MHD Equilibrium and Stability of Tokamaks and RFP Systems with 3D Helical Cores


 Virgil Barrett
 1 years ago
 Views:
Transcription
1 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 MHD Equilibrium and Stability of Tokamaks and FP Systems with 3D Helical Cores W. A. Cooper Ecole Polytechnique Fédérale de Lausanne, Association EUATOMConfédération Suisse, Centre de echerches en Physique des Plasmas, CH115 Lausanne, Switzerland. Collaborators EPFL/CPP: J. P. Graves, O. Sauter, A. Pochelon, L. Villard Consorzio FX: D. Terranova, M. Gobbin, P. Martin, L. Marrelli, I. Predebon ONL: S. P. Hirshman Culham Science Centre: I. T. Chapman W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 1
2 MOTIVATION Manifestation of internal 3D structures in axisymmetric devices: SHAx states in FXmod. Lorenzini et al., Nature Physics 5 (29) 57 Snakes in JET A. Weller et al., Phys. ev. Lett. 59 (1987) 233 Disappearance of sawteeth but continuous dominantly n = 1 mode in TCV at high elongation and current H. eimerdes et al., Plasma Phys. Control. Fusion 48 (26) 1621 Y. Camenen et al., Nucl. Fusion 47 (27) 586 Change of sawteeth from kinklike to quasiinterchangelike with plasma shaping in DIIID E. A. Lazarus et al., Plasma Phys. Contr. Fusion 48 (26) L65 Longlived saturated modes in MAST I. T. Chapman et al., Nucl. Fusion 5 (21) W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 2
3 THEOY EVIEW Analytic studies of ideal nonlinearly saturated m = 1, n = 1 modes Avinash,.J. Hastie, J.B. Taylor, Phys. ev. Lett. 59 (1987) 2647 M.N. Bussac,. Pellat, Phys. ev. Lett. 59 (1987) 265 F.L. Waelbroeck, Phys. Fluids B 59 (1989) 499 Pellet deposition in magnetic island on q = 1 surface J.A. Wesson, Plasma Phys. Control. Fusion B 37 (1995) A337 Large scale simulations of nonlinearly saturated MHD instability L.A. Charlton et al., Phys. Fluids B 59 (1989) 798 H. Lütjens, J.F. Luciani, J. Comput. Phys. 227 (28) 6944 Bifurcated equilibria due to ballooning modes with the NSTAB code P. Garabedian, Proc. Natl. Acad. Sci. USA 13 (26) FXmod SHAx MHD equilibria D. Terranova et al., in Plasma Phys. Contr. Fusion 52 (21) Bifurcated tokamak equilibria similar to a saturated internal kink W.A. Cooper et al., Phys. ev. Lett. 15 (21) 353 W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 3
4 OUTLINE We investigate the proposition that the instability structures observed in the experiments constitute in reality new equilibrium states with 3D character; an axisymmetric boundary is imposed 3D magnetohydrodynamic (MHD) fixed boundary equilibria with imposed nested flux surfaces are investigated with: VMEC2 S. P. Hirshman, O. Betancourt, J. Comput. Phys. 96 (1991) 99 ANIMEC W. A. Cooper et al., Comput. Phys. Commun. 18 (29) 1524 MHD equilibria with 3D internal helical structures computed for TCV, ITE (hybrid scenario), MAST, JET (Snakes) and FXmod Linear ideal MHD stability computed with TEPSICHOE for FXmod D. V. Anderson et al., Int. J. Supercomp. Appl. 4 (199) 33 W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 4
5 Magnetohydrodynamic Equilibria 3D Impose nested magnetic surfaces and single magnetic axis Minimise energy of the system W = ( B d 3 2 x + p (s, B) ) 2µ Γ 1 Solve inverse equilibrium problem : = (s, u, v), = (s, u, v). Variation of the energy dw dt = s=1 [ dsdudv F [ dudv t + F (p + B2 2µ )( u t + F λ ] λ t t u )] t W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 5
6 Magnetohydrodynamic Equilibria 3D The MHD forces are F = F z = u [σ gb u (B )] + v [σ gb v (B )] [ )] (p + B2 + [ )] (p + B2 u s 2µ s u 2µ g ) + [(p + B2 σ 2 (B v ) 2] 2µ u [σ gb u (B )] + v [σ gb v (B )] + [ )] (p + B2 [ )] (p + B2 u s 2µ s u 2µ The λ force equation minimises the spectral width and corresponds to the binormal projection of the momentum balance at the equilibrium state. [ F λ = Φ (σbv ) (s) (σb ] u) u v For isotropic pressure p = p = p and σ = 1/µ. W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 6
7 Magnetohydrodynamic Equilibria 3D Use Fourier decomposition in the periodic angular variables u and v and a special finite difference scheme for the radial discretisation An accelerated steepest descent method is applied with matrix preconditioning to obtain the equilibrium state The radial force balance is a diagnostic of the accuracy of the equilibrium state in this approach Fs 1 p Φ = (s) Φ σbv ι(s) σbu (s) s B s g s g denotes a flux surface average A = L (2π) 2 2π/L dv 2π du ga(s, u, v) This model is implemented in the ANIMEC code, an anisotropic pressure extension of the VMEC2 code. L is the number of toroidal field periods. W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 7
8 Boundaries for TCV, ITE, MAST and JET Fixed axisymmetric boundary equilibrium studies are explored. TCV boundary description: b = cos u +.6 cos 2u; b =.48 sin u MAST, JET boundary: b = + a cos(u + δ sin u + τ sin 2u); b = Ea sin u MAST: =.9m, a =.54m, E = 1.744, δ =.3985, τ =.198 JET: = 2.96m, a = 1.25m, E = 1.68, δ =.3, τ = TCV ITE MAST JET W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 8
9 Bifurcated equilibria in TCV Selection of qprofiles that yield bifurcated equilibria in TCV. Boundary description: b = cos u +.6 cos 2u, b =.48 sin u. q =(.5+s 1.1s 4 ) 1, (.7+.7s s 4 ) 1, (.9+.2s.8s 6 ) 1, (.98.7s 9 ) q = 1/ι s W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 9
10 CPP TCV toroidal flux contours at various cross sections TCV toroidal magnetic flux contours with prescribed ι =.9+.2s.8s6 profile. Axisymmetric v=π v= v = π/3 v = 2π/3 Helical W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 1
11 Helical equilibrium structures in TCV Helical axis displacement and energy difference as function of q min. q(s) = [.9 + α 1 s (.6 + α 1 )s 6 ] 1, α 1 = (); 1 () µ (W hel W axi ) x () ; 1 () q min µ (W hel W axi ) q min W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 11
12 TCV helical structures at finite β Flat core pressure and qprofile with weak shear reversal q(s) = (.9 +.3s s 4 ) 1. p(s) = p ( s s s s s 1 ). p, qprofiles 1 (); 1 () p(s)/p() ; q(s) s 1 () ; 1 () <β> W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 12
13 ITE equilibrium profiles Prescribe mass profile and toroidal current profile. p(s) M(s)[Φ (s)] Γ Equilibria have toroidal current 13 14MA, B t = 4.6T, β 2.9% qprofile qprofile range for helical states MA q q MA s s W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 13
14 CPP ITE pressure contours at various cross sections Contours of constant pressure of an ITE hybrid scenario equilibrium with 13.3M A toroidal plasma current v= W. Anthony Cooper, CPP/EPFL v = π/3 v = 2π/3 v=π 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 14
15 Convergence of solutions Define helical excursion parameter δ H = 2 1 (s = ) (s = ) a Convergence of δ H with N r = number of radial grid points δ H /N r x 1 4 W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 15
16 Helical core ITE equilibria Variation of the helical axis distortion parameter δ H with respect to the toroidal current and corresponding variation with respect to q min. δ H versus current δ H versus q min δ H.2 δ H TOOIDAL CUENT q min W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 16
17 CPP ITE pressure contours as a function of plasma current Contours of constant pressure at the cross section with toroidal angle v = 2π/3 13.1M A 13.2M A 13.3M A 13.4M A 13.5M A 13.6M A 13.7M A 13.8M A W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 17
18 Finite β ITE scan The ITE hybrid scenario is projected in the range 12 14MA with B t = 5.3T. With a sharper core concentrated toroidal current at 12M A, the variation of the helical axis distortion parameter δ H with respect to β is computed δ H <β> W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 18
19 MAST pressure contours at various cross sections Contours of constant pressure of a MAST equilibrium 1.8 v = (a) 1.8 v = π/3 (b) 1.8 v = 2π/3 (c) 1.8 v = π (d) v= v=π/ v=2π/ v=π This serves as a model for longlived modes in MAST I.T. Chapman et al., Nucl. Fusion 5 (21) Saturated internal kinks also observed on NSTX J.E. Menard et al., Nucl. Fusion 45 (25) 539 W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 19
20 JET snake equilibrium profiles Prescribe mass profile and toroidal current profile. Equilibrium has toroidal current 3.85MA, B t = 3.1T, β 2.3% pressure profile qprofile pressure s q s W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 2
21 JET pressure, modb contours at various cross sections CPP Contours of constant pressure and modb of a JET snake equilibrium v= v=π v = π/3 v = 2π/3 2 (b) 2 (c) 2 (d) (a) v= W. Anthony Cooper, CPP/EPFL 2 3 v=π/ v=2π/3 4 2 v=π th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 21
22 JET snake equilibrium structure Standard view of a snake (with variation with respect to toroidal angle in lieu of time in the simulation). experiment (courtesy of A. Weller) ANIMEC simulation W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 22
23 FXmod toroidal flux and j B/B 2 contours Contours of constant toroidal flux (VMEC coordinates) and j B/B 2 (Boozer coordinates) in a FXmod SHAx equilibrium state.4 v =.4 v = π/21.4 v = 2π/21.4 v = π/ φ=.4 v=π/21.4 v=2π/21.4 v=π/ φ =.4 φ = π/21.4 φ = 2π/21.4 φ = π/ φ=.4 φ=π/21.4 φ=2π/21.4 φ=π/ W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 23
24 FXmod toroidal flux and modb contours CPP Contours of constant toroidal flux and modb in the Boozer coordinate frame for the FXmod SHAx equilibrium state φ=.4 φ = π/21.4 φ = 2π/ φ= φ= W. Anthony Cooper, CPP/EPFL φ=π/ φ=2π/ φ = π/21 φ = π/ φ = 2π/ φ=π/ φ = π/7 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 24
25 ModB 2 Fourier amplitudes in FXmod Dominant Fourier amplitudes of B 2 in the FXmod SHAx equilibrium state m/n=/ B 2 mn m/n=1/14.2 m/n=/7 m/n=1/7 m/n=1/ s W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 25
26 Linear Ideal MHD Stability Internal potential energy δw p = 1 2 d 3 x [C 2 + Γp ξ 2 D ξ s 2] Use Boozer coordinates ξ = gξ s (B s) θ φ + η B 2 + Fourier decomposition in angular variables [ J(s) Φ (s)b 2η µ ] B ξ s (s, θ, φ) = l s q lx l (s)sin(m l θ n l φ + ) η(s, θ, φ) = l Y l (s)cos(m l θ n l φ + ) A hybrid finite element method is applied for the radial discretisation. In the 3D TEPSICHOE stability code, COOL finite elements based on variable order Legendre polynomials have been implemented. The order of the polynomial is labelled with p. W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 26
27 MHD stability in FXmod Ideal MHD stability with respect to n = 8 family of modes (w/a = 1.99) λ λ λ q=1/8 q s W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 27
28 Fourier Amplitudes of ξ s The three leading Fourier amplitudes of the radial component of the displacement vector ξ s mn with w/a = and p = 5 for core q /q < for core q /q >.2.15 core dq/ds < m/n=1/ core dq/ds > m/n=1/8 ξ s mn.1.5 m/n=2/15 m/n=1/ S ξ s mn m/n=1/6.2 m/n=2/ S W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 28
29 Wall Stabilisation Effects λ for core q /q < for core q /q > p=1 1 2 p= λ λ w/a w/a W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 29
30 The Instability Driving Terms The magnetohydrodynamic instability driving terms correspond to ballooning/interchange (δw BI ) and kink (δw J ) structures δw BI = δw J = ds 1 1 ds ds ds 2π L s 2π L s 2π L s 2π L s dφ dφ dφ dφ 2π 2π 2π 2π [ gp dθp (s) + ψ (s)j(s) Φ (s)i(s) (s) ] g (ξ s ) 2 s dθp (s) B s B 2ξs ( gb ξ s ) [ gb 2( ) j B dθ s 2 B 2 ( ) j B (ξ s ) 2 B 2 ( j B dθ B 2 B 2 ) h s ξ s ( gb ξ s ) ] + ψ (s)φ (s) Φ (s)ψ (s) W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 3
31 Perturbed Internal Energy Profiles The kink mode driving energy δw J and the ballooning/interchange driving energy δw BI profiles with core q /q > at different conducting wall positions δw J δw BI δ W J x 1 3 w/a=1.198 ( 1 1 ) w/a=2.976 w/a= S δ W BI x 1 6 w/a=1.198 w/a=2.976 w/a= S W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 31
32 Structure of δw J The structure of the kink driving energy δw J for core q /q < and w/a = at three cross sections covering half of a field period (1/14th of the torus) W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 32
33 Summary and Conclusions equilibrium Nominally axisymmetric eversed Field Pinch and Tokamak systems can develop MHD equilibrium bifurcations that lead to the formation of core helical structures. In FXmod, the development of a SHAx equilibrium state is computed with a sevenfold toroidally periodic structure when q in the core 1/7. In Tokamak devices, reversed magnetic shear (sometimes just very flat extended low shear) with q min 1 can trigger a bifurcated solution with a core helical structure similar to a saturated m = 1, n = 1 internal kink. We have computed these 3D core helical states in TCV, ITE, MAST and JET. The JET snake phenomenon is reproduced with our model. W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 33
34 Summary and Conclusions MHD stability Brief periods in which the relatively quiescent SHAx state in FXmod relaxes to a turbulent multiple helicity state are observed. Lorenzini et al., Nature Physics 5 (29) 57. We have investigated the ideal MHD stability of SHAx equilibria by examining mode structures that break the m = 1, n = 7 periodicity of the system. Either a drop in q well below 1/8 or the disappearance of core shear reversal triggers ideal MHD modes dominated by m = 1, n = 8 coupled with m = 2, n = 15 components. For w/a > 1.2, global unstable kink mode structures are triggered. These kink modes are driven by the Ohmic current. The drive for ballooning and PfirschSchlüter current modes is very weak. The dominant mode structure is a nonresonant m = 1, n = 6 component and is basically internal with a finite edge amplitude. Coupling with toroidal sidebands constitutes a significant contribution. W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 34
35 Summary and Conclusions In tokamaks, the issue of MHD stability is complicated by the fact that any mode to be investigated is in principle also a component of the equilibrium state. Possible exceptions: local ballooning/mercier modes, external kink modes, stellaratorsymmetry breaking modes. The 3D helical core equilibrium states in nominally axisymmetric systems that have been obtained constitute a paradigm shift for which the tools developed for stellarators in MHD stability, kinetic stability, drift orbits, wave propagation or heating, neoclassical transport, gyrokinetics, etc become applicable and necessary to more accurately evaluate magnetic confinement physics phenomena. The constraint of nested magnetic flux surfaces and absence of X points in our model preclude the generation of equilibrium states with magnetic islands. Saturated tearing modes could be investigated with SIESTA, PIES, HINT or SPEC. W. Anthony Cooper, CPP/EPFL 15th Workshop on MHD Stability Control, Madison, WI, USA, November 1517, 21 35
Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal
Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.
More informationSimulations of Sawteeth in CTH. Nicholas Roberds August 15, 2015
Simulations of Sawteeth in CTH Nicholas Roberds August 15, 2015 Outline Problem Description Simulations of a small tokamak Simulations of CTH 2 Sawtoothing Sawtoothing is a phenomenon that is seen in all
More informationarxiv: v1 [physics.plasmph] 11 Mar 2016
1 Effect of magnetic perturbations on the 3D MHD selforganization of shaped tokamak plasmas arxiv:1603.03572v1 [physics.plasmph] 11 Mar 2016 D. Bonfiglio 1, S. Cappello 1, M. Veranda 1, L. Chacón 2 and
More informationHOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS. Paul Garabedian and Geoffrey McFadden
HOW THE DEMO FUSION REACTOR SHOULD LOOK IF ITER FAILS Paul Garabedian and Geoffrey McFadden 1. Summary Runs of the NSTAB equilibrium and stability code show there are many 3D solutions of the advanced
More informationSMR/ Summer College on Plasma Physics. 30 July  24 August, Introduction to Magnetic Island Theory.
SMR/18561 2007 Summer College on Plasma Physics 30 July  24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction
More informationBRIEF COMMUNICATION. Nearmagneticaxis Geometry of a Closely QuasiIsodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany
BRIEF COMMUNICATION Nearmagneticaxis Geometry of a Closely QuasiIsodynamic Stellarator M.I. Mikhailov a, J. Nührenberg b, R. Zille b a Russian Research Centre Kurchatov Institute, Moscow,Russia b MaxPlanckInstitut
More informationThe RFP: Plasma Confinement with a Reversed Twist
The RFP: Plasma Confinement with a Reversed Twist JOHN SARFF Department of Physics University of WisconsinMadison Invited Tutorial 1997 Meeting APS DPP Pittsburgh Nov. 19, 1997 A tutorial on the Reversed
More informationStellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK
Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices
More informationThe FieldReversed Configuration (FRC) is a highbeta compact toroidal in which the external field is reversed on axis by azimuthal plasma The FRC is
and Stability of FieldReversed Equilibrium with Toroidal Field Configurations Atomics General Box 85608, San Diego, California 921865608 P.O. APS Annual APS Meeting of the Division of Plasma Physics
More informationDirect drive by cyclotron heating can explain spontaneous rotation in tokamaks
Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.J. Zheng Institute for Fusion Studies University of Texas at Austin 12th USEU Transport Task Force Annual
More informationELM control with RMP: plasma response models and the role of edge peeling response
ELM control with RMP: plasma response models and the role of edge peeling response Yueqiang Liu 1,2,3,*, C.J. Ham 1, A. Kirk 1, Li Li 4,5,6, A. Loarte 7, D.A. Ryan 8,1, Youwen Sun 9, W. Suttrop 10, Xu
More informationModel for humpback relaxation oscillations
Model for humpback relaxation oscillations F. Porcelli a,b,c.angioni a,r.behn a,i.furno a,t.goodman a,m.a.henderson a, Z.A. Pietrzyk a,a.pochelon a,h.reimerdes a, E. Rossi c,o.sauter a a Centre de Recherches
More informationMomentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi
Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center  University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center
More informationComputer Physics Communications
Computer Physics Communications 180 (2009) 1524 1533 Contents lists available at ScienceDirect Computer Physics Communications www.elsevier.com/locate/cpc Threedimensional anisotropic pressure free boundary
More informationHeat Transport in a Stochastic Magnetic Field. John Sarff Physics Dept, UWMadison
Heat Transport in a Stochastic Magnetic Field John Sarff Physics Dept, UWMadison CMPD & CMSO Winter School UCLA Jan 510, 2009 Magnetic perturbations can destroy the nestedsurface topology desired for
More informationELM Suppression in DIIID Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations
1 EXC/P502 ELM Suppression in DIIID Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science
More informationINITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS
INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS A.D. Turnbull and L.L. Lao General Atomics (with contributions from W.A. Cooper and R.G. Storer) Presentation
More informationEffect of local E B flow shear on the stability of magnetic islands in tokamak plasmas
Effect of local E B flow shear on the stability of magnetic islands in tokamak plasmas R. Fitzpatrick and F. L. Waelbroeck Citation: Physics of Plasmas (1994present) 16, 052502 (2009); doi: 10.1063/1.3126964
More informationRESISTIVE BALLOONING MODES AND THE SECOND REGION OF STABILITY
Plasma Physics and Controlled Fusion, Vol. 29, No. 6, pp. 719 to 121, 1987 Printed in Great Britain 07413335/87$3.00+.OO 1OP Publishing Ltd. and Pergamon Journals Ltd. RESISTIVE BALLOONING MODES AND THE
More informationEvaluation of CT injection to RFP for performance improvement and reconnection studies
Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi
More informationPlasma Stability in Tokamaks and Stellarators
Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1 May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,
More informationq(0) pressure after crash 1.0 Single tearing on q=2 Double tearing on q=2 0.5
EX/P1 MHD issues in Tore Supra steadystate fully noninductive scenario P Maget 1), F Imbeaux 1), G Giruzzi 1), V S Udintsev ), G T A Huysmans 1), H Lütjens 3), JL Ségui 1), M Goniche 1), Ph Moreau
More informationSaturated ideal modes in advanced tokamak regimes in MAST
Saturated ideal modes in advanced tokamak regimes in MAST IT Chapman 1, MD Hua 1,2, SD Pinches 1, RJ Akers 1, AR Field 1, JP Graves 3, RJ Hastie 1, CA Michael 1 and the MAST Team 1 EURATOM/CCFE Fusion
More informationNeoclassical Tearing Modes
Neoclassical Tearing Modes O. Sauter 1, H. Zohm 2 1 CRPPEPFL, Lausanne, Switzerland 2 MaxPlanckInstitut für Plasmaphysik, Garching, Germany Physics of ITER DPG Advanced Physics School 2226 Sept, 2014,
More informationSupported by. Role of plasma edge in global stability and control*
NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U
More informationMeasuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor
PHYSICS OF PLASMAS VOLUME 5, NUMBER FEBRUARY 1998 Measuring from electron temperature fluctuations in the Tokamak Fusion Test Reactor C. Ren, a) J. D. Callen, T. A. Gianakon, and C. C. Hegna University
More informationMicroturbulence in optimised stellarators
Q Josefine H. E. Proll, Benjamin J. Faber, Per Helander, Samuel A. Lazerson, Harry Mynick, and Pavlos Xanthopoulos Many thanks to: T. M. Bird, J. W. Connor, T. Go rler, W. Guttenfelder, G.W. Hammett, F.
More informationTokamak/Helical Configurations Related to LHD and CHSqa
9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 2123, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHSqa
More informationRotation and Neoclassical Ripple Transport in ITER
Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics
More informationSTABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK
GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This
More informationLinjin Zheng, Infernal Modes at Tokamak H mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO)
International Sherwood Fusion Theory Conference, Austin, May 24, 2011 Infernal Modes at Tokamak H mode Pedestal A Physics Interpreta;on for Edge Harmonic Oscilla;on (EHO) Linjin Zheng, M. T. Kotschenreuther,
More informationPlasma models for the design of the ITER PCS
Plasma models for the design of the ITER PCS G. De Tommasi 1,2 on behalf of the CREATE team 1 Consorzio CREATE, Naples, Italy 2 Department of Electrical Engineering and Information Technology, University
More informationThe Magnetorotational Instability
The Magnetorotational Instability Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley
More informationActive and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod
Active and Fast Particle Driven Alfvén Eigenmodes in Alcator CMod JUST DID IT. J A Snipes, N Basse, C Boswell, E Edlund, A Fasoli #, N N Gorelenkov, R S Granetz, L Lin, Y Lin, R Parker, M Porkolab, J
More informationIntroduction to Fusion Physics
Introduction to Fusion Physics Hartmut Zohm MaxPlanckInstitut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction
More informationPHYSICS DESIGN FOR ARIESCS
PHYSICS DESIGN FOR ARIESCS L. P. KU, a * P. R. GARABEDIAN, b J. LYON, c A. TURNBULL, d A. GROSSMAN, e T. K. MAU, e M. ZARNSTORFF, a and ARIES TEAM a Princeton Plasma Physics Laboratory, Princeton University,
More informationThe EPED Pedestal Model: Extensions, Application to ELMSuppressed Regimes, and ITER Predictions
The EPED Pedestal Model: Extensions, Application to ELMSuppressed Regimes, and ITER Predictions P.B. Snyder 1, T.H. Osborne 1, M.N.A. Beurskens 2, K.H. Burrell 1, R.J. Groebner 1, J.W. Hughes 3, R. Maingi
More informationThe Virial Theorem, MHD Equilibria, and ForceFree Fields
The Virial Theorem, MHD Equilibria, and ForceFree Fields Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely
More informationCharacterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod
1 EX/P422 Characterization of neoclassical tearing modes in highperformance I mode plasmas with ICRF mode conversion flow drive on Alcator CMod Y. Lin, R.S. Granetz, A.E. Hubbard, M.L. Reinke, J.E.
More informationImpact of neutral atoms on plasma turbulence in the tokamak edge region
Impact of neutral atoms on plasma turbulence in the tokamak edge region C. Wersal P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva Theory of Fusion Plasmas Joint VarennaLausanne International
More informationMacroscopic Stability of High β N MAST Plasmas
1 EXS/P54 Macroscopic Stability of High β N MAST Plasmas I.T. Chapman 1), R.J. Akers 1), L.C. Appel 1), N.C. Barratt 2), M.F. de Bock 1,7), A.R. Field 1), K.J. Gibson 2), M.P. Gryaznevich 1), R.J. Hastie
More informationStellarators and the path from ITER to DEMO
Stellarators and the path from ITER to DEMO Allen H. Boozer Department of Applied Physics and Applied Mathematics Columbia University, New York, NY 10027 (Dated: May 26, 2008) A demonstration of fusion
More informationStudy of neoclassical transport and bootstrap current for W7X in the 1/ν regime, using results from the PIES code
INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 46 (2004) 179 191 PLASMA PHYSICS AND CONTROLLED FUSION PII: S07413335(04)65723X Study of neoclassical transport and bootstrap current for
More informationTowards Multiscale Gyrokinetic Simulations of ITERlike Plasmas
Frank Jenko MaxPlanckInstitut für Plasmaphysik, Garching Universität Ulm Towards Multiscale Gyrokinetic Simulations of ITERlike Plasmas 23 rd IAEA Fusion Energy Conference 1116 October 2010, Daejeon,
More informationWhat is a reversed field pinch?
What is a reversed field pinch? Dominique Escande To cite this version: Dominique Escande. What is a reversed field pinch?. 2013. HAL Id: hal00909102 https://hal.archivesouvertes.fr/hal00909102
More information1 EX/P59 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries
1 International Stellarator/Heliotron Database Activities on HighBeta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),
More informationTwofluid magnetic island dynamics in slab geometry
Twofluid magnetic island dynamics in slab geometry Richard Fitzpatrick and François L. Waelbroeck Institute for Fusion Studies Department of Physics University of Texas at Austin Austin, TX 78712 A novel
More informationComparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIIID Tokamak
Comparison of Pellet Injection Measurements with a Pellet Cloud Drift Model on the DIIID Tokamak T.C. Jernigan, L.R. Baylor, S.K. Combs, W.A. Houlberg (Oak Ridge National Laboratory) P.B. Parks (General
More informationAnalysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission
Analysis and modelling of MHD instabilities in DIIID plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. PazSoldan 2, F. Carpanese 3, C.C. Petty 2, T.C.
More informationTomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversedfield pinch
PHYSICS OF PLASMAS 13, 012510 2006 Tomographic imaging of resistive mode dynamics in the Madison Symmetric Torus reversedfield pinch P. Franz, L. Marrelli, P. Piovesan, and I. Predebon Consorzio RFX,
More informationBifurcated states of a rotating tokamak plasma in the presence of a static errorfield
Bifurcated states of a rotating tokamak plasma in the presence of a static errorfield Citation: Physics of Plasmas (1994present) 5, 3325 (1998); doi: 10.1063/1.873000 View online: http://dx.doi.org/10.1063/1.873000
More informationGA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER
GA A26887 ADVANCES TOWARD QHMODE VIABILITY FOR ELMFREE OPERATION IN ITER by A.M. GAROFALO, K.H. BURRELL, M.J. LANCTOT, H. REIMERDES, W.M. SOLOMON and L. SCHMITZ OCTOBER 2010 DISCLAIMER This report was
More informationImpact of EnergeticIonDriven Global Modes on Toroidal Plasma Confinements
Impact of EnergeticIonDriven Global Modes on Toroidal Plasma Confinements Kazuo TOI CHS & LHD Experimental Group National Institute for Fusion Science Toki 595292, Japan Special contributions from:
More informationSawtooth Control. J. P. Graves CRPP, EPFL, Switzerland. FOM Instituut voor Plasmafysica Rijnhuizen, Association EURATOMFOM, The Netherlands
Sawtooth Control J. P. Graves CRPP, EPFL, Switzerland B. Alper 1, I. Chapman 2, S. Coda, M. de Baar 3, L.G. Eriksson 4, R. Felton 1, D. Howell 2, T. Johnson 5, V. Kiptily 1, R. Koslowski 6, M. Lennholm
More informationReduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX
Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1, D.L. Brower 2, C. Deng 2, D.T.Anderson 1, F.S.B. Anderson 1, A.F. Almagri
More informationGA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELMSUPPRESSED REGIMES, AND ITER PREDICTIONS
GA A27433 THE EPED PEDESTAL MODEL: EXTENSIONS, APPLICATION TO ELMSUPPRESSED REGIMES, AND ITER PREDICTIONS by P.B. SNYDER, T.H. OSBORNE, M.N.A. BEURSKENS, K.H. BURRELL, R.J. GROEBNER, J.W. HUGHES, R. MAINGI,
More informationRecent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science
Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant
More informationGA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME
GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.
More informationTokamak Edge Turbulence background theory and computation
ASDEX Upgrade Tokamak Edge Turbulence background theory and computation B. Scott Max Planck Institut für Plasmaphysik Euratom Association D85748 Garching, Germany Krakow, Sep 2006 Outline Basic Concepts
More informationTH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a)
1 TH/P614 Integrated particle simulation of neoclassical and turbulence physics in the tokamak pedestal/edge region using XGC a) 1 Chang, C.S., 1 Ku, S., 2 Adams M., 3 D Azevedo, G., 4 Chen, Y., 5 Cummings,
More informationAdvances in stellarator gyrokinetics
Advances in stellarator gyrokinetics Per Helander and T. Bird, F. Jenko, R. Kleiber, G.G. Plunk, J.H.E. Proll, J. Riemann, P. Xanthopoulos 1 Background Wendelstein 7X will start experiments in 2015 optimised
More informationPlasma instability during ITBs formation with pellet injection in tokamak
Plasma instability during ITBs formation with pellet injection in tokamak P. Klaywittaphat 1, B. Chatthong 2, T. Onjun. R. Picha 3, J. Promping 3 1 Faculty of Engineering, Thaksin University, Phatthalung,
More informationHmode and ELM Dynamics Studies at NearUnity Aspect Ratio in the PEGASUS Toroidal Experiment and their Extension to PEGASUSUpgrade. M.W.
Hmode and ELM Dynamics Studies at NearUnity Aspect Ratio in the PEGASUS Toroidal Experiment and their Extension to PEGASUSUpgrade M.W. Bongard J.L. Barr, G.M. Bodner, M.G. Burke, R.J. Fonck, H.G. Frerichs,
More informationModelling of the penetration process of externally applied helical magnetic perturbation of the DED on the TEXTOR tokamak
INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 8 (6) 69 8 PLASMA PHYSICS AND CONTROLLED FUSION doi:.88/7/8// Modelling of the penetration process of externally applied helical magnetic perturbation
More informationTowards the construction of a model to describe the interelm evolution of the pedestal on MAST
Towards the construction of a model to describe the interelm evolution of the pedestal on MAST D. Dickinson 1,2, S. Saarelma 2, R. Scannell 2, A. Kirk 2, C.M. Roach 2 and H.R. Wilson 1 June 17, 211 1
More informationNonsolenoidal Startup and Plasma Stability at NearUnity Aspect Ratio in the Pegasus Toroidal Experiment
1 EXS/P207 Nonsolenoidal Startup and Plasma Stability at NearUnity Aspect Ratio in the Pegasus Toroidal Experiment R.J. Fonck 1), D.J. Battaglia 2), M.W. Bongard 1), E.T. Hinson 1), A.J. Redd 1), D.J.
More informationSignificance of MHD Effects in Stellarator Confinement
Significance of MHD Effects in Stellarator Confinement A. Weller 1, S. Sakakibara 2, K.Y. Watanabe 2, K. Toi 2, J. Geiger 1, M.C. Zarnstorff 3, S.R. Hudson 3, A. Reiman 3, A. Werner 1, C. Nührenberg 1,
More informationITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model
1 THC/33 ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model J.E. Kinsey, G.M. Staebler, J. Candy, and R.E. Waltz General Atomics, P.O. Box 8608, San Diego, California
More informationTHE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2006
GA A25640 THE GENERAL ATOMICS FUSION THEORY PROGRAM ANNUAL REPORT FOR GRANT YEAR 2006 by PROJECT STAFF OCTOBER 2006 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the
More informationMultimachine Extrapolation of Neoclassical Tearing Mode Physics to ITER
1 IT/P68 Multimachine Extrapolation of Neoclassical Tearing Mode Physics to ITER R. J. Buttery 1), S. Gerhardt ), A. Isayama 3), R. J. La Haye 4), E. J. Strait 4), D. P. Brennan 5), P. Buratti 6), D.
More informationQuantum Chaos? Genericity and Nongenericity in the MHD Spectrum of Nonaxisymmetric Toroidal Plasmas
Journal of the Korean Physical Society, Vol. 50, No. 1, January 2007, pp. 112 117 Review Articles Quantum Chaos? Genericity and Nongenericity in the MHD Spectrum of Nonaxisymmetric Toroidal Plasmas R.
More informationEFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE
EFFECT OF EDGE NEUTRAL SOUCE PROFILE ON HMODE PEDESTAL HEIGHT AND ELM SIZE T.H. Osborne 1, P.B. Snyder 1, R.J. Groebner 1, A.W. Leonard 1, M.E. Fenstermacher 2, and the DIIID Group 47 th Annual Meeting
More informationProgress in characterization of the Hmode pedestal
Journal of Physics: Conference Series Progress in characterization of the Hmode pedestal To cite this article: A W Leonard 2008 J. Phys.: Conf. Ser. 123 012001 View the article online for updates and
More informationAmplification of magnetic fields in core collapse
Amplification of magnetic fields in core collapse Miguel Àngel Aloy Torás, Pablo CerdáDurán, Thomas Janka, Ewald Müller, Martin Obergaulinger, Tomasz Rembiasz Universitat de València; MaxPlanckInstitut
More informationDPG School The Physics of ITER Physikzentrum Bad Honnef, Energy Transport, Theory (and Experiment) Clemente Angioni
MaxPlanckInstitut für Plasmaphysik DPG School The Physics of ITER Physikzentrum Bad Honnef, 23.09.2014 Energy Transport, Theory (and Experiment) Clemente Angioni Special acknowledgments for material
More informationIAEA INTERNATIONAL ATOMIC ENERGY AGENCY
IAEA INTERNATIONAL ATOMIC ENERGY AGENCY 21 st IAEA Fusion Energy Conference Chengdu, China, 1621 Oct 2004 IAEACN149 / TH / 11 Studies of the Tokamak Edge with Self Consistent Turbulence, Equilibrium,
More informationMinimal Model Study for ELM Control by Supersonic Molecular Beam Injection and Pellet Injection
25 th Fusion Energy Conference, Saint Petersburg, Russia, 2014 TH/P29 Minimal Model Study for ELM Control by Supersonic Molecular Beam Injection and Pellet Injection Tongnyeol Rhee 1,2, J.M. Kwon 1, P.H.
More informationNonlinear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade
1 TH/P126 Nonlinear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans
More informationPhase ramping and modulation of reflectometer signals
4th Intl. Reflectometry Workshop  IRW4, Cadarache, March 22nd  24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,
More informationGA A23736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT
GA A3736 EFFECTS OF CROSSSECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an
More informationGyrokinetic Transport Driven by Energetic Particle Modes
Gyrokinetic Transport Driven by Energetic Particle Modes by Eric Bass (General Atomics) Collaborators: Ron Waltz, Ming Chu GSEP Workshop General Atomics August 10, 2009 Outline I. Background Alfvén (TAE/EPM)
More informationInitiatives in NonSolenoidal Startup and Hmode Physics at NearUnity A
Initiatives in NonSolenoidal Startup and Hmode Physics at NearUnity A M.W. Bongard, J.L. Barr, M.G. Burke, R.J. Fonck, E.T. Hinson, B.T. Lewicki, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome,
More informationIntegration of Fusion Science and Technology For Steady State Operation Abstract Number:
Cover Page Fill out and attach to your manuscript DUE Thursday, December 1, 2011 International Toki Conference (ITC21) Integration of Fusion Science and Technology For Steady State Operation Abstract
More informationUnderstanding sawtooth activity during intense electron cyclotron heating experiments on TCV
Understanding sawtooth activity during intense electron cyclotron heating experiments on TCV I. Furno, C. Angioni, F. Porcelli a, H. Weisen, R. Behn, T.P. Goodman, M.A. Henderson, Z.A. Pietrzyk, A. Pochelon,
More informationPlans for a laboratory electronpositron plasma experiment
Plans for a laboratory electronpositron plasma experiment Thomas Sunn Pedersen, Xabier Sarasola MaxPlanck Institute for Plasma Physics, Germany Lutz Schweikhard, Gerrit Marx ErnstMoritz Arndt Universität
More informationA THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS
A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS Presented by D.P. SCHISSEL Presented to APS Centennial Meeting March 20 26, 1999 Atlanta, Georgia
More informationHmode and NonSolenoidal Startup in the Pegasus UltralowA Tokamak
1 OV/54 Hmode and NonSolenoidal Startup in the Pegasus UltralowA Tokamak R.J. Fonck 1, J.L. Barr 1, G. M. Bodner 1, M.W. Bongard 1, M.G. Burke 1, D. M. Kriete 1, J.M. Perry 1, J.A. Reusch 1, D.J. Schlossberg
More informationVerification & Validation: application to the TORPEX basic plasma physics experiment
Verification & Validation: application to the TORPEX basic plasma physics experiment Paolo Ricci F. Avino, A. Bovet, A. Fasoli, I. Furno, S. Jolliet, F. Halpern, J. Loizu, A. Mosetto, F. Riva, C. Theiler,
More informationCurrent density modelling in JET and JT60U identity plasma experiments. Paula Sirén
Current density modelling in JET and JT60U identity plasma experiments Paula Sirén 1/12 1/16 EuratomTEKES EuratomTekes Annual Seminar 2013 28 24 May 2013 Paula Sirén Current density modelling in JET
More informationMagnetohydrodynamic Waves
Magnetohydrodynamic Waves Nick Murphy HarvardSmithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 17, 2016 These slides are largely based off of 4.5 and 4.8 of The Physics of
More informationarxiv:physics/ v1 [physics.plasmph] 14 Nov 2005
arxiv:physics/0511124v1 [physics.plasmph] 14 Nov 2005 Early nonlinear regime of MHD internal modes: the resistive case M.C. Firpo Laboratoire de Physique et Technologie des Plasmas (C.N.R.S. UMR 7648),
More informationPer Helander. Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos. Wendelsteinstraße 1, Greifswald
Rotation and zonal flows in stellarators Per Helander Wendelsteinstraße 1, 17491 Greifswald Contributions from: R. Kleiber, A. Mishchenko, J. Nührenberg, P. Xanthopoulos What is a stellarator? In a tokamak
More informationIntegrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport
1 Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama Japan Atomic Energy Agency, Naka, Ibarakiken, 3110193 Japan
More informationToroidal confinement of nonneutral plasma. Martin Droba
Toroidal confinement of nonneutral plasma Martin Droba Contents Experiments with toroidal nonneutral plasma Magnetic surfaces CNT and IAPhigh current ring Conclusion 2. Experiments with toroidal nonneutral
More informationInitial Experimental Program Plan for HSX
Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UWMadison HSX Plasma Laboratory Team The Helically
More informationStability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye
Stability Properties of Toroidal Alfvén Modes Driven by Fast Particles Λ N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton,
More informationarxiv:physics/ v1 [physics.plasmph] 5 Nov 2004
Ion Resonance Instability in the ELTRAP electron plasma G. Bettega, 1 F. Cavaliere, 2 M. Cavenago, 3 A. Illiberi, 1 R. Pozzoli, 1 and M. Romé 1 1 INFM Milano Università, INFN Sezione di Milano, Dipartimento
More informationGA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID
GA A25351 PHYSICS ADVANCES IN THE ITER HYBRID SCENARIO IN DIIID by C.C. PETTY, P.A. POLITZER, R.J. JAYAKUMAR, T.C. LUCE, M.R. WADE, M.E. AUSTIN, D.P. BRENNAN, T.A. CASPER, M.S. CHU, J.C. DeBOO, E.J. DOYLE,
More informationDivertor power deposition and target current asymmetries during typei ELMs in ASDEX Upgrade and JET
Journal of Nuclear Materials 363 365 (2007) 989 993 www.elsevier.com/locate/jnucmat Divertor power deposition and target current asymmetries during typei ELMs in ASDEX Upgrade and JET T. Eich a, *, A.
More informationPROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK
PROGRESS IN STEADYSTATE SCENARIO DEVELOPMENT IN THE DIIID TOKAMAK by T.C. LUCE, J.R. FERRON, C.T. HOLCOMB, F. TURCO, P.A. POLITZER, and T.W. PETRIE GA A26981 JANUARY 2011 DISCLAIMER This report was prepared
More information