Directional derivatives and gradient vectors (Sect. 14.5) Directional derivative of functions of two variables.

Size: px
Start display at page:

Download "Directional derivatives and gradient vectors (Sect. 14.5) Directional derivative of functions of two variables."

Transcription

1 Directional derivatives and gradient vectors (Sect. 14.5) Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of three variables. The gradient vector and directional derivatives. Properties of the the gradient vector. Directional derivative of functions of two variables. Remark: The directional derivative generalizes the partial derivatives to an direction. Definition The directional derivative of the function f : D R 2 R at the point P 0 = ( 0, 0 ) D in the direction of a unit vector u = u, u is given b the limit ( Du f ) P0 = lim t 0 1[ f (0 + u t, 0 + u t) f ( 0, 0 ) ]. t Remarks: The line b r 0 = 0, 0 tangent to u is r(t) = r 0 + tu. (a) Equivalentl, ( D u f ) P0 = lim t 0 1[ ] f (r(t)) f (r(0)). t (b) If ˆf (t) = f (r(t)), then holds ( D u f ) P0 = ˆf (0).

2 Directional derivatives generalize partial derivatives The partial derivatives f and f are particular cases of directional derivatives ( D u f ) P0 = lim t 0 1 t [ f (0 + u t, 0 + u t) f ( 0, 0 ) ] : u = 1, 0 = i, then ( D i f ) P0 = f ( 0, 0 ). u = 0, 1 = j, then ( D j f ) P0 = f ( 0, 0 ). z f (,) f (, ) 0 f (, ) 0 0 z f(,) f(t) f (, ) 0 0 (D uf ) P 0 f (,) 0 i (, ) 0 0 j P = (, ) u u = 1 Directional derivatives generalize partial derivatives Find the derivative of f (, ) = at P 0 = (1, 0) in the direction of θ = π/6 counterclockwise from the -ais. Solution: A unit vector in the direction of θ is u = cos(θ), sin(θ). For θ = π/6 we get u = 1/2, 3/2. The line containing the vector r 0 = 1, 0 and tangent to u is r(t) = 1, 0 + t 2 1, 3 (t) = 1 + t 2, (t) = 3 t 2. Hence ˆf (t) = f ((t), (t)) is given b ( ˆf (t) = 1 + t ) 2 3t ˆf (t) = 1 + t + t 2. Since (D u f ) P0 = ˆf (0), and ˆf (t) = 1 + 2t, then (D u f ) P0 = 1.

3 Directional derivative of functions of two variables Remark: The condition u = 1 in the line r(t) = 0, 0 + u t implies that the parameter t is the distance between the points ((t), (t)) = ( 0 + u t, 0 + u t) and ( 0, 0 ). In other words: The arc length function of the line is l = t. Proof: d = 0, 0 = u t, u t = t u, d = t. Equivalentl, r (t) = u l = t 0 r (τ) dτ = t 0 dτ l = t. Remark: The directional derivative ( D u f ) is the pointwise rate P0 of change of f with respect to the distance along the line parallel to u passing through P 0. Directional derivatives and gradient vectors (Sect. 14.5) Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of three variables. The gradient vector and directional derivatives. Properties of the the gradient vector.

4 Directional derivative and partial derivatives Remark: The directional derivative ( D u f ) is the P0 derivative of f along the line r(t) = 0, 0 + u t. z f(,) f(t) (D f ) u P 0 P = (, ) u u = 1 Theorem If the function f : D R 2 R is differentiable at P 0 = ( 0, 0 ) and u = u, u is a unit vector, then ( Du f ) P0 = f ( 0, 0 ) u + f ( 0, 0 ) u. Directional derivative and partial derivatives Proof: The line r(t) = 0, 0 + u, u t has parametric equations: (t) = 0 + u t and (t) = 0 + u t; Denote f evaluated along the line as ˆf (t) = f ((t), (t)). Now, on the one hand, ˆf (0) = ( D u f ) P0, since ˆf 1 ] (0) = lim [ˆf (t) ˆf (0) t 0 t ˆf 1[ (0) = lim f (0 + u t, 0 + u t) f ( 0, 0 ) ] = D u f ( 0, 0 ). t 0 t On the other hand, the chain rule implies: ˆf (0) = f ( 0, 0 ) (0) + f ( 0, 0 ) (0). Therefore, ( D u f ) P0 = f ( 0, 0 ) u + f ( 0, 0 ) u.

5 Directional derivative and partial derivatives Compute the directional derivative of f (, ) = sin( + 3) at the point P 0 = (4, 3) in the direction of vector v = 1, 2. Solution: We need to find a unit vector in the direction of v. Such vector is u = v u = 1 1, 2. v 5 We now use the formula ( D u f ) P0 = f ( 0, 0 ) u + f ( 0, 0 ) u. That is, ( D u f ) P0 = cos( )(1/ 5) + 3 cos( )(2/ 5). Equivalentl, ( D u f ) P0 = (7/ 5) cos( ). Then, ( D u f ) P0 = (7/ 5) cos(13). Directional derivatives and gradient vectors (Sect. 14.5) Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of three variables. The gradient vector and directional derivatives. Properties of the the gradient vector.

6 Directional derivative of functions of three variables Definition The directional derivative of the function f : D R 3 R at the point P 0 = ( 0, 0, z 0 ) D in the direction of a unit vector u = u, u, u z is given b the limit ( Du f ) P0 = lim t 0 1[ f (0 + u t, 0 + u t, z 0 + u z t) f ( 0, 0, z 0 ) ]. t Theorem If the function f : D R 3 R is differentiable at P 0 = ( 0, 0, z 0 ) and u = u, u, u z is a unit vector, then ( Du f ) P0 = f ( 0, 0, z 0 ) u + f ( 0, 0, z 0 ) u + f z ( 0, 0, z 0 ) u z. Directional derivative of functions of three variables Find ( D u f ) for f (,, z) = z 2 at the point P0 P 0 = (3, 2, 1) along the direction given b v = 2, 1, 1. Solution: We first find a unit vector along v, u = v v u = 1 6 2, 1, 1. Then, ( D u f ) is given b ( D u f ) = (2)u + (4)u + (6z)u z. We conclude, ( D u f ) P0 = (6) (8) (6) 1 6, that is, ( D u f ) P0 = 26 6.

7 Directional derivatives and gradient vectors (Sect. 14.5) Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of three variables. The gradient vector and directional derivatives. Properties of the the gradient vector. The gradient vector and directional derivatives Remark: The directional derivative of a function can be written in terms of a dot product. (a) In the case of 2 variable functions: D u f = f u + f u D u f = ( f ) u, with f = f, f. (b) In the case of 3 variable functions: D u f = f u + f u + f z u z, D u f = ( f ) u, with f = f, f, f z.

8 The gradient vector and directional derivatives Definition The gradient vector of a differentiable function f : D R 2 R at an point (, ) D is the vector f = f, f. The gradient vector of a differentiable function f : D R 3 R at an point (,, z) D is the vector f = f, f, f z. Notation: For two variable functions: f = f i + f j. For two variable functions: f = f i + f j + f z k. Theorem If f : D R n R, with n = 2, 3, is a differentiable function and u is a unit vector, then, D u f = ( f ) u. The gradient vector and directional derivatives Find the gradient vector at an point in the domain of the function f (, ) = Solution: The gradient is f = f, f, that is, f = 2, 2. z 2 f(,) = + 2 Remark: f = 2r, with r =,. f D f u

9 Directional derivatives and gradient vectors (Sect. 14.5) Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of three variables. The gradient vector and directional derivatives. Properties of the the gradient vector. Properties of the the gradient vector Remark: If θ is the angle between f and u, then holds D u f = f u D u f = f cos(θ). The formula above implies: The function f increases the most rapidl when u is in the direction of f, that is, θ = 0. The maimum increase rate of f is f. The function f decreases the most rapidl when u is in the direction of f, that is, θ = π. The maimum decrease rate of f is f. Since the function f does not change along level curve or surfaces, that is, D u f = 0, then f is perpendicular to the level curves or level surfaces.

10 Properties of the the gradient vector Find the direction of maimum increase of the function f (, ) = 2 /4 + 2 /9 at an arbitrar point (, ), and also at the points (1, 0) and (0, 1). Solution: The direction of maimum increase of f is the direction of its gradient vector: f = 2, 2 9 At the points (1, 0) and (0, 1) we obtain, respectivel, f =. 1 2, 0. f = 0, 2. 9 Properties of the the gradient vector. Given the function f (, ) = 2 /4 + 2 /9, find the equation of a line tangent to a level curve f (, ) = 1 at the point P 0 = (1, 3 3/2). Solution: We first verif that P 0 belongs to the level curve f (, ) = 1. This is the case, since (9)(3) 4 The equation of the line we look for is 1 9 = 1. r(t) = 1, t v, v, where v = v, v is tangent to the level curve f (, ) = 1 at P 0.

11 Properties of the the gradient vector Given the function f (, ) = 2 /4 + 2 /9, find the equation of a line tangent to a level curve f (, ) = 1 at the point P 0 = (1, 3 3/2). Solution: Therefore, v f at P 0. Since, f = 2, 2 9 ( f ) P0 = 1 2, = 2 2, 1. 3 Therefore, 0 = v ( f ) P0 1 2 v = 1 3 v v = 2, 3. The line is r(t) = 1, t 2, 3. Properties of the the gradient vector f f 1 2 f f = 1 2, 0, f = 0, 2, r(t) = 1, t 2,

12 Further properties of the the gradient vector Theorem If f, g are differentiable scalar valued vector functions, g 0, and k R an constant, then holds, (a) (kf ) = k ( f ); (b) (f ± g) = f ± g; (c) (fg) = ( f ) g + f ( g); ( f ) (d) = g ( f ) g f ( g) g 2.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

Conservative fields and potential functions. (Sect. 16.3) The line integral of a vector field along a curve.

Conservative fields and potential functions. (Sect. 16.3) The line integral of a vector field along a curve. onservative fields and potential functions. (Sect. 16.3) eview: Line integral of a vector field. onservative fields. The line integral of conservative fields. Finding the potential of a conservative field.

More information

Vector-Valued Functions

Vector-Valued Functions Vector-Valued Functions 1 Parametric curves 8 ' 1 6 1 4 8 1 6 4 1 ' 4 6 8 Figure 1: Which curve is a graph of a function? 1 4 6 8 1 8 1 6 4 1 ' 4 6 8 Figure : A graph of a function: = f() 8 ' 1 6 4 1 1

More information

Study guide for Exam 1. by William H. Meeks III October 26, 2012

Study guide for Exam 1. by William H. Meeks III October 26, 2012 Study guide for Exam 1. by William H. Meeks III October 2, 2012 1 Basics. First we cover the basic definitions and then we go over related problems. Note that the material for the actual midterm may include

More information

Integrals along a curve in space. (Sect. 16.1)

Integrals along a curve in space. (Sect. 16.1) Integrals along a curve in space. (Sect. 6.) Line integrals in space. The addition of line integrals. ass and center of mass of wires. Line integrals in space Definition The line integral of a function

More information

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space.

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. 10 VECTOR FUNCTIONS VECTOR FUNCTIONS Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. Here, we prepare the way by developing

More information

Mathematics Trigonometry: Unit Circle

Mathematics Trigonometry: Unit Circle a place of mind F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagog Mathematics Trigonometr: Unit Circle Science and Mathematics Education Research Group Supported b UBC Teaching and

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

(0,2) L 1 L 2 R (-1,0) (2,0) MA4006: Exercise Sheet 3: Solutions. 1. Evaluate the integral R

(0,2) L 1 L 2 R (-1,0) (2,0) MA4006: Exercise Sheet 3: Solutions. 1. Evaluate the integral R MA6: Eercise Sheet 3: Solutions 1. Evaluate the integral d d over the triangle with vertices ( 1, ), (, 2) and (2, ). Solution. See Figure 1. Let be the inner variable and the outer variable. we need the

More information

Vectors, dot product, and cross product

Vectors, dot product, and cross product MTH 201 Multivariable calculus and differential equations Practice problems Vectors, dot product, and cross product 1. Find the component form and length of vector P Q with the following initial point

More information

Vector Geometry Final Exam Review

Vector Geometry Final Exam Review Vector Geometry Final Exam Review Problem 1. Find the center and the radius for the sphere x + 4x 3 + y + z 4y 3 that the center and the radius of a sphere z 7 = 0. Note: Recall x + ax + y + by + z = d

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Directional Derivatives and Gradient Vectors. Suppose we want to find the rate of change of a function z = f x, y at the point in the

Directional Derivatives and Gradient Vectors. Suppose we want to find the rate of change of a function z = f x, y at the point in the 14.6 Directional Derivatives and Gradient Vectors 1. Partial Derivates are nice, but they only tell us the rate of change of a function z = f x, y in the i and j direction. What if we are interested in

More information

REVIEW 2, MATH 3020 AND MATH 3030

REVIEW 2, MATH 3020 AND MATH 3030 REVIEW, MATH 300 AND MATH 3030 1. Let P = (0, 1, ), Q = (1,1,0), R(0,1, 1), S = (1,, 4). (a) Find u = PQ and v = PR. (b) Find the angle between u and v. (c) Find a symmetric equation of the plane σ that

More information

APPM 1360 Final Exam Spring 2016

APPM 1360 Final Exam Spring 2016 APPM 36 Final Eam Spring 6. 8 points) State whether each of the following quantities converge or diverge. Eplain your reasoning. a) The sequence a, a, a 3,... where a n ln8n) lnn + ) n!) b) ln d c) arctan

More information

Chapter 14: Vector Calculus

Chapter 14: Vector Calculus Chapter 14: Vector Calculus Introduction to Vector Functions Section 14.1 Limits, Continuity, Vector Derivatives a. Limit of a Vector Function b. Limit Rules c. Component By Component Limits d. Continuity

More information

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality Math 67. umbos Fall 8 Solutions to eview Problems for Final Exam. In this problem, u and v denote vectors in n. (a) Use the triangle inequality to derive the inequality Solution: Write v u v u for all

More information

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist.

C) 2 D) 4 E) 6. ? A) 0 B) 1 C) 1 D) The limit does not exist. . The asymptotes of the graph of the parametric equations = t, y = t t + are A) =, y = B) = only C) =, y = D) = only E) =, y =. What are the coordinates of the inflection point on the graph of y = ( +

More information

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR SECTION 11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 633 wit speed v o along te same line from te opposite direction toward te source, ten te frequenc of te sound eard b te observer is were c is

More information

What you will learn today

What you will learn today What you will learn today The Dot Product Equations of Vectors and the Geometry of Space 1/29 Direction angles and Direction cosines Projections Definitions: 1. a : a 1, a 2, a 3, b : b 1, b 2, b 3, a

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

CHAPTER 4 Stress Transformation

CHAPTER 4 Stress Transformation CHAPTER 4 Stress Transformation ANALYSIS OF STRESS For this topic, the stresses to be considered are not on the perpendicular and parallel planes only but also on other inclined planes. A P a a b b P z

More information

Math Vector Calculus II

Math Vector Calculus II Math 255 - Vector Calculus II Review Notes Vectors We assume the reader is familiar with all the basic concepts regarding vectors and vector arithmetic, such as addition/subtraction of vectors in R n,

More information

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space

Motion in Space. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Motion in Space Motion in Space MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Suppose the position vector of a moving object is given by r(t) = f (t), g(t), h(t), Background

More information

7.1 Projections and Components

7.1 Projections and Components 7. Projections and Components As we have seen, the dot product of two vectors tells us the cosine of the angle between them. So far, we have only used this to find the angle between two vectors, but cosines

More information

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0.

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0. Chapter Review IB Questions 1. Given the function f () = 3b + (c + ), determine the values of b and c such that f = 0 and f = 0. (Total 4 marks). Consider the function ƒ : 3 5 + k. (a) Write down ƒ ().

More information

abc Mathematics Pure Core General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES

abc Mathematics Pure Core General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES abc General Certificate of Education Mathematics Pure Core SPECIMEN UNITS AND MARK SCHEMES ADVANCED SUBSIDIARY MATHEMATICS (56) ADVANCED SUBSIDIARY PURE MATHEMATICS (566) ADVANCED SUBSIDIARY FURTHER MATHEMATICS

More information

MATHEMATICS 200 December 2013 Final Exam Solutions

MATHEMATICS 200 December 2013 Final Exam Solutions MATHEMATICS 2 December 21 Final Eam Solutions 1. Short Answer Problems. Show our work. Not all questions are of equal difficult. Simplif our answers as much as possible in this question. (a) The line L

More information

13.1: Vector-Valued Functions and Motion in Space, 14.1: Functions of Several Variables, and 14.2: Limits and Continuity in Higher Dimensions

13.1: Vector-Valued Functions and Motion in Space, 14.1: Functions of Several Variables, and 14.2: Limits and Continuity in Higher Dimensions 13.1: Vector-Value Functions an Motion in Space, 14.1: Functions of Several Variables, an 14.2: Limits an Continuity in Higher Dimensions TA: Sam Fleischer November 3 Section 13.1: Vector-Value Functions

More information

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics

Omm Al-Qura University Dr. Abdulsalam Ai LECTURE OUTLINE CHAPTER 3. Vectors in Physics LECTURE OUTLINE CHAPTER 3 Vectors in Physics 3-1 Scalars Versus Vectors Scalar a numerical value (number with units). May be positive or negative. Examples: temperature, speed, height, and mass. Vector

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Vectors for Physics. AP Physics C

Vectors for Physics. AP Physics C Vectors for Physics AP Physics C A Vector is a quantity that has a magnitude (size) AND a direction. can be in one-dimension, two-dimensions, or even three-dimensions can be represented using a magnitude

More information

0606 ADDITIONAL MATHEMATICS

0606 ADDITIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education MARK SCHEME for the October/November 0 series 0606 ADDITIONAL MATHEMATICS 0606/ Paper, maimum raw

More information

Math156 Review for Exam 4

Math156 Review for Exam 4 Math56 Review for Eam 4. What will be covered in this eam: Representing functions as power series, Taylor and Maclaurin series, calculus with parametric curves, calculus with polar coordinates.. Eam Rules:

More information

Overview. Distances in R 3. Distance from a point to a plane. Question

Overview. Distances in R 3. Distance from a point to a plane. Question Overview Yesterda we introduced equations to describe lines and planes in R 3 : r + tv The vector equation for a line describes arbitrar points r in terms of a specific point and the direction vector v.

More information

CHAPTER 11 Vector-Valued Functions

CHAPTER 11 Vector-Valued Functions CHAPTER Vector-Valued Functions Section. Vector-Valued Functions...................... 9 Section. Differentiation and Integration of Vector-Valued Functions.... Section. Velocit and Acceleration.....................

More information

Math 233. Directional Derivatives and Gradients Basics

Math 233. Directional Derivatives and Gradients Basics Math 233. Directional Derivatives and Gradients Basics Given a function f(x, y) and a unit vector u = a, b we define the directional derivative of f at (x 0, y 0 ) in the direction u by f(x 0 + ta, y 0

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS

CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS CHAPTER 4 DIFFERENTIAL VECTOR CALCULUS 4.1 Vector Functions 4.2 Calculus of Vector Functions 4.3 Tangents REVIEW: Vectors Scalar a quantity only with its magnitude Example: temperature, speed, mass, volume

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Vectors Summary. can slide along the line of action. not restricted, defined by magnitude & direction but can be anywhere.

Vectors Summary. can slide along the line of action. not restricted, defined by magnitude & direction but can be anywhere. Vectors Summary A vector includes magnitude (size) and direction. Academic Skills Advice Types of vectors: Line vector: Free vector: Position vector: Unit vector (n ): can slide along the line of action.

More information

Vectors in Physics. Topics to review:

Vectors in Physics. Topics to review: Vectors in Physics Topics to review: Scalars Versus Vectors The Components of a Vector Adding and Subtracting Vectors Unit Vectors Position, Displacement, Velocity, and Acceleration Vectors Relative Motion

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 3 2, 5 2 C) - 5 2 Test Review (chap 0) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Find the point on the curve x = sin t, y = cos t, -

More information

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6)

EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) EQUATIONS OF MOTION: CYLINDRICAL COORDINATES (Section 13.6) Today s Objectives: Students will be able to analyze the kinetics of a particle using cylindrical coordinates. APPLICATIONS The forces acting

More information

Mathematics 2203, Test 1 - Solutions

Mathematics 2203, Test 1 - Solutions Mathematics 220, Test 1 - Solutions F, 2010 Philippe B. Laval Name 1. Determine if each statement below is True or False. If it is true, explain why (cite theorem, rule, property). If it is false, explain

More information

MATH107 Vectors and Matrices

MATH107 Vectors and Matrices School of Mathematics, KSU 20/11/16 Vector valued functions Let D be a set of real numbers D R. A vector-valued functions r with domain D is a correspondence that assigns to each number t in D exactly

More information

Physics 170 Lecture 19. Chapter 12 - Kinematics Sections 8-10

Physics 170 Lecture 19. Chapter 12 - Kinematics Sections 8-10 Phys 170 Lecture 0 1 Physics 170 Lecture 19 Chapter 1 - Kinematics Sections 8-10 Velocity & Acceleration in Polar / Cylinical Coordinates Pulley Problems Phys 170 Lecture 0 Polar Coordinates Polar coordinates

More information

IYGB Mathematical Methods 1

IYGB Mathematical Methods 1 IYGB Mathematical Methods Practice Paper B Time: 3 hours Candidates may use any non programmable, non graphical calculator which does not have the capability of storing data or manipulating algebraic expressions

More information

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES

abc Mathematics Further Pure General Certificate of Education SPECIMEN UNITS AND MARK SCHEMES abc General Certificate of Education Mathematics Further Pure SPECIMEN UNITS AND MARK SCHEMES ADVANCED SUBSIDIARY MATHEMATICS (56) ADVANCED SUBSIDIARY PURE MATHEMATICS (566) ADVANCED SUBSIDIARY FURTHER

More information

Green s Theorem Jeremy Orloff

Green s Theorem Jeremy Orloff Green s Theorem Jerem Orloff Line integrals and Green s theorem. Vector Fields Vector notation. In 8.4 we will mostl use the notation (v) = (a, b) for vectors. The other common notation (v) = ai + bj runs

More information

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 14.1 OHSx XM5 Multivariable Differential Calculus: Homework Solutions 4. (8) Describe the graph of the equation. r = i + tj + (t )k. Solution: Let y(t) = t, so that z(t) = t = y. In the yz-plane, this is just

More information

Simple Co-ordinate geometry problems

Simple Co-ordinate geometry problems Simple Co-ordinate geometry problems 1. Find the equation of straight line passing through the point P(5,2) with equal intercepts. 1. Method 1 Let the equation of straight line be + =1, a,b 0 (a) If a=b

More information

10.1 Curves Defined by Parametric Equation

10.1 Curves Defined by Parametric Equation 10.1 Curves Defined by Parametric Equation 1. Imagine that a particle moves along the curve C shown below. It is impossible to describe C by an equation of the form y = f (x) because C fails the Vertical

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Topic 5.6: Surfaces and Surface Elements

Topic 5.6: Surfaces and Surface Elements Math 275 Notes Topic 5.6: Surfaces and Surface Elements Textbook Section: 16.6 From the Toolbox (what you need from previous classes): Using vector valued functions to parametrize curves. Derivatives of

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics SF Engineers SF MSISS SF MEMS MAE: Engineering Mathematics IV Trinity Term 18 May,??? Sports Centre??? 9.3 11.3??? Prof. Sergey Frolov

More information

NATIONAL QUALIFICATIONS

NATIONAL QUALIFICATIONS Mathematics Higher Mini-Prelim Eamination 00/0 NATIONAL QUALIFIATIONS Assessing Unit + revision from Units & Time allowed - hour 0 minutes Read carefull. alculators ma be used in this paper.. Full credit

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions.

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL Determine the domain and range for each of the following functions. UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 1 1 Determine the domain and range for each of the following functions a = + b = 1 c = d = ln( ) + e = e /( 1) Sketch the level curves

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

Directional Derivatives in the Plane

Directional Derivatives in the Plane Directional Derivatives in the Plane P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Directional Derivatives in the Plane April 10, 2017 1 / 30 Directional Derivatives in the Plane Let z =

More information

2017 HSC Mathematics Extension 1 Marking Guidelines

2017 HSC Mathematics Extension 1 Marking Guidelines 07 HSC Mathematics Extension Marking Guidelines Section I Multiple-choice Answer Key Question Answer A B 3 B 4 C 5 D 6 D 7 A 8 C 9 C 0 B NESA 07 HSC Mathematics Extension Marking Guidelines Section II

More information

Math 5378, Differential Geometry Solutions to practice questions for Test 2

Math 5378, Differential Geometry Solutions to practice questions for Test 2 Math 5378, Differential Geometry Solutions to practice questions for Test 2. Find all possible trajectories of the vector field w(x, y) = ( y, x) on 2. Solution: A trajectory would be a curve (x(t), y(t))

More information

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph:

Example 2.1. Draw the points with polar coordinates: (i) (3, π) (ii) (2, π/4) (iii) (6, 2π/4) We illustrate all on the following graph: Section 10.3: Polar Coordinates The polar coordinate system is another way to coordinatize the Cartesian plane. It is particularly useful when examining regions which are circular. 1. Cartesian Coordinates

More information

( ) ( ) ( ) ( ) TNM046: Datorgrafik. Transformations. Linear Algebra. Linear Algebra. Sasan Gooran VT Transposition. Scalar (dot) product:

( ) ( ) ( ) ( ) TNM046: Datorgrafik. Transformations. Linear Algebra. Linear Algebra. Sasan Gooran VT Transposition. Scalar (dot) product: TNM046: Datorgrafik Transformations Sasan Gooran VT 04 Linear Algebra ( ) ( ) =,, 3 =,, 3 Transposition t = 3 t = 3 Scalar (dot) product: Length (Norm): = t = + + 3 3 = = + + 3 Normaliation: ˆ = Linear

More information

Study Guide for Final Exam

Study Guide for Final Exam Study Guide for Final Exam. You are supposed to be able to calculate the cross product a b of two vectors a and b in R 3, and understand its geometric meaning. As an application, you should be able to

More information

Derivatives and Integrals

Derivatives and Integrals Derivatives and Integrals Definition 1: Derivative Formulas d dx (c) = 0 d dx (f ± g) = f ± g d dx (kx) = k d dx (xn ) = nx n 1 (f g) = f g + fg ( ) f = f g fg g g 2 (f(g(x))) = f (g(x)) g (x) d dx (ax

More information

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

All parabolas through three non-collinear points

All parabolas through three non-collinear points ALL PARABOLAS THROUGH THREE NON-COLLINEAR POINTS 03 All parabolas through three non-collinear points STANLEY R. HUDDY and MICHAEL A. JONES If no two of three non-collinear points share the same -coordinate,

More information

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line.

Math 2414 Activity 1 (Due by end of class July 23) Precalculus Problems: 3,0 and are tangent to the parabola axis. Find the other line. Math 44 Activity (Due by end of class July 3) Precalculus Problems: 3, and are tangent to the parabola ais. Find the other line.. One of the two lines that pass through y is the - {Hint: For a line through

More information

Lecture 4: Partial and Directional derivatives, Differentiability

Lecture 4: Partial and Directional derivatives, Differentiability Lecture 4: Partial and Directional derivatives, Differentiability Rafikul Alam Department of Mathematics IIT Guwahati Differential Calculus Task: Extend differential calculus to the functions: Case I:

More information

Calculus and Parametric Equations

Calculus and Parametric Equations Calculus and Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Given a pair a parametric equations x = f (t) y = g(t) for a t b we know how

More information

18.01 Final Answers. 1. (1a) By the product rule, (x 3 e x ) = 3x 2 e x + x 3 e x = e x (3x 2 + x 3 ). (1b) If f(x) = sin(2x), then

18.01 Final Answers. 1. (1a) By the product rule, (x 3 e x ) = 3x 2 e x + x 3 e x = e x (3x 2 + x 3 ). (1b) If f(x) = sin(2x), then 8. Final Answers. (a) By the product rule, ( e ) = e + e = e ( + ). (b) If f() = sin(), then f (7) () = 8 cos() since: f () () = cos() f () () = 4 sin() f () () = 8 cos() f (4) () = 6 sin() f (5) () =

More information

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151)

DIFFERENTIATION. 3.1 Approximate Value and Error (page 151) CHAPTER APPLICATIONS OF DIFFERENTIATION.1 Approimate Value and Error (page 151) f '( lim 0 f ( f ( f ( f ( f '( or f ( f ( f '( f ( f ( f '( (.) f ( f '( (.) where f ( f ( f ( Eample.1 (page 15): Find

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define Solution Midterm, Math 5, Summer. (a) ( points) Let f(,, z) be a differentiable function of three variables and define F (s, t) = f(st, s + t, s t). Calculate the partial derivatives F s and F t in terms

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Section 8.2 Vector Angles

Section 8.2 Vector Angles Section 8.2 Vector Angles INTRODUCTION Recall that a vector has these two properties: 1. It has a certain length, called magnitude 2. It has a direction, indicated by an arrow at one end. In this section

More information

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C

MATH Line integrals III Fall The fundamental theorem of line integrals. In general C MATH 255 Line integrals III Fall 216 In general 1. The fundamental theorem of line integrals v T ds depends on the curve between the starting point and the ending point. onsider two was to get from (1,

More information

Chapter 6 Additional Topics in Trigonometry, Part II

Chapter 6 Additional Topics in Trigonometry, Part II Chapter 6 Additional Topics in Trigonometry, Part II Section 3 Section 4 Section 5 Vectors in the Plane Vectors and Dot Products Trigonometric Form of a Complex Number Vocabulary Directed line segment

More information

Arc-length of a curve on the plane (Sect. 11.2) Review: Parametric curves on the plane

Arc-length of a curve on the plane (Sect. 11.2) Review: Parametric curves on the plane Arc-length of a curve on the plane (Sect. 11.2) Review: Parametric curves on the plane. The slope of tangent lines to curves. The arc-length of a curve. The arc-length function and differential. Review:

More information

Math 3c Solutions: Exam 2 Fall 2017

Math 3c Solutions: Exam 2 Fall 2017 Math 3c Solutions: Exam Fall 07. 0 points) The graph of a smooth vector-valued function is shown below except that your irresponsible teacher forgot to include the orientation!) Several points are indicated

More information

Mathematics Extension 1

Mathematics Extension 1 013 HIGHER SCHL CERTIFICATE EXAMINATIN Mathematics Etension 1 General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Board-approved calculators

More information

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 > Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A

Time : 3 hours 02 - Mathematics - July 2006 Marks : 100 Pg - 1 Instructions : S E CT I O N - A Time : 3 hours 0 Mathematics July 006 Marks : 00 Pg Instructions :. Answer all questions.. Write your answers according to the instructions given below with the questions. 3. Begin each section on a new

More information

Math 20C. Lecture Examples. Section 14.5, Part 1. Directional derivatives and gradient vectors in the plane

Math 20C. Lecture Examples. Section 14.5, Part 1. Directional derivatives and gradient vectors in the plane Math 0C. Lecture Examples. (8/7/08) Section 4.5, Part. Directional derivatives and gradient vectors in the plane The x-derivative f x (a,b) is the derivative of f at (a,b) in the direction of the unit

More information

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS. Parametric Equations Preliminar Questions. Describe the shape of the curve = cos t, = sin t. For all t, + = cos t + sin t = 9cos t + sin t =

More information

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone

3.4 Conic sections. Such type of curves are called conics, because they arise from different slices through a cone 3.4 Conic sections Next we consider the objects resulting from ax 2 + bxy + cy 2 + + ey + f = 0. Such type of curves are called conics, because they arise from different slices through a cone Circles belong

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

Section 10.7 The Cross Product

Section 10.7 The Cross Product 44 Section 10.7 The Cross Product Objective #0: Evaluating Determinants. Recall the following definition for determinants: Determinants a The determinant for matrix 1 b 1 is denoted as a 1 b 1 a b a b

More information

Summary of various integrals

Summary of various integrals ummary of various integrals Here s an arbitrary compilation of information about integrals Moisés made on a cold ecember night. 1 General things o not mix scalars and vectors! In particular ome integrals

More information

32 +( 2) ( 4) ( 2)

32 +( 2) ( 4) ( 2) Math 241 Exam 1 Sample 2 Solutions 1. (a) If ā = 3î 2ĵ+1ˆk and b = 4î+0ĵ 2ˆk, find the sine and cosine of the angle θ between [10 pts] ā and b. We know that ā b = ā b cosθ and so cosθ = ā b ā b = (3)(

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

MAC Module 5 Vectors in 2-Space and 3-Space II

MAC Module 5 Vectors in 2-Space and 3-Space II MAC 2103 Module 5 Vectors in 2-Space and 3-Space II 1 Learning Objectives Upon completing this module, you should be able to: 1. Determine the cross product of a vector in R 3. 2. Determine a scalar triple

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Sec. 1.1: Basics of Vectors

Sec. 1.1: Basics of Vectors Sec. 1.1: Basics of Vectors Notation for Euclidean space R n : all points (x 1, x 2,..., x n ) in n-dimensional space. Examples: 1. R 1 : all points on the real number line. 2. R 2 : all points (x 1, x

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information