NUMERICAL SIMULATIONS OF DIRECT ABSORPTION OF SOLAR RADIATION BY A LIQUID

Size: px
Start display at page:

Download "NUMERICAL SIMULATIONS OF DIRECT ABSORPTION OF SOLAR RADIATION BY A LIQUID"

Transcription

1 NUMERICAL SIMULATIONS OF DIRECT ABSORPTION OF SOLAR RADIATION BY A LIQUID Ram Satish Kaluri Srinivasan Dattarajan Ganapathisubbu S Siemens Corporate Research & Technologies Bangalore, India 561 ramsatish.k@siemens.com srinivasan.dattarajan@siemens.com ganapathisubbu.s@siemens.com ABSTRACT The performance of a direct absorption collector of solar radiation is reported in this study with the aid of numerical simulations. Since the entire volume of the working fluid of a direct absorption collector participates in the conversion of solar energy, in contrast to just the surface of a conventional solar-thermal collector, the former has the potential to deliver higher collector efficiencies. Nevertheless, there are relatively few studies in literature that document the effect of various collector design parameters on its performance. In this paper, a numerical model for the direct absorption of solar radiation is studied on a collector comprising 2-D flow of a liquid between two parallel walls, one of which is permeable to solar radiation. The effects of key flow and radiation parameters on collector performance have been systematically evaluated, and are reported. The collector efficiency was found to increase with both fluid inlet velocity and collector depth up to certain respective values, beyond which there was no significant dependence on either parameter. The collector efficiency increased, and subsequently decreased with increasing fluid absorptivity. The collector was more efficient when the wall impermeable to solar radiation was emitting than when it was reflective. 1. INTRODUCTION Conventional solar thermal receivers provide for concentrated solar radiation to impinge on the surface of an opaque metal tube, beneath which the flow of a working fluid is maintained. This radiatively heated tube transfers heat to the working fluid via convection and conduction. As shown in Fig. 1(a), solar energy is transferred to the working fluid in two steps. This arrangement suffers from two performance drawbacks resulting from the tube surface inevitably reaching high temperatures. First, the receiver undergoes high convective and radiative heat loss. Secondly, the tube wall undergoes material degradation owing to the imposed thermal stress. These two factors limit how much radiative flux the receiver can be subjected to. (a) (b) Incident radiation Incident radiation Opaque wall Opaque wall Semi-transparent wall Opaque wall Emission losses Emission losses Fig. 1 Schematic of (a) surface absorption collector and (b) direct absorption and collector In a Direct Absorption Collector (DAC), incident radiation is directly absorbed by the working fluid, as shown in Fig. 1(b). The top wall is semi-transparent to solar radiation. The entire volume of the working fluid of a DAC participates in conversion of solar energy to thermal energy via absorption of radiation, as opposed to only the surface of a conventional receiver previously discussed. As can be appreciated, the former has the potential to do so more 1

2 efficiently. The potential advantages of the DAC concept over a conventional solar-thermal receiver are summarized below: The walls of the tube enclosing the working fluid of a DAC do not participate appreciably in the absorption process, and hence do not attain soaring temperatures resulting in reduced heat loss from the surface There are no limitations on the magnitude and uniformity of flux imposed by conventional designs. A well-known example of direct absorption collection system is the solar pond [1]. Over the years, many novel collector designs for direct absorption of solar energy have been proposed, such as black liquid collectors [2], trickle collectors [3] [4], volume-trap solar collectors [5], particleladen collectors [6], nanofluid collectors [7] [8] etc. The concept of direct absorption has been proposed for enhancing the efficiency of cavity-type collectors in power towers by Copeland et al. [9]. In this type of receivers, a thin film of molten salt flows over an inclined surface due to gravity, and is exposed to highly concentrated solar radiation. Several studies on development of mathematical framework for modeling of solar radiation absorption in thin films have been reported. A detailed mathematical model for absorption of solar radiation in particulate-laden falling liquid film has been proposed by Kumar and Tien [6]. The model accounts for radiative and convective transport, absorption, emission, scattering, and spectral and angular variations of radiation and radiative properties. Effects of particle loading, particle diameter, film thickness and variable thermo- physical properties on temperature distribution within the fluid layer are analyzed. Houf et al. [1] developed a three-dimensional laminar flow model to predict effects of liquid velocities, radiative properties of liquid and substrate, intensity of solar irradiation and influence of buoyancy forces on hydrodynamic and thermal conditions. Webb and Viskanta [11] numerically investigate the heat transfer characteristics of gravity-driven semitransparent molten salts flowing over an opaque substrate subjected to solar irradiation. The effects of model parameters such as substrate emissivity, fluid layer opacity, spectral nature of incident radiative flux, flow model, and fluid layer physical thickness on collector efficiency are investigated. Vaxman and Sokolov [12] develop a simple analytical model for heat removal factor and collector efficiency based on mass and energy balance for a free flow solar collector. Numerical studies by Lazardis et al. [13] indicate that steep temperature gradients of the order of 1 C exist within very thin fluid layers (<.5 mm). in fluids were limited only to one-dimensional analysis of radiative transfer. Even in the studies where momentum and energy equations are considered three-dimensional, the radiative transfer equation is still considered to be onedimensional, assuming that the thickness of fluid layer is considerably small [1]. A detailed two- and threedimensional modeling and analysis of solar radiation absorption in liquids is yet to appear in literature. The main objective of the present study is to analyze the influence of flow and radiative parameters on collector performance based on two-dimensional modeling of fluid flow and radiative heat transfer. 2. MATHEMATICAL MODEL 2.1. Flow geometry The direct absorption collector that was numerically simulated in this study comprised a liquid of absorptivity flowing between two parallel walls, as shown in Fig. 2. The top wall was semi-transparent to solar radiation, and the bottom wall was opaque. Inlet y Incident radiation x Fig. 2 Schematic of the physical domain considered for this study Governing equations Semi-transparent wall The governing equations mass, momentum and energy for two-dimensional steady-state, incompressible, laminar flow may be given as u v x y Midline Opaque wall u u P u u u v x y x x y Emission Losses Outlet Convective Losses (1) (2) Owing to the complexities and computational effort involved in solving an integro-differential radiative transfer equation, earlier studies on modeling of radiation absorption v v P v v u v x y y x y (3) 2

3 T T T T C u v k x y x y p q r where u, v, are velocities in x and y directions, respectively, is the density, P is the pressure, C p is the specific heat, is the fluid viscosity, T is the temperature, k is the thermal conductivity and q r is the heat flux due to radiation. The last term on right hand side of Eq. (4) is the volumetric source term due to radiation and is given by (4) (5) where is the wavelength, is the spectral absorption coefficient, I is the blackbody intensity given by the Planck function. The intensity I at the position in the direction s r in the fluid region is obtained by solving the Radiative Transfer Equation (RTE): ( I ( r, s) s) ( ) I ( r, s) n 4 q r 4I b I ( r, s) d (6) where, n is the refractive index, s is the scattering coefficient, s is the scattering direction vector, is the solid angle, is the phase function. Eq. 6 above is the generalized equation for absorbing, emitting and scattering medium. In the present study, scattering of energy within the fluid is ignored as the experimental studies on scattering of radiation in pure water indicate that the scattering phase function is highly forward in nature [14] i.e., the scattered energy propagates in the direction of incident beam. As suggested by Cengel and Ozisik [1], the highly forward nature of phase function may be approximated such that there is no scattering at all, since all non-absorbed energy propagates in its original direction Input parameters 4 2 I b ) s s I ( r, s) ( s, s d 4 The parametric studies were carried with the following boundary conditions and input parameters. The depth of the collector, i.e. the distance between its top and bottom walls, was.1 m, and the collector width, i.e. the distance between its inlet and outlet, was.5 m. The width and depth of the fluid channel were.5m and.1m, respectively. The incident radiation was assumed to be gray with an intensity of 2 kw/m 2 and was incident normally on the top wall. Convective heat loss coefficient, h was specified at both top and bottom walls. The h was assumed to be 8 W/m 2 -K, which is a typical value for heat loss due to natural convection. The fluid inlet temperature and ambient temperature were both 3 K. The semi-transparent top wall was considered to be glass with thermal conductivity 1.5 W/m-K and specific heat 83 J/kg-K. The opaque bottom wall was considered to be aluminum with thermal conductivity of 22.4 W/m-K and specific heat 871 J/kg-K. The refractive index of the semi-transparent glass wall was 1.5 and that of the fluid, 1.. The emissivity and diffuse fraction of the bottom wall were maintained at 1 and, respectively. The density, specific heat, thermal conductivity and viscosity of the fluid were the same as those of water. The computational domain shown in Fig. 2 was spatially discretized using a 15 x 5 mesh along the width and depth, respectively. Mesh points were spaced more closely near the top and bottom walls. 3. NUMERICAL SOLUTION & VALIDATION The governing equations for mass, momentum and energy discussed in the previous section were solved using the commercially available general purpose CFD solver FLUENT 13.. The radiative transfer equation (Eq. 6) was solved by the Discrete Ordinate (DO) method. In the DO method, the radiation field is divided into a number of discrete directions, and the RTE written and solved separately for each of these directions using a conservative variant of the DO model [15]. In this approach, the RTE is integrated over both control angles and control volumes unlike in the regular DO method, wherein the RTE for different directions is integrated over control volumes only. TABLE 1: INPUT CONDITIONS FOR FIVE DIFFERENT CASES REPORTED IN BEARD et al. [3]. Case I (W/m 2 ) m (kg/s) T amb (K) T in (K) In order to validate the current numerical model, the free flow direct absorption collector experimentally studied by Beard et al. [3] was simulated employing the numerical model described in the previous section. Only the comparison of numerical results and experimental data for the flow conditions listed in Table 1 are presented here. For details on the experimental setup and problem description, the reader is referred to [3]. Fig. 3 shows the comparison of bulk outlet temperature predicted by current numerical model with that of experimental data of Beard et al. [3]. The results show that the numerical results are in good agreement with experimental data. The error between the experimental and numerical results is less than 1.2% for all the five cases. 3

4 Outlet temperature, T out (K) Experimental (Beard et al [5]) Numerical (Present) At low velocities, the time delay between the entry and exit of a given fluid parcel into and out of the collector, i.e. the fluid residence time, was high, allowing for the fluid temperature to rise more. This is illustrated in Fig. 5, which shows declining temperature rise in the fluid across the width of the collector with increasing velocity. Since emission of radiation from the fluid scales with the fourth power of temperature, the fluid suffered higher emissive losses at lower velocities, which resulted in smaller collector efficiencies Fig. 3 Comparison of bulk outlet temperature (T out ) between experimental data [3] and present numerical data for five different cases (see Table 1). The error bars show 1% deviation. 4. RESULTS AND DISCUSSION Detailed simulations were carried out to study the effect flow and radiative parameters on the collector efficiency, defined as ratio of the enthalpy rise in the fluid across the collector inlet and outlet, to the total incident radiation, The efficiency has been used here as a measure of collector performance. The effects of the various parameters on collector efficiency are discussed below Effect of flow/geometric parameters The effects of bulk flow velocity at the inlet and the depth of the collector on the efficiency were studied, and are presented below. The collector depth was held fixed when the velocity was parametrically varied, and vice-versa. In both cases, the mass flow rate of fluid through the collector was determined by the particular choice of velocity and collector height Bulk inlet velocity Cases mc p ( Tout Tin) I The effect of inlet velocity on collector efficiency is shown in Fig. 4. Values of the fluid absorptivity, and the diffuse fraction f d and the emissivity w of bottom wall are indicated in the caption. The efficiency increased with velocity for small flow rates, and was found to be independent for higher velocities. (7) Collector efficiency, Velocity (m/s) =15 m -1 Fig. 4 Effect of inlet velocity on collector efficiency. Here, = 15 m -1, f d = and w = 1. The collector depth was.1m. Temperature (K) Normalized distance from the bottom wall v=1e-5 m/s v=.1 m/s v=.1 m/s v=.1 m/s v=.1 m/s Fig. 5 Temperature profiles at the midline of the collector, corresponding to the conditions in Fig. 4. In the abscissa, distance from the bottom wall is normalized by the collector depth. At higher velocities, though, the temperature rise in the fluid itself was small, and differences therein across velocities were still smaller. This resulted in a progressively weaker effect of emissive losses described above, and hence, collector efficiencies were seen to be independent of velocity at higher values. 4

5 Collector depth Since radiation was incident normal to the top wall of the collector, the collector depth determined what fraction of the incident radiation was absorbed before it impinged on the bottom wall. The effect of collector depth on the efficiency is shown in Fig. 6. The collector efficiency initially increased with collector depth for small values of depth, and subsequently became independent of depth for large values of collector depth. Collector efficiency, Fig. 6 Effect of the collector depth on the collector efficiency. Here, = 15 m -1, f d = and w = 1. The fluid inlet velocity was.1 m/s. For small values of depth, the radiation incident onto the top wall penetrated the fluid layer in the collector, and impinged on the bottom wall after being partly absorbed by the fluid. Since the bottom wall was non-reflective, any radiation impinging on it got absorbed, subsequently raising the fluid temperature in its vicinity as shown in Fig. 7. As indicated before, this temperature rise resulted in higher emissive loss, thereby reducing collector efficiency. Temperature (K) =15 m -1 v=.1 m/s Collector depth, D (m) Normalized distance from bottom wall v=.1 m/s D=.1 m D=.3 m D=.5 m D=.1 m D=.2 m D=.4 m Fig. 7 Temperature profiles at the collector midline, corresponding to the conditions in Fig. 6. In the abscissa, distance from the bottom wall for various curves is normalized by the respective collector depth. For large collector depths, most of the radiation incident on the top wall was absorbed by the fluid before it reached the bottom, thereby avoiding the formation of high temperature regions near the bottom wall and giving higher collector efficiency. This is evident from the temperature near the bottom wall in Fig. 7. However, increasing the collector depth had no added advantage beyond a point in preventing fluid heating near the bottom wall. Hence the collector efficiency was independent of collector depth for high values of depth. The trend reported in Fig. 6 is consistent with that predicted in Fig. 2 of Sokolov et al. [16] Inlet temperature The rate at which a fluid parcel emits radiation is proportional to the fourth power of its absolute temperature. Collector efficiency, Inlet temperature (K) Fig. 8 Effect of fluid inlet temperature on collector efficiency. Here, f d = and w = 1. The fluid inlet velocity and collector depth were.1 m/s and.1 m, respectively. So fluid entering the collector at a lower temperature emitted less total radiation than that entering the collector at higher temperature. Since the fluid absorptivity was held fixed, the collector efficiency was lower in the former case. This trend is captured in Fig Effect of fluid and wall radiative properties The collector fluid interacted with the radiation incident on the collector via absorption and emission. For reasons outlined in Section 2, scattering of radiation by the fluid was not modeled. In section below, the effect of the fluid absorptivity on the performance of the collector is quantified. The effects of the radiative properties of the bottom wall, viz. emissivity and diffuse fraction, are discussed subsequently in sections and Fluid absorptivity = 15 m -1 = 8 m -1 The fraction of radiation incident on a fluid parcel that is 5

6 absorbed by it is proportional to the fluid absorptivity. For a fixed collector depth and inlet velocity, the collector efficiency at various values is shown in Fig. 9. The efficiency peaked at certain value, and increased and decreased with for lower and higher value, respectively. This was the consequence of two competing effects at play with increasing, as explained below. 1 wall absorbed most of the radiation incident on it, allowing little radiation to penetrate the fluid layer and reach the bottom wall. This resulted in a high temperature region near the top wall, with the attendant emissive losses and drop in collector efficiency. The trade-off between the two effects at low and high values described above accounts for the trend seen in Fig Emissivity of bottom wall Collector efficiency, v=.1 m/s v=.1 m/s v=.1 m/s v=.1 m/s The effect of the emissivity of the bottom wall on the performance of the collector is shown in Fig. 11. The bottom wall emissivity is seen to have a sizeable effect on collector efficiency only at low values of fluid absorptivity, i.e. when a significant fraction of the incident solar radiation reached the bottom wall Absorption coefficient, (m -1 ) Fig. 9 Effect of fluid absorptivity on collector efficiency. Here, f d = and w = 1. The collector depth was.1 m. For very low, most of the radiation incident on the top wall penetrated all the way through the fluid layer to the bottom wall, causing the latter wall to absorb all the radiation impinging on it, since it was non-reflecting. This raised the fluid temperature adjacent to the bottom wall, as shown in Fig. 1. Collector efficiency, Normalized distance from bottom wall = 1 m -1 = 15 m -1 = 4 m -1 = 1 m -1 Fig. 1 Temperature profiles at the collector midline, corresponding to the conditions in Fig. 9. In the abscissa, distance from the bottom wall is normalized by the collector depth. As noted previously, regions of high temperature in the flow field lead to greater emissive losses, bringing down the enthalpy retained by the collector fluid, and hence the collector efficiency. Thus, the collector efficiency increased with at low. For very high, fluid adjacent to the top Collector efficiency, Emissivity of bottom wall ( w ) f d = = 2.48 m -1 = 1 m -1 = 24.8 m -1 Fig. 11 Effect of emissivity of the bottom wall on collector efficiency. Here, f d =.The fluid inlet velocity and collector depth are.1 m/s and.1 m, respectively. When w =, i.e. the bottom wall was reflective, solar radiation incident on the top wall was partly absorbed by the fluid before it reached the bottom, where it got reflected back into the fluid. This reflected radiation was again absorbed partly by the fluid before being transmitted out of the domain through the semi-transparent top wall. In the process, the fluid underwent a modest rise in temperature, as shown in Fig. 12. However, at w = 1, the bottom wall was non-reflective, and any radiation reaching there was absorbed by it. This caused the temperature of the bottom wall to rise significantly, and that of the fluid in its vicinity, as seen in Fig. 12. Thus, even though the consequent emissive losses were higher when w = 1, the sensible enthalpy required to bring about the temperature rise near the bottom was retained by the fluid. This resulted in a higher mean fluid temperature at the collector exit, and hence a higher collector efficiency. The observed collector efficiencies in Fig. 11 at intermediate values of w can be similarly explained. 6

7 Temperature (K) Fig. 12 Temperature profiles at the collector midline, corresponding to the conditions in Fig. 11. Only the profiles at = 2.48 m -1 and w =,.5 and 1 are shown Diffuse fraction of bottom wall The diffuse fraction of a wall is defined as the fraction of radiation incident on that wall which is reflected diffusely, i.e. in all directions on the same side of the wall. The rest of the radiation undergoes specular reflection. Collector efficiency, Normalized distance from bottom wall Diffuse fraction of bottom wall = 2.48 m -1 w = w = w =.5 w = 1 = 2.48 m -1 = 1 m -1 = 24.8 m -1 Fig. 13 Effect of diffuse fraction (f d ) of the bottom wall on collector efficiency. Here, w =, the fluid inlet velocity and collector depth are.1 m/s and.1 m, respectively. As in section 4.2.2, the diffuse fraction of the bottom wall had a sizeable effect on the collector efficiency only at low values of, i.e. when a significant fraction of the incident solar radiation reached the bottom wall. This effect is shown in Fig. 13. Solar radiation incident on the top wall of the collector that penetrated the fluid layer impinged normally onto the bottom wall. When it reflected off diffusely in all directions, it afforded the fluid layer a greater effective distance over which to re-absorb that radiation before it reached the top wall, than when the reflections from the bottom wall were specular. This accounts for the observed increase in collector efficiency at higher diffuse fractions of the bottom wall shown in Fig CONCLUSIONS The effects of key flow and radiation parameters of a direct absorption solar collector have been studied. An idealized two dimensional model was used in order to keep the flow field simple, and to avoid getting locked into the specifics of the geometry of any one collector. Although the results presented in this paper are in dimensional form, we believe the findings will be valuable to the designer of a practical direct absorption collector. The flow parameters studied herein were the fluid inlet velocity and the collector depth. The effect of fluid velocity, which in essence is a fluid residence-time effect, implies that any collector design that tends to increase fluid residence time within the collector would cause its temperature to rise, leading to higher emissive losses and diminishing efficiencies. The collector depth, an increase in which ceases to influence collector performance significantly beyond a point, should be kept low in order to ease the requirement on the amount of collector fluid needed to operate the collector. The radiation parameters studied were the fluid absorptivity, and the bottom wall emissivity and diffuse fraction, the last of which had a relatively minor influence on collector performance. Since the absorptivity of a fluid determines the fraction of radiation coming its way that it absorbs, one might be tempted to conclude that collector performance ought to indefinitely improve with increasing fluid absorptivity. However, as this study shows, emissive losses dominate at high values absorptivity and bring the collector efficiency down, thereby rendering the efficiency maximum at a certain absorptivity. An emitting wall is seen to perform better than a reflecting one, especially at low values of optical depth, despite the fluid reaching significantly higher temperatures near the bottom wall in the former case. 6. ACKNOWLEDGMENTS The authors gratefully acknowledge the support and funding from Decentralized Renewable Energy Technologies, Siemens Corporate Research and Technologies, India. 7. REFERENCES [1] Y. A. Cengel and M. N. Ozisik, Solar radiation absorption in ponds, Solar Energy, vol. 33,

8 [2] J. E. Minardi and H. N. Chuang, Performance of black liquid flat-plate solar collector, Solar Energy, vol. 17, 1975 [3] J. T. Beard, F. A. Iachetta, R. F. Messer, F. L. Huckstep and W. B. May, Performance and analysis of an open fluid-film solar collector, Proc. Annual Meeting of American Section of ISES, vol. 1, 1977 [4] J. T. Beard, F. A. Iachetta, R. F. Messer, F. L. Huckstep and W. B. May, Design and operational influences on thermal performance of Solaris solar collector, Journal of Engineering Power, vol. 1, 1978 [5] T. D. M. A. Samuel and N. E. Wijeysundera, Heat withdrawal from multi-layer thermal trap collectors, Solar Energy, vol. 3, 1983 [6] S. Kumar and C. L. Tien, Analysis of combined radiation and convection in a particulate-laden liquid film, Journal of Solar Energy Engineering, vol. 112, 199 [7] H. Tyagi, P. Phelan and R. Prasher, Predicted efficiency of nanofluid-based direct absorption solar receiver, Journal of Solar Energy Engineering, vol. 131, 29 [8] A. Lenert and E. N. Wang, Optimization of nanouid volumetric receivers for solar thermal energy conversion, Solar Energy, vol. 86, 212 [9] R. J. Copeland, J. Leach and C. Stein, High temperature molten salt solat thermal systems, in Proceedings of 17th International Energy Conversion engineerign Conference, IEEE, New York, 1982 [1] W. G. Houf, F. P. Incropera and R. Viskanta, Effect of solar radiation on thermal and hyrdodynamic boundary condtions in laminar open channel flow, Journal of Solar Energy Engineering, vol. 16, 1984 [11] B. W. Webb and R. Viskanta, Analysis of heat transfer and solar radiation absorption in an irradiated thin, falling molten film, Journal of Solar Energy Engineering, vol. 17, 1985 [12] M. Vaxman and M. Sokolov, Analysis of free flow solar collector, Solar Energy, vol. 35, 1998 [13] A. Lazaridis, R. J. Copeland and J. Althof, Temperature distribution in a solar irradiated liquid film flowing over a solid wall, Solar Energy, vol. 36, 1986 [14] G. Kullenberg, Scattering of light by Sargasso Sea water, Deep Sea Research, vol. 15, 1968 [15] G. D. Raithby and E. H. Chui, A finite-volume method for predicting a radiant heat transfer in enclosures with participating media, ASME Journal of Heat Transfer, vol. 112, 199 [16] M. Sokolov and C. Saltiel, Numerical Evaluation of Radiation Absorption by a Fluid Confined in a Semi- Transparent Circular Cylinder, Solar Energy, vol. 27, pp ,

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

ME 476 Solar Energy UNIT TWO THERMAL RADIATION ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: ,

Department of Energy Science & Engineering, IIT Bombay, Mumbai, India. *Corresponding author: Tel: , ICAER 2011 AN EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF HEAT LOSSES FROM THE CAVITY RECEIVER USED IN LINEAR FRESNEL REFLECTOR SOLAR THERMAL SYSTEM Sudhansu S. Sahoo* a, Shinu M. Varghese b, Ashwin

More information

Applied Thermodynamics HEAT TRANSFER. Introduction What and How?

Applied Thermodynamics HEAT TRANSFER. Introduction What and How? LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE: 3 COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING PROGRAMME: ENGR. ALIYU, S.J Course code: MCE 311 Course title: Applied Thermodynamics

More information

Performance Assessment of PV/T Air Collector by Using CFD

Performance Assessment of PV/T Air Collector by Using CFD Performance Assessment of /T Air Collector by Using CFD Wang, Z. Department of Built Environment, University of Nottingham (email: laxzw4@nottingham.ac.uk) Abstract Photovoltaic-thermal (/T) collector,

More information

SOLVING TRANSIENT CONDUCTION AND RADIATION USING FINITE VOLUME METHOD

SOLVING TRANSIENT CONDUCTION AND RADIATION USING FINITE VOLUME METHOD SOLVING TRANSIENT CONDUCTION AND RADIATION USING FINITE VOLUME METHOD 1 PRERANA NASHINE, 2 ASHOK K SATAPATHY 1,2 National Institute of Technology Rourkela, Mechanical Engineering Department, India E-mail:

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

Photo-Thermal Engineering for Clean Energy and Water Applications

Photo-Thermal Engineering for Clean Energy and Water Applications Photo-Thermal Engineering for Clean Energy and Water Applications Ravi Prasher Associate Lab Director Energy Technology Area Lawrence Berkeley National Lab Adjunct Professor Department of Mechanical Engineering

More information

Numerical Analysis of Heat Transfer Performance of Flat Plate Solar Collectors

Numerical Analysis of Heat Transfer Performance of Flat Plate Solar Collectors Avestia Publishing Journal of Fluid Flow, Heat and Mass Transfer Volume 1, Year 2014 ISSN: 2368-6111 DOI: 10.11159/jffhmt.2014.006 Numerical Analysis of Heat Transfer Performance of Flat Plate Solar Collectors

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

The energy performance of an airflow window

The energy performance of an airflow window The energy performance of an airflow window B.(Bram) Kersten / id.nr. 0667606 University of Technology Eindhoven, department of Architecture Building and Planning, unit Building Physics and Systems. 10-08-2011

More information

CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER

CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER CFD ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN FLAT PLATE NATURAL CONVECTION SOLAR AIR HEATER Demiss Alemu Amibe, Alemu Tiruneh Department of Mechanical Engineering Addis Ababa Institute of Technology,

More information

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2 Heat Transfer: Physical Origins and Rate Equations Chapter One Sections 1.1 and 1. Heat Transfer and Thermal Energy What is heat transfer? Heat transfer is thermal energy in transit due to a temperature

More information

Available online at ScienceDirect. Energy Procedia 69 (2015 )

Available online at   ScienceDirect. Energy Procedia 69 (2015 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 69 (2015 ) 573 582 International Conference on Concentrating Solar Power and Chemical Energy Systems, SolarPACES 2014 Numerical simulation

More information

Simplified Collector Performance Model

Simplified Collector Performance Model Simplified Collector Performance Model Prediction of the thermal output of various solar collectors: The quantity of thermal energy produced by any solar collector can be described by the energy balance

More information

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System

Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System Engineering, 2010, 2, 832-840 doi:10.4236/eng.2010.210106 Published Online October 2010 (http://www.scirp.org/journal/eng) Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated

More information

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES

More information

Temperature and Heat Flux Distributions through Single and Double Window Glazing Nongray Calculation

Temperature and Heat Flux Distributions through Single and Double Window Glazing Nongray Calculation Smart Grid and Renewable Energy, 2011, 2, 21-26 doi:10.4236/sgre.2011.21003 Published Online February 2011 (http://www.scirp.org/journal/sgre) 21 Temperature and Heat Flux Distributions through Single

More information

Indo-German Winter Academy

Indo-German Winter Academy Indo-German Winter Academy - 2007 Radiation in Non-Participating and Participating Media Tutor Prof. S. C. Mishra Technology Guwahati Chemical Engineering Technology Guwahati 1 Outline Importance of thermal

More information

N. Lemcoff 1 and S.Wyatt 2. Rensselaer Polytechnic Institute Hartford. Alstom Power

N. Lemcoff 1 and S.Wyatt 2. Rensselaer Polytechnic Institute Hartford. Alstom Power N. Lemcoff 1 and S.Wyatt 2 1 Rensselaer Polytechnic Institute Hartford 2 Alstom Power Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston Background Central solar receiver steam generators

More information

Latest Heat Transfer

Latest Heat Transfer Latest Heat Transfer 1. Unit of thermal conductivity in M.K.S. units is (a) kcal/kg m2 C (b) kcal-m/hr m2 C (c) kcal/hr m2 C (d) kcal-m/hr C (e) kcal-m/m2 C. 2. Unit of thermal conductivity in S.I. units

More information

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR

CFD ANALYSIS OF TRIANGULAR ABSORBER TUBE OF A SOLAR FLAT PLATE COLLECTOR Int. J. Mech. Eng. & Rob. Res. 2013 Basavanna S and K S Shashishekar, 2013 Research Paper ISSN 2278 0149 www.imerr.com Vol. 2, No. 1, January 2013 2013 IJMERR. All Rights Reserved CFD ANALYSIS OF TRIANGULAR

More information

Computational Modeling of a Solar Thermoelectric Generator

Computational Modeling of a Solar Thermoelectric Generator Computational Modeling of a Solar Thermoelectric Generator Undergraduate Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Research Distinction at The Ohio State University

More information

Absorptivity, Reflectivity, and Transmissivity

Absorptivity, Reflectivity, and Transmissivity cen54261_ch21.qxd 1/25/4 11:32 AM Page 97 97 where f l1 and f l2 are blackbody functions corresponding to l 1 T and l 2 T. These functions are determined from Table 21 2 to be l 1 T (3 mm)(8 K) 24 mm K

More information

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness Bonfring International Journal of Industrial Engineering and Management Science, Vol. 4, No. 3, August 2014 115 A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

More information

This section develops numerically and analytically the geometric optimisation of

This section develops numerically and analytically the geometric optimisation of 7 CHAPTER 7: MATHEMATICAL OPTIMISATION OF LAMINAR-FORCED CONVECTION HEAT TRANSFER THROUGH A VASCULARISED SOLID WITH COOLING CHANNELS 5 7.1. INTRODUCTION This section develops numerically and analytically

More information

PROBLEM L. (3) Noting that since the aperture emits diffusely, I e = E/π (see Eq ), and hence

PROBLEM L. (3) Noting that since the aperture emits diffusely, I e = E/π (see Eq ), and hence PROBLEM 1.004 KNOWN: Furnace with prescribed aperture and emissive power. FIND: (a) Position of gauge such that irradiation is G = 1000 W/m, (b) Irradiation when gauge is tilted θ d = 0 o, and (c) Compute

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF PARABOLIC DISH TUBULAR CAVITY RECEIVER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF PARABOLIC DISH TUBULAR CAVITY RECEIVER SASEC2015 Third Southern African Solar Energy Conference 11 13 May 2015 Kruger National Park, South Africa COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF PARABOLIC DISH TUBULAR CAVITY RECEIVER Craig, K.J.*,

More information

Reading Problems , 15-33, 15-49, 15-50, 15-77, 15-79, 15-86, ,

Reading Problems , 15-33, 15-49, 15-50, 15-77, 15-79, 15-86, , Radiation Heat Transfer Reading Problems 15-1 15-7 15-27, 15-33, 15-49, 15-50, 15-77, 15-79, 15-86, 15-106, 15-107 Introduction The following figure shows the relatively narrow band occupied by thermal

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

HEAT AND MASS TRANSFER. List of Experiments:

HEAT AND MASS TRANSFER. List of Experiments: HEAT AND MASS TRANSFER List of Experiments: Conduction Heat Transfer Unit 1. Investigation of Fourier Law for linear conduction of heat along a simple bar. 2. Study the conduction of heat along a composite

More information

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. RADIATION INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place. Radiation: The energy emitted by matter in the form

More information

Energy flows and modelling approaches

Energy flows and modelling approaches Energy flows and modelling approaches Energy flows in buildings external convection infiltration & ventilation diffuse solar external long-wave radiation to sky and ground local generation fabric heat

More information

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

More information

EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR

EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR EXPERIMENTAL INVESTIGATION OF DIFFERENT TRACKING MODES OF THE PARABOLIC TROUGH COLLECTOR Yogender Kumar 1, Avadhesh Yadav 2 1,2 Department of Mechanical Engineering, National Institute of Technology, Kurukshetra,

More information

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE

THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE THE INFLUENCE OF INCLINATION ANGLE ON NATURAL CONVECTION IN A RECTANGULAR ENCLOSURE Thamer Khalif Salem Mechanical Engineering, College of Engineering, Tikrit University, IRAQ. thamer_khalif@yahoo.com

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

HYDRODYNAMICS AND RADIATION EXTINCTION CHARACTERISTICS FOR A FREE FALLING SOLID PARTICLE RECEIVER

HYDRODYNAMICS AND RADIATION EXTINCTION CHARACTERISTICS FOR A FREE FALLING SOLID PARTICLE RECEIVER Eleventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 7-9 December 2015 HYDRODYNAMICS AND RADIATION EXTINCTION CHARACTERISTICS FOR A FREE FALLING SOLID

More information

Analysis of Heat Transfer in Presence of Non gray Carbon dioxide Gas Subjected to Collimated Irradiation

Analysis of Heat Transfer in Presence of Non gray Carbon dioxide Gas Subjected to Collimated Irradiation Analysis of Heat Transfer in Presence of Non gray Carbon dioxide Gas Subjected to Collimated Irradiation Dr. B. K. Dandapat 1, 1 (Lecturer (Selection Grade), Department of Mechanical Engineering, Dr. B.B.A.

More information

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater Renewable Energy Volume 14, Article ID 757618, 11 pages http://dx.doi.org/1.1155/14/757618 Research Article Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR 5 th International Conference on Energy Sustainability ASME August 7-10, 2011, Grand Hyatt Washington, Washington DC, USA ESFuelCell2011-54254 HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING

More information

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material

Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material Theoretical Analysis of Overall Heat Loss Coefficient in a Flat Plate Solar Collector with an In-Built Energy Storage Using a Phase Change Material R. Sivakumar and V. Sivaramakrishnan Abstract Flat Plate

More information

NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS

NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS THERMAL SCIENCE, Year 2011, Vol. 15, No. 2, pp. 457-465 457 NUMERICAL SIMULATION OF THE AIR FLOW AROUND THE ARRAYS OF SOLAR COLLECTORS by Vukman V. BAKI] *, Goran S. @IVKOVI], and Milada L. PEZO Laboratory

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

Thermal Radiation By: Prof. K M Joshi

Thermal Radiation By: Prof. K M Joshi Thermal Radiation By: Prof. K M Joshi Radiation originate due to emission of matter and its subsequent transports does not required any matter / medium. Que: Then what is the nature of this transport???

More information

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface International Journal of Engineering and Technology Volume 2 No. 4, April, 2012 Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface 1 Sahin

More information

An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design

An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design Lun Jiang Chuanjin Lan Yong Sin Kim Yanbao Ma Roland Winston University of California, Merced 4200 N.Lake Rd, Merced CA 95348 ljiang2@ucmerced.edu

More information

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE

CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 31 (2011) 33-41 CFD STUDY OF MASS TRANSFER IN SPACER FILLED MEMBRANE MODULE Sharmina Hussain Department of Mathematics and Natural Science BRAC University,

More information

Optical Properties, Surface and Geometry

Optical Properties, Surface and Geometry Solar Facilities for the European Research Area Optical Properties, Surface and Geometry Cavity and Volume Effect SFERA II 2014-2017, Sfera Summer School, 26 June 2014, Odeillo (France) Introduction Content

More information

Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover

Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover Optimization of the Air Gap Spacing In a Solar Water Heater with Double Glass Cover ABSTRACT M. AL-Khaffajy 1 and R. Mossad 2 Faculty of Engineering and Surveying, University of Southern Queensland, QLD

More information

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB 1 H.VETTRIVEL, 2 P.MATHIAZHAGAN 1,2 Assistant professor, Mechanical department, Manalula Vinayakar institute of

More information

EXPERIMENTAL AND NUMERICAL STUDY THE HEAT TRANSFER OF FLAT PLATE SOLAR COLLECTOR BY USING NANOFLUID UNDER SOLAR SIMULATION

EXPERIMENTAL AND NUMERICAL STUDY THE HEAT TRANSFER OF FLAT PLATE SOLAR COLLECTOR BY USING NANOFLUID UNDER SOLAR SIMULATION EXPERIMENTAL AND NUMERICAL STUDY THE HEAT TRANSFER OF FLAT PLATE SOLAR COLLECTOR BY USING NANOFLUID UNDER SOLAR SIMULATION Abbas Sahi Shareef and Ali Abd Alrazzaq Abd Dibs Department of Mechanical Engineering,

More information

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases

Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Documentation of the Solutions to the SFPE Heat Transfer Verification Cases Prepared by a Task Group of the SFPE Standards Making Committee on Predicting the Thermal Performance of Fire Resistive Assemblies

More information

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN

International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN ISSN 2229-5518 916 Laser Damage Effect Studies with Hollow Metallic Targets Satyender Kumar, S Jain, K C Sati, S Goyal, R Malhotra, R Rajan, N R Das & A K Srivastava Laser Science & Technology Centre Metcalfe

More information

The Peak Flux Constraints on Bladed Receiver Performance in High- Temperature Molten Salt Concentrating Solar Power Systems

The Peak Flux Constraints on Bladed Receiver Performance in High- Temperature Molten Salt Concentrating Solar Power Systems The Peak Flux Constraints on Bladed Receiver Performance in High- Temperature Molten Salt Concentrating Solar Power Systems Ye Wang, John Pye Solar Thermal Group, Research School of Engineering, The Australian

More information

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION

EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION EFFECT OF DISTRIBUTION OF VOLUMETRIC HEAT GENERATION ON MODERATOR TEMPERATURE DISTRIBUTION A. K. Kansal, P. Suryanarayana, N. K. Maheshwari Reactor Engineering Division, Bhabha Atomic Research Centre,

More information

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid

Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid Laminar Forced Convection Heat Transfer from Two Heated Square Cylinders in a Bingham Plastic Fluid E. Tejaswini 1*, B. Sreenivasulu 2, B. Srinivas 3 1,2,3 Gayatri Vidya Parishad College of Engineering

More information

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient

Lecture 28. Key words: Heat transfer, conduction, convection, radiation, furnace, heat transfer coefficient Lecture 28 Contents Heat transfer importance Conduction Convection Free Convection Forced convection Radiation Radiation coefficient Illustration on heat transfer coefficient 1 Illustration on heat transfer

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Introduction to Heat Transfer

Introduction to Heat Transfer FIFTH EDITION Introduction to Heat Transfer FRANK P. INCROPERA College of Engineering University ofnotre Dame DAVID P. DEWITT School of Mechanical Purdue University Engineering THEODORE L. BERGMAN Department

More information

STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS

STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS STUDY OF HEAT TRANSFER MECHANISMS DURING THE LENS TM PROCESS Liang Wang 1 and Sergio Felicelli 1. Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 3976, USA; email:

More information

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.

Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices. Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to

More information

THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT PROFILE

THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT PROFILE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer. Week 14 Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

FLUID FLOW AND HEAT TRANSFER INVESTIGATION OF PERFORATED HEAT SINK UNDER MIXED CONVECTION 1 Mr. Shardul R Kulkarni, 2 Prof.S.Y.

FLUID FLOW AND HEAT TRANSFER INVESTIGATION OF PERFORATED HEAT SINK UNDER MIXED CONVECTION 1 Mr. Shardul R Kulkarni, 2 Prof.S.Y. FLUID FLOW AND HEAT TRANSFER INVESTIGATION OF PERFORATED HEAT SINK UNDER MIXED CONVECTION 1 Mr. Shardul R Kulkarni, 2 Prof.S.Y.Bhosale 1 Research scholar, 2 Head of department & Asst professor Department

More information

Heat Transfer Modeling

Heat Transfer Modeling Heat Transfer Modeling Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 7-2 Outline Energy Equation Wall Boundary Conditions Conjugate Heat Transfer

More information

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD

Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led Application by using CFD GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 8 July 2016 ISSN: 2455-5703 Numerical Investigation of Convective Heat Transfer in Pin Fin Type Heat Sink used for Led

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker

Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker Natural convective heat transfer in trapezoidal enclosure of box-type solar cooker Subodh Kumar * Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India Received

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW

THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW THERMAL PERFORMANCE EVALUATION OF AN INNOVATIVE DOUBLE GLAZING WINDOW Luigi De Giorgi, Carlo Cima, Emilio Cafaro Dipartimento di Energetica, Politecnico di Torino, Torino, Italy Volfango Bertola School

More information

NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER

NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER NUMERICAL STUDY OF MIXED CONVECTION AND THERMAL RADIATION IN A SQUARE CAVITY WITH AN INSIDE INCLINED HEATER N. HAMICI a, D. SADAOUI a a. Laboratory of Mechanic, Materials and Energy (L2ME), University

More information

Simulation of a linear Fresnel solar collector concentrator

Simulation of a linear Fresnel solar collector concentrator *Corresponding author: acoliv@fe.up.pt Simulation of a linear Fresnel solar collector concentrator... Jorge Facão and Armando C. Oliveira * Faculty of Engineering, University of Porto-New Energy Tec. Unit,

More information

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR

CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR CFD STUDIES IN THE PREDICTION OF THERMAL STRIPING IN AN LMFBR K. Velusamy, K. Natesan, P. Selvaraj, P. Chellapandi, S. C. Chetal, T. Sundararajan* and S. Suyambazhahan* Nuclear Engineering Group Indira

More information

PROBLEM Node 5: ( ) ( ) ( ) ( )

PROBLEM Node 5: ( ) ( ) ( ) ( ) PROBLEM 4.78 KNOWN: Nodal network and boundary conditions for a water-cooled cold plate. FIND: (a) Steady-state temperature distribution for prescribed conditions, (b) Means by which operation may be extended

More information

Radiation Heat Transfer Prof. J. Srinivasan Centre for Atmospheric and Oceanic Sciences Indian Institute of Science, Bangalore

Radiation Heat Transfer Prof. J. Srinivasan Centre for Atmospheric and Oceanic Sciences Indian Institute of Science, Bangalore Radiation Heat Transfer Prof. J. Srinivasan Centre for Atmospheric and Oceanic Sciences Indian Institute of Science, Bangalore Lecture - 10 Applications In the last lecture, we looked at radiative transfer

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION Chapter Chapter Fundamentals of Thermal Radiation FUNDAMENTALS OF THERMAL RADIATION Electromagnetic and Thermal Radiation -C Electromagnetic waves are caused by accelerated charges or changing electric

More information

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49

Heat Transfer: A Practical Approach - Yunus A Cengel Assignment 11 Fall 2003 Tuesday, November 18, 2003 Chapter 11, Problem 49 Heat Transer: A Practical Approach - Yunus A Cengel Assignment Fall 00 Tuesday, November 8, 00 Chapter, Problem 9 The variation o the spectral transmissivity o a 0.6- cm-thick glass window is as given

More information

A numerical study of heat transfer and fluid flow over an in-line tube bank

A numerical study of heat transfer and fluid flow over an in-line tube bank Fluid Structure Interaction VI 295 A numerical study of heat transfer and fluid flow over an in-line tube bank Z. S. Abdel-Rehim Mechanical Engineering Department, National Research Center, Egypt Abstract

More information

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases. ME 323 Sample Final Exam. 120pts total True/False. Circle the correct answer. (1pt each, 7pts total) 1. A solid angle of 2π steradians defines a hemispherical shell. T F 2. The Earth irradiates the Sun.

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

Numerical Study of PCM Melting in Evacuated Solar Collector Storage System

Numerical Study of PCM Melting in Evacuated Solar Collector Storage System Numerical Study of PCM Melting in Evacuated Collector Storage System MOHD KHAIRUL ANUAR SHARIF, SOHIF MAT, MOHD AFZANIZAM MOHD ROSLI, KAMARUZZAMAN SOPIAN, MOHD YUSOF SULAIMAN, A. A. Al-abidi. Energy Research

More information

Heat Transfer Analysis of Automotive Headlamp Using CFD Methodology

Heat Transfer Analysis of Automotive Headlamp Using CFD Methodology Heat Transfer Analysis of Automotive Headlamp Using CFD Methodology Manoj Kumar S * N. Suresh Kumar R. Thundil Karuppa Raj Engineer, Dept. of CFD Manager, Dept. of CFD Professor, Dept. of Energy Mechwell

More information

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 143 Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations 1 Ganapathi Harish, 2 C.Mahesh, 3 K.Siva Krishna 1 M.Tech in Thermal Engineering, Mechanical Department, V.R Siddhartha Engineering

More information

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder

A Finite Element Analysis on MHD Free Convection Flow in Open Square Cavity Containing Heated Circular Cylinder American Journal of Computational Mathematics, 2015, 5, 41-54 Published Online March 2015 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/10.4236/ajcm.2015.51003 A Finite Element Analysis

More information

Convection Workshop. Academic Resource Center

Convection Workshop. Academic Resource Center Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

More information

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium Tamkang Journal of Science and Engineering, Vol. 14, No. 2, pp. 97 106 (2011) 97 Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

More information

1D and 3D Simulation. C. Hochenauer

1D and 3D Simulation. C. Hochenauer Solar thermal flat-plate l t collectors 1D and 3D Simulation C. Hochenauer Introduction Description of a solar thermal flat-plate collector 1D Simulation - Description of the model - Simulation vs. measurement

More information

Thermal Energy Final Exam Fall 2002

Thermal Energy Final Exam Fall 2002 16.050 Thermal Energy Final Exam Fall 2002 Do all eight problems. All problems count the same. 1. A system undergoes a reversible cycle while exchanging heat with three thermal reservoirs, as shown below.

More information