Mathematical Economics: Lecture 6

Size: px
Start display at page:

Download "Mathematical Economics: Lecture 6"

Transcription

1 Mathematical Economics: Lecture 6 Yu Ren WISE, Xiamen University October 10, 2012

2 Outline Chapter 11 Linear Independence 1 Chapter 11 Linear Independence

3 New Section Chapter 11: Linear Independence

4 Linear Independence Vector V 1,, V k in R n are linear dependent if and only if c 1,, c k not all zero, s.t. c 1 V c k V k = 0.

5 Linear Independence Vector V 1,, V k in R n are linear independent if and only if c 1 V c k V k = 0 implies c 1 = c 2 = = c k = 0

6 Chapter 11 Linear Independence Linear Independence; Example Example 11.2 The vectors w 1 = 1 2 3, w 2 = 4 5 6, and w 3 = are linearly dependent in R 3, since = as can easily be verified.

7 Linear Independence Theorem 11.1: Vectors v 1,, v k in R n are linearly dependent if and only if the linear system A = (v 1,, v k ), Ac = 0 has nonzero solution (c 1,, c k ).

8 Linear Independence Theorem 11.2: A set of n vectors v 1,, v n in R n is linearly independent if and only if det(v 1,, v n ) 0

9 Linear Independence Theorem 11.3 If k > n, any set of k vectors in R n is linearly dependent.

10 Spanning Sets the line generated or spanned by V : L[V ] {rv : r R 1 }. Figure 11.1 (page 238)

11 Spanning Sets Set generated or spanned by V 1,, V k : L[V 1,, V k ] {c 1 V c k V k : c 1, c k R 1 }.

12 Spanning Sets: Example Example 11.4 The x 1 x 2 -plane in R 3 is the span of the unit vectors e 1 = (1, 0, 0) and e 2 = (0, 1, 0), because any vector (a, b, 0) in this plane can be written as a 1 0 b = a 0 + b

13 Spanning R k any linear independent vector V 1,, V k can span R k. This means any vector U R k, c 1,, c k, s.t. c 1 V c k V k = U. To judge whether B belongs to the space spanned by {V 1,, V k }, check whether Vc = B has a solution c. (Theorem 11.4) A set of vectors that span R n must contain at least n vectors. (Theorem 11.6)

14 Spanning R k any linear independent vector V 1,, V k can span R k. This means any vector U R k, c 1,, c k, s.t. c 1 V c k V k = U. To judge whether B belongs to the space spanned by {V 1,, V k }, check whether Vc = B has a solution c. (Theorem 11.4) A set of vectors that span R n must contain at least n vectors. (Theorem 11.6)

15 Spanning R k any linear independent vector V 1,, V k can span R k. This means any vector U R k, c 1,, c k, s.t. c 1 V c k V k = U. To judge whether B belongs to the space spanned by {V 1,, V k }, check whether Vc = B has a solution c. (Theorem 11.4) A set of vectors that span R n must contain at least n vectors. (Theorem 11.6)

16 Spanning R k : Example Example 11.1 The vectors e 1 =.,..., e 0 n =. 0 1 in R n are linearly independent

17 Spanning R k : Example because if c 1,..., c n are scalars such that c 1 e 1 + c 2 e c n e n = 0, c 1 0 c 1. +c c 0 n. = 0. = c c n The last vector equation implies that c 1 = c 2 = c n = 0.

18 Basis and dimension in R n Definition: Let V 1,, V k be a fixed set of k vectors in R n. let V be the set L[V 1,, V k ] spanned by V 1,, V k. Then if V 1,, V k are linearly independent, V 1,, V k is called a basis of V. More generally, let W 1,, W k be a collection of vectors in V. Then W 1,, W k forms a basis if (a) W 1,, W k span V and (b) W 1,, W k are linearly independent.

19 Basis and dimension in R n : Example Example 11.7 v 1 = (1, 1, 1), v 2 = (1, 1, 1), and v 3 = (2, 0, 0) v 3 = v 1 + v 2 linear combination of v 1, v 2, and v 3 = linear combination of just v 1, and v 2

20 Basis and dimension in R n : Example w = av 1 + bv 2 + cv 3 = av 1 + bv 2 + c(v 1 + v 2 ) = (a + c)v 1 + (b + c)v 2. The set {v 1, v 2 } is a more efficient spanning set than is the set {v 1, v 2, v 3 }.

21 Basis and dimension in R n : Example Example 11.8 We conclude from Examples 11.1 and 11.5 that the unit vectors e 1 =.,..., e 0 n =. 0 1 form a basis of R n. Since this is such a natural basis, it is called the canonical basis of R n.

22 Basis and dimension in R n V 1,, V k are linearly independent V 1,, V k span R k. V 1,, V k form a basis of R k the determinant of [V 1,, V k ] is nonzero. (Theorem 11.8) we call the number of basis of a space as the dimension.

Mathematical Economics: Lecture 3

Mathematical Economics: Lecture 3 Mathematical Economics: Lecture 3 Yu Ren WISE, Xiamen University October 7, 2012 Outline 1 Example of Graphing Example 3.1 Consider the cubic function f (x) = x 3 3x. Try to graph this function Example

More information

Linear Algebra II Lecture 8

Linear Algebra II Lecture 8 Linear Algebra II Lecture 8 Xi Chen 1 1 University of Alberta October 10, 2014 Outline 1 2 Definition Let T 1 : V W and T 2 : V W be linear transformations between two vector spaces V and W over R. Then

More information

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Lineaire algebra 1 najaar Oefenopgaven. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra

Lineaire algebra 1 najaar Oefenopgaven. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra Lineaire algebra 1 najaar 2008 ontleend aan: Oefenopgaven Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear Algebra Charles W. Curtis, Linear Algebra: An Introductory Approach Exercise

More information

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017

Lecture 03. Math 22 Summer 2017 Section 2 June 26, 2017 Lecture 03 Math 22 Summer 2017 Section 2 June 26, 2017 Just for today (10 minutes) Review row reduction algorithm (40 minutes) 1.3 (15 minutes) Classwork Review row reduction algorithm Review row reduction

More information

Linear independence, span, basis, dimension - and their connection with linear systems

Linear independence, span, basis, dimension - and their connection with linear systems Linear independence span basis dimension - and their connection with linear systems Linear independence of a set of vectors: We say the set of vectors v v..v k is linearly independent provided c v c v..c

More information

Mathematical Economics: Lecture 2

Mathematical Economics: Lecture 2 Mathematical Economics: Lecture 2 Yu Ren WISE, Xiamen University September 25, 2012 Outline 1 Number Line The number line, origin (Figure 2.1 Page 11) Number Line Interval (a, b) = {x R 1 : a < x < b}

More information

Math 290, Midterm II-key

Math 290, Midterm II-key Math 290, Midterm II-key Name (Print): (first) Signature: (last) The following rules apply: There are a total of 20 points on this 50 minutes exam. This contains 7 pages (including this cover page) and

More information

Mathematical Economics: Lecture 9

Mathematical Economics: Lecture 9 Mathematical Economics: Lecture 9 Yu Ren WISE, Xiamen University October 17, 2011 Outline 1 Chapter 14: Calculus of Several Variables New Section Chapter 14: Calculus of Several Variables Partial Derivatives

More information

Math 235: Linear Algebra

Math 235: Linear Algebra Math 235: Linear Algebra Midterm Exam 1 October 15, 2013 NAME (please print legibly): Your University ID Number: Please circle your professor s name: Friedmann Tucker The presence of calculators, cell

More information

Lecture 6: Spanning Set & Linear Independency

Lecture 6: Spanning Set & Linear Independency Lecture 6: Elif Tan Ankara University Elif Tan (Ankara University) Lecture 6 / 0 Definition (Linear Combination) Let v, v 2,..., v k be vectors in (V,, ) a vector space. A vector v V is called a linear

More information

Family Feud Review. Linear Algebra. October 22, 2013

Family Feud Review. Linear Algebra. October 22, 2013 Review Linear Algebra October 22, 2013 Question 1 Let A and B be matrices. If AB is a 4 7 matrix, then determine the dimensions of A and B if A has 19 columns. Answer 1 Answer A is a 4 19 matrix, while

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

Undergraduate Mathematical Economics Lecture 1

Undergraduate Mathematical Economics Lecture 1 Undergraduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 15, 2014 Outline 1 Courses Description and Requirement 2 Course Outline ematical techniques used in economics courses

More information

Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES Pearson Education, Inc.

Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES Pearson Education, Inc. 4 Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES LINEAR INDEPENDENT SETS; BASES An indexed set of vectors {v 1,, v p } in V is said to be linearly independent if the vector equation c c c 1 1 2 2 p

More information

Graduate Mathematical Economics Lecture 1

Graduate Mathematical Economics Lecture 1 Graduate Mathematical Economics Lecture 1 Yu Ren WISE, Xiamen University September 23, 2012 Outline 1 2 Course Outline ematical techniques used in graduate level economics courses Mathematics for Economists

More information

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process

Worksheet for Lecture 25 Section 6.4 Gram-Schmidt Process Worksheet for Lecture Name: Section.4 Gram-Schmidt Process Goal For a subspace W = Span{v,..., v n }, we want to find an orthonormal basis of W. Example Let W = Span{x, x } with x = and x =. Give an orthogonal

More information

Math Linear Algebra

Math Linear Algebra Math 220 - Linear Algebra (Summer 208) Solutions to Homework #7 Exercise 6..20 (a) TRUE. u v v u = 0 is equivalent to u v = v u. The latter identity is true due to the commutative property of the inner

More information

Math 54 Homework 3 Solutions 9/

Math 54 Homework 3 Solutions 9/ Math 54 Homework 3 Solutions 9/4.8.8.2 0 0 3 3 0 0 3 6 2 9 3 0 0 3 0 0 3 a a/3 0 0 3 b b/3. c c/3 0 0 3.8.8 The number of rows of a matrix is the size (dimension) of the space it maps to; the number of

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

MTH5102 Spring 2017 HW Assignment 3: Sec. 1.5, #2(e), 9, 15, 20; Sec. 1.6, #7, 13, 29 The due date for this assignment is 2/01/17.

MTH5102 Spring 2017 HW Assignment 3: Sec. 1.5, #2(e), 9, 15, 20; Sec. 1.6, #7, 13, 29 The due date for this assignment is 2/01/17. MTH5102 Spring 2017 HW Assignment 3: Sec. 1.5, #2(e), 9, 15, 20; Sec. 1.6, #7, 13, 29 The due date for this assignment is 2/01/17. Sec. 1.5, #2(e). Determine whether the following sets are linearly dependent

More information

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true.

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Dimension We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Lemma If a vector space V has a basis B containing n vectors, then any set containing more

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization.

MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. MATH 304 Linear Algebra Lecture 33: Bases of eigenvectors. Diagonalization. Eigenvalues and eigenvectors of an operator Definition. Let V be a vector space and L : V V be a linear operator. A number λ

More information

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

Homework 2 Solutions

Homework 2 Solutions Math 312, Spring 2014 Jerry L. Kazdan Homework 2 s 1. [Bretscher, Sec. 1.2 #44] The sketch represents a maze of one-way streets in a city. The trac volume through certain blocks during an hour has been

More information

1 Last time: row reduction to (reduced) echelon form

1 Last time: row reduction to (reduced) echelon form MATH Linear algebra (Fall 8) Lecture Last time: row reduction to (reduced) echelon fm The leading entry in a nonzero row of a matrix is the first nonzero entry from left going right example, the row 7

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations MATH 2 - SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. We carry out row reduction. We begin with the row operations yielding the matrix This is already upper triangular hence The lower triangular matrix

More information

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by MATH 110 - SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER 2009 GSI: SANTIAGO CAÑEZ 1. Given vector spaces V and W, V W is the vector space given by V W = {(v, w) v V and w W }, with addition and scalar

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

Math 24 Spring 2012 Questions (mostly) from the Textbook

Math 24 Spring 2012 Questions (mostly) from the Textbook Math 24 Spring 2012 Questions (mostly) from the Textbook 1. TRUE OR FALSE? (a) The zero vector space has no basis. (F) (b) Every vector space that is generated by a finite set has a basis. (c) Every vector

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

Matrix Calculations: Linear maps, bases, and matrices

Matrix Calculations: Linear maps, bases, and matrices Matrix Calculations: Linear maps, bases, and matrices A Kissinger Institute for Computing and Information Sciences Version: autumn 2017 A Kissinger Version: autumn 2017 Matrix Calculations 1 / 37 Outline

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 The full solution of Ax b x x p x h : The general solution is the sum of any particular solution of the system Ax b plus the general solution of the corresponding homogeneous system Ax. ) Reduce A b to

More information

Worksheet for Lecture 23 (due December 4) Section 6.1 Inner product, length, and orthogonality

Worksheet for Lecture 23 (due December 4) Section 6.1 Inner product, length, and orthogonality Worksheet for Lecture (due December 4) Name: Section 6 Inner product, length, and orthogonality u Definition Let u = u n product or dot product to be and v = v v n be vectors in R n We define their inner

More information

Lecture 11: Vector space and subspace

Lecture 11: Vector space and subspace Lecture : Vector space and subspace Vector space. R n space Definition.. The space R n consists of all column vector v with n real components, i.e. R n = { v : v = [v,v 2,...,v n ] T, v j R,j =,2,...,n

More information

Chapter 3. More about Vector Spaces Linear Independence, Basis and Dimension. Contents. 1 Linear Combinations, Span

Chapter 3. More about Vector Spaces Linear Independence, Basis and Dimension. Contents. 1 Linear Combinations, Span Chapter 3 More about Vector Spaces Linear Independence, Basis and Dimension Vincent Astier, School of Mathematical Sciences, University College Dublin 3. Contents Linear Combinations, Span Linear Independence,

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

Homework For each of the following matrices, find the minimal polynomial and determine whether the matrix is diagonalizable.

Homework For each of the following matrices, find the minimal polynomial and determine whether the matrix is diagonalizable. Math 5327 Fall 2018 Homework 7 1. For each of the following matrices, find the minimal polynomial and determine whether the matrix is diagonalizable. 3 1 0 (a) A = 1 2 0 1 1 0 x 3 1 0 Solution: 1 x 2 0

More information

MTH5102 Spring 2017 HW Assignment 1: Prob. Set; Sec. 1.2, #7, 8, 12, 13, 20, 21 The due date for this assignment is 1/18/17.

MTH5102 Spring 2017 HW Assignment 1: Prob. Set; Sec. 1.2, #7, 8, 12, 13, 20, 21 The due date for this assignment is 1/18/17. MTH5102 Spring 2017 HW Assignment 1: Prob. Set; Sec. 1.2, #7, 8, 12, 13, 20, 21 The due date for this assignment is 1/18/17. 7. Let S = {0, 1} and F = R. In F (S, R), show that f = g and f + g = h, where

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Linear Independence. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Linear Independence MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Given a set of vectors {v 1, v 2,..., v r } and another vector v span{v 1, v 2,...,

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

Review for Exam 2 Solutions

Review for Exam 2 Solutions Review for Exam 2 Solutions Note: All vector spaces are real vector spaces. Definition 4.4 will be provided on the exam as it appears in the textbook.. Determine if the following sets V together with operations

More information

MODULE 13. Topics: Linear systems

MODULE 13. Topics: Linear systems Topics: Linear systems MODULE 13 We shall consider linear operators and the associated linear differential equations. Specifically we shall have operators of the form i) Lu u A(t)u where A(t) is an n n

More information

MTH 362: Advanced Engineering Mathematics

MTH 362: Advanced Engineering Mathematics MTH 362: Advanced Engineering Mathematics Lecture 5 Jonathan A. Chávez Casillas 1 1 University of Rhode Island Department of Mathematics September 26, 2017 1 Linear Independence and Dependence of Vectors

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates.

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. Let V be a vector space and α = [v 1,...,v n ] be an ordered basis for V. Theorem 1 The coordinate mapping C : V F n given

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

Lecture 6: Corrections; Dimension; Linear maps

Lecture 6: Corrections; Dimension; Linear maps Lecture 6: Corrections; Dimension; Linear maps Travis Schedler Tues, Sep 28, 2010 (version: Tues, Sep 28, 4:45 PM) Goal To briefly correct the proof of the main Theorem from last time. (See website for

More information

MATH 423 Linear Algebra II Lecture 12: Review for Test 1.

MATH 423 Linear Algebra II Lecture 12: Review for Test 1. MATH 423 Linear Algebra II Lecture 12: Review for Test 1. Topics for Test 1 Vector spaces (F/I/S 1.1 1.7, 2.2, 2.4) Vector spaces: axioms and basic properties. Basic examples of vector spaces (coordinate

More information

Lecture 18: Section 4.3

Lecture 18: Section 4.3 Lecture 18: Section 4.3 Shuanglin Shao November 6, 2013 Linear Independence and Linear Dependence. We will discuss linear independence of vectors in a vector space. Definition. If S = {v 1, v 2,, v r }

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

Math 221 Midterm Fall 2017 Section 104 Dijana Kreso

Math 221 Midterm Fall 2017 Section 104 Dijana Kreso The University of British Columbia Midterm October 5, 017 Group B Math 1: Matrix Algebra Section 104 (Dijana Kreso) Last Name: Student Number: First Name: Section: Format: 50 min long exam. Total: 5 marks.

More information

MATH 115A: SAMPLE FINAL SOLUTIONS

MATH 115A: SAMPLE FINAL SOLUTIONS MATH A: SAMPLE FINAL SOLUTIONS JOE HUGHES. Let V be the set of all functions f : R R such that f( x) = f(x) for all x R. Show that V is a vector space over R under the usual addition and scalar multiplication

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

GENERAL VECTOR SPACES AND SUBSPACES [4.1]

GENERAL VECTOR SPACES AND SUBSPACES [4.1] GENERAL VECTOR SPACES AND SUBSPACES [4.1] General vector spaces So far we have seen special spaces of vectors of n dimensions denoted by R n. It is possible to define more general vector spaces A vector

More information

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. Diagonalization Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

More information

5.4 Basis And Dimension

5.4 Basis And Dimension 5.4 Basis And Dimension 1 Nonrectangular Coordinate Systems We describe this by saying that the coordinate system establishes a one-to-one correspondence between points in the plane and ordered pairs of

More information

1. TRUE or FALSE. 2. Find the complete solution set to the system:

1. TRUE or FALSE. 2. Find the complete solution set to the system: TRUE or FALSE (a A homogenous system with more variables than equations has a nonzero solution True (The number of pivots is going to be less than the number of columns and therefore there is a free variable

More information

1 Last time: multiplying vectors matrices

1 Last time: multiplying vectors matrices MATH Linear algebra (Fall 7) Lecture Last time: multiplying vectors matrices Given a matrix A = a a a n a a a n and a vector v = a m a m a mn Av = v a a + v a a v v + + Rn we define a n a n a m a m a mn

More information

Matrices related to linear transformations

Matrices related to linear transformations Math 4326 Fall 207 Matrices related to linear transformations We have encountered several ways in which matrices relate to linear transformations. In this note, I summarize the important facts and formulas

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 - Linear algebra, Spring Semester 22-23 Dan Abramovich Review We saw: an algorithm - row reduction, bringing to reduced echelon form - answers the questions: - consistency (no pivot on right) -

More information

MATH 110: LINEAR ALGEBRA HOMEWORK #2

MATH 110: LINEAR ALGEBRA HOMEWORK #2 MATH 11: LINEAR ALGEBRA HOMEWORK #2 1.5: Linear Dependence and Linear Independence Problem 1. (a) False. The set {(1, ), (, 1), (, 1)} is linearly dependent but (1, ) is not a linear combination of the

More information

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra

Linear Algebra II. 2 Matrices. Notes 2 21st October Matrix algebra MTH6140 Linear Algebra II Notes 2 21st October 2010 2 Matrices You have certainly seen matrices before; indeed, we met some in the first chapter of the notes Here we revise matrix algebra, consider row

More information

Computational math: Assignment 1

Computational math: Assignment 1 Computational math: Assignment 1 Thanks Ting Gao for her Latex file 11 Let B be a 4 4 matrix to which we apply the following operations: 1double column 1, halve row 3, 3add row 3 to row 1, 4interchange

More information

12. Special Transformations 1

12. Special Transformations 1 12. Special Transformations 1 Projections Take V = R 3 and consider the subspace W = {(x, y,z) x y z = 0}. Then the map P:V V that projects every vector in R 3 orthogonally onto the plane W is a linear

More information

Components and change of basis

Components and change of basis Math 20F Linear Algebra Lecture 16 1 Components and change of basis Slide 1 Review: Isomorphism Review: Components in a basis Unique representation in a basis Change of basis Review: Isomorphism Definition

More information

Determine whether the following system has a trivial solution or non-trivial solution:

Determine whether the following system has a trivial solution or non-trivial solution: Practice Questions Lecture # 7 and 8 Question # Determine whether the following system has a trivial solution or non-trivial solution: x x + x x x x x The coefficient matrix is / R, R R R+ R The corresponding

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Determinants. Beifang Chen

Determinants. Beifang Chen Determinants Beifang Chen 1 Motivation Determinant is a function that each square real matrix A is assigned a real number, denoted det A, satisfying certain properties If A is a 3 3 matrix, writing A [u,

More information

Jordan Canonical Form

Jordan Canonical Form Jordan Canonical Form Massoud Malek Jordan normal form or Jordan canonical form (named in honor of Camille Jordan) shows that by changing the basis, a given square matrix M can be transformed into a certain

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

Lecture 9. Scott Pauls 1 4/16/07. Dartmouth College. Math 23, Spring Scott Pauls. Last class. Today s material. Group work.

Lecture 9. Scott Pauls 1 4/16/07. Dartmouth College. Math 23, Spring Scott Pauls. Last class. Today s material. Group work. Lecture 9 1 1 Department of Mathematics Dartmouth College 4/16/07 Outline Repeated Roots Repeated Roots Repeated Roots Material from last class Wronskian: linear independence Constant coeffecient equations:

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Diagonalization. Hung-yi Lee

Diagonalization. Hung-yi Lee Diagonalization Hung-yi Lee Review If Av = λv (v is a vector, λ is a scalar) v is an eigenvector of A excluding zero vector λ is an eigenvalue of A that corresponds to v Eigenvectors corresponding to λ

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 02 Vector Spaces, Subspaces, linearly Dependent/Independent of

More information

Linear Algebra II Lecture 13

Linear Algebra II Lecture 13 Linear Algebra II Lecture 13 Xi Chen 1 1 University of Alberta November 14, 2014 Outline 1 2 If v is an eigenvector of T : V V corresponding to λ, then v is an eigenvector of T m corresponding to λ m since

More information

Module 1: Basics and Background Lecture 5: Vector and Metric Spaces. The Lecture Contains: Definition of vector space.

Module 1: Basics and Background Lecture 5: Vector and Metric Spaces. The Lecture Contains: Definition of vector space. The Lecture Contains: Definition of vector space Dimensionality Definition of metric space file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture5/5_1.htm[6/14/2012

More information

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur

Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Constrained and Unconstrained Optimization Prof. Adrijit Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 01 Introduction to Optimization Today, we will start the constrained

More information

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0

This lecture: basis and dimension 4.4. Linear Independence: Suppose that V is a vector space and. r 1 x 1 + r 2 x r k x k = 0 Linear Independence: Suppose that V is a vector space and that x, x 2,, x k belong to V {x, x 2,, x k } are linearly independent if r x + r 2 x 2 + + r k x k = only for r = r 2 = = r k = The vectors x,

More information

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion. Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

Lecture 4: Linear independence, span, and bases (1)

Lecture 4: Linear independence, span, and bases (1) Lecture 4: Linear independence, span, and bases (1) Travis Schedler Tue, Sep 20, 2011 (version: Wed, Sep 21, 6:30 PM) Goals (2) Understand linear independence and examples Understand span and examples

More information

ICS 6N Computational Linear Algebra Vector Equations

ICS 6N Computational Linear Algebra Vector Equations ICS 6N Computational Linear Algebra Vector Equations Xiaohui Xie University of California, Irvine xhx@uci.edu January 17, 2017 Xiaohui Xie (UCI) ICS 6N January 17, 2017 1 / 18 Vectors in R 2 An example

More information

v = v 1 2 +v 2 2. Two successive applications of this idea give the length of the vector v R 3 :

v = v 1 2 +v 2 2. Two successive applications of this idea give the length of the vector v R 3 : Length, Angle and the Inner Product The length (or norm) of a vector v R 2 (viewed as connecting the origin to a point (v 1,v 2 )) is easily determined by the Pythagorean Theorem and is denoted v : v =

More information

Extreme Values and Positive/ Negative Definite Matrix Conditions

Extreme Values and Positive/ Negative Definite Matrix Conditions Extreme Values and Positive/ Negative Definite Matrix Conditions James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 8, 016 Outline 1

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Linear Algebra (wi1403lr) Lecture no.4

Linear Algebra (wi1403lr) Lecture no.4 Linear Algebra (wi1403lr) Lecture no.4 EWI / DIAM / Numerical Analysis group Matthias Möller 29/04/2014 M. Möller (EWI/NA group) LA (wi1403lr) 29/04/2014 1 / 28 Review of lecture no.3 1.5 Solution Sets

More information