bias physics

Status of the LHCb experiment and minimum bias physics Status of the LHCb experiment and minimum bias physics Sebastian Bachman Heidelberg University on behalf of the LHCb collaboration 6/19/2010 Sebastian Bachmann 1 Beauty and Charm at the LHC LHC is a factory

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2018/225 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 27 September 2018 (v2, 19 November

More information

Luminosity measurements and diffractive physics in ATLAS

Luminosity measurements and diffractive physics in ATLAS Luminosity measurements and diffractive physics in ATLAS DAPNIA-SPP, CEA Saclay, F91191 Gif-sur-Yvette, France E-mail: royon@hep.saclay.cea.fr We first describe the measurement of the elastic scattering

More information

ATLAS: Status and First Results

ATLAS: Status and First Results ATLAS: Status and First Results, University of Sheffield, on behalf of the ATLAS Collaboration 1 Overview of the ATLAS detector Status of the experiment Performance and physics results in the first six

More information

LHC commissioning. 22nd June Mike Lamont LHC commissioning - CMS 1

LHC commissioning. 22nd June Mike Lamont LHC commissioning - CMS 1 LHC commissioning Mike Lamont AB-OP nd June 005.06.05 LHC commissioning - CMS 1 Detailed planning for 7-87 8 and 8-18 005 006 Short Circuit Tests CNGS/TI8/IT1 HWC LSS.L8.06.05 LHC commissioning - CMS Sector

More information

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 1996/005 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Performance of the Silicon Detectors for the

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

Hadron Collider Physics, HCP2004, June 14-18

Hadron Collider Physics, HCP2004, June 14-18 ) " % "" ' & % % " ) " % '% &* ' ) * ' + " ' ) ( $#! ' "") ( * " ) +% % )( (. ' + -, '+ % &* ' ) ( 021 % # / ( * *' 5 4* 3 %( '' ' " + +% Hadron Collider Physics, HCP2004, June 14-18 The Run II DØ Detector

More information

Diffraction and rapidity gap measurements with ATLAS

Diffraction and rapidity gap measurements with ATLAS Diffraction and rapidity gap measurements with On behalf of the Collaboration Institute of Physics, Academy of Sciences of the CR E-mail: vlastimil.kus@cern.ch ATL-PHYS-PROC-04-004 08/0/04 Two diffraction

More information

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program b Primary goal of the LHCb Experiment Search for New Physics contributions

More information

Vector meson photoproduction in ultra-peripheral p-pb collisions measured using the ALICE detector

Vector meson photoproduction in ultra-peripheral p-pb collisions measured using the ALICE detector Vector meson photoproduction in ultra-peripheral p-pb collisions measured using the ALICE detector Jaroslav Adam On behalf of the ALICE Collaboration Faculty of Nuclear Sciences and Physical Engineering

More information

LHCb physics with the first pb 1

LHCb physics with the first pb 1 LHCb physics with the first 10-20 pb 1 Raluca Mureşan EPFL on behalf of the LHCb collaboration R. Mureşan, LHCb physics with the first 10-20 pb 1 p.1/30 Outline LHCb detector First data analysis and rapidity

More information

Report from the LHC Forward Physics Working Group 2014, Kraków

Report from the LHC Forward Physics Working Group 2014, Kraków Report from the LHC Forward Physics Working Group MPI@LHC 2014, Kraków Tim Martin On behalf of the LHC Forward Physics Working Group University of Warwick November 5, 2014 Introduction Understanding of

More information

V 0 production studies at LHCb. Mathias Knecht, EPFL , joint SPS-ÖPG-ÖGA 2 meeting, Innsbrück, Österreich, September 2-4, 2009

V 0 production studies at LHCb. Mathias Knecht, EPFL , joint SPS-ÖPG-ÖGA 2 meeting, Innsbrück, Österreich, September 2-4, 2009 V 0 production studies at LHCb Mathias Knecht, EPFL 2 9 2009, joint SPS-ÖPG-ÖGA 2 meeting, Innsbrück, Österreich, September 2-4, 2009 Outline One of the first measurements to be done with the LHCb detector...

More information

QCD Measurements at DØ

QCD Measurements at DØ QCD Measurements at DØ University of Texas -Arlington- Seminar, University of Virginia January 24th 27 TeVatron Collider at Fermilab Proton-Antiproton Collisions at Center-of-Mass s = 1.96 TeV Two Multi-Purpose

More information

LHCb: Reoptimized Detector & Tracking Performance

LHCb: Reoptimized Detector & Tracking Performance LHCb: Reoptimized Detector & Tracking Performance Gerhard Raven NIKHEF and VU, Amsterdam Representing the LHCb collaboration Beauty 2003, Carnegie Mellon University, Oct 14-18, Pittsburgh, PA, USA 1 The

More information

ALICE status and first results

ALICE status and first results ALICE status and first results for the ALICE collaboration Paul Kuijer, NIKHEF Data taking February May 2010 Detector status and performance Physics analyses IPRD10-07/06/2010, ALICE status and first results,

More information

Hard Diffraction Results and Prospects at the Tevatron

Hard Diffraction Results and Prospects at the Tevatron Hard Diffraction Results and Prosects at the Tevatron University of Manchester On behalf of the CDF & DØ Collaboration ISMD 2005 14 th August, Kromeriz Tevatron Tevatron at Fermilab -collisions Run II:

More information

Homework 4: Fermi s Golden Rule & Feynman Diagrams

Homework 4: Fermi s Golden Rule & Feynman Diagrams tot = 1 + 2 Nel + N inel, (4) where N el and N inel represent respectively the elastic and inelastic rates integrated over a given data taking period. Using the above equation, the elastic and inelastic

More information

Precision RENORM / MBR Predictions for Diffraction at LHC

Precision RENORM / MBR Predictions for Diffraction at LHC Precision RENORM / MBR Predictions for Diffraction at LHC Konstantin Goulianos http://physics.rockefeller.edu/dino/my.html Precision predictions? Wow! 1 Basic and combined diffractive CONTENTS processes

More information

First Run-2 results from ALICE

First Run-2 results from ALICE First Run-2 results from ALICE Goethe University Frankfurt & GSI on behalf of the ALICE Collaboration XLV International Symposium on Multiparticle Dynamics Wildbad Kreuth, 4-9 Oct 2015 1 Outline Introduction

More information

The LHCb detector. Eddy Jans (Nikhef) on behalf of the LHCb collaboration

The LHCb detector. Eddy Jans (Nikhef) on behalf of the LHCb collaboration The LHCb detector Eddy Jans (Nikhef) on behalf of the LHCb collaboration design of sub-detectors, trigger and DAQ performance: resolutions and PID-properties commissioning with cosmics and beam induced

More information

Measuring very forward (backward) at the LHeC

Measuring very forward (backward) at the LHeC Measuring very forward (backward) at the LHeC Armen Buniatyan DESY Detectors located outside of the main detector (~ 10 100m from the Interaction Point) Goals: Instantaneous luminosity Tag photo-production

More information

Studies of the diffractive photoproduction of isolated photons at HERA

Studies of the diffractive photoproduction of isolated photons at HERA Studies of the diffractive photoproduction of isolated photons at HERA P. J. Bussey School of Physics and Astronomy University of Glasgow Glasgow, United Kingdom, G12 8QQ E-mail: peter.bussey@glasgow.ac.uk

More information

Early physics with the LHCb detector

Early physics with the LHCb detector XXVIII PHYSICS IN COLLISION - Perugia, Italy, June, 25-28, 2008 Early physics with the LHCb detector Dirk Wiedner CERN for the LHCb collaboration 27 June 2008 Dirk Wiedner at PIC2008 Perugia 1 Outline

More information

Recent forward physics and diffraction results from CMS

Recent forward physics and diffraction results from CMS EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 6 Recent forward physics and diffraction results from Gábor Veres

More information