CHEM 1001 Problem Set #3: Entropy and Free Energy

Size: px
Start display at page:

Download "CHEM 1001 Problem Set #3: Entropy and Free Energy"

Transcription

1 CHEM 1001 Prblem Set #3: Entry and Free Energy 19.7 (a) Negative; A liquid (mderate entry) cmbines with a slid t frm anther slid. (b)psitive; One mle f high entry gas frms where n gas was resent befre. (c) Psitive; One mle f high entry gas frms where n gas was resent befre. (d) Uncertain; Same number f mles f gaseus rducts as f gaseus reactants. (e) Negative; Tw mles f gas (and a, slid) cmbine t frm just ne mle f gas Trutn's rule is beyed mst clsely by liquids that d nt have a high degree f rder within the liquid. In bth HF and CH3OH, hydrgen bnds create cnsiderable rder within the liquid. In C6H5CH 3, the nly attractive frces are nn-directinal Lndn frces, which cause the mlecules t attract each ther, but have n referred rientatin as hydrgen bnds d. Thus, f the three chices, liquid C H CH wuld mst clsely fllw Trutn's rule First f all, the rcess is clearly sntaneus, and therefre G < 0. In additin, the gases are mre disrdered when they are at a lwer ressure and therefre S>0. We als cnclude that H = 0, because the gases are ideal and thus there are n frces f attractin r reulsin between them, rducing n energy f interactin (a) An exthermic reactin (ne that gives ff heat) may nt ccur sntaneusly if, at the same time, the system becmes mre rdered, that is, S < 0.This is articularly true at a high temerature, where the T S term dminates the G exressin. An examle f such a rcess is freezing water (clearly exthermic because the reverse rcess, melting ice, is endthermic) at temeratures abve 0 C. (b) A reactin in which S > 0 need nt be sntaneus if that rcess als is endthermic. This is articularly true at lw temeratures, where the H term dminates the G exressin. An examle is the varizatin f water (clearly an endthermic rcess, ne that requires heat, and ne that rduces a gas, s S > 0) at lw temeratures, that is, belw 100 C (a) S = 2S [POCl 3(l)] - 2S [PCl 3(g)] - S [O 2(g)] = 2(222.4 J/K) - 2( J/K) J/K = J/K 3 3 G = H - T S = x 10 J - (298 K)( J/K) = -506x10 J = -506 kj (b) The reactin rceeds sntaneusly in the frward directin when reactants and rducts are in their standard states, because the value f G is less than zer.

2 19.27 We cmbine the reactins in the same way as fr Hess's law calculatins. (a) N2O(g) N 2(g) + ½O 2(g) G = -½( kj) = kj N 2(g) + 2O 2(g) 2 NO 2(g) G = kj Net: N2O(g) + 3/2O 2(g) 2NO 2(g) G = = -1.6 kj This reactin reaches an equilibrium cnditin, a cnclusin we reach based n the relatively small abslute value f G. (b) 2N 2(g) + 6H 2(g) 4NH 3(g) G = 2(-33.0 kj) = kj 4NH 3(g) + 5O 2(g) 4NO(g) + 6H2O(l) G = kj 4NO(g) 2N 2(g) + 2O 2(g) G =-2( kj) = kj Net: 6H 2(g) + 3O 2(g) 6H2O(I) G = kj kj kj = kj This reactin is three times the desired reactin, which therefre has G = kj 3 = kj The large negative G value indicates that this reactin wuld tend t g t cmletin at 25 C. (c) 4NH 3(g) + 5O 2(g) 4NO(g) + 6H2O(l) G = kj 4NO(g) 2N 2(g) + 2O 2(g) G = -2( kj) = kj 2N 2(g) + O 2(g) 2N2O(g) G = kj Net: 4NH 3(g) + 4O 2(g) 2N2O(g) + 6H2O(I) G = kj kj kj = kJ This reactin is twice the desired reactin, which, therefre, has G = kj 2 = kj The very large negative value f G fr this reactin indicates that it will g t cmletin.

3 19.31 (a) S rxn = S rducts - S reactants = {1 ml x J K ml + 2 ml x J K ml } - {2 ml x J K ml + 1 ml x J K ml } = J K -1 = kj K -1 (b) H rxn = {bnds brken in reactants (kj/ml)} - {bnds brken in rducts(kj/ ml)} = {4 ml x (389 kj ml ) N-H + 4 ml x (222 kj ml ) O-F} - {4 ml x (301 kj ml ) N-F + 4 ml x (464 kj ml ) O-H} = -616 kj -1 (c) G rxn = H rxn - T S rxn = -616 kj K( kj K ) = -600 kj Since the G rxn is negative, the reactin is sntaneus, and hence feasible (at 25 C). Because bth the entry and enthaly changes are negative, this reactin will be mre highly favred at lw temeratures (i.e. the reactin is enthaly driven) In all three cases, K eq = K because nly gases, slids, and liquids are resent in the chemical equatins. There are n factrs fr slids and liquids in K eq exressins, and gases aear as artial ressures in atmsheres. That makes n K eq the same as K fr these three reactins. We nw recall that K = K c(rt). Hence, in these three cases we have: (a) 2SO 2(g) + O 2(g) 2SO 3(g); n gas = 2 - (2+1) = -1; K eq =K =K c(rt) -1 (b) HI(g) ½H 2(g) + ½I 2(g); n gas = 1 - (½+½) = 0; K eq = K = Kc (c) NH4HCO 3(s) NH 3(g) + CO 2(g) + H2O(I); n gas = 2 - (0) = 2; K eq =K =K c(rt) 2 ngas (a) We knw that K = K c(rt). Fr the reactin 2 SO 2(g) + O 2(g) 2 SO 3(g), n = 2 - (2 + 1) = -1, and therefre a value f K can be btained. gas K = K c(rt) = (2.8 X 10 )( L atm ml K X 1000 K) = 3.41 = Keq We recgnize that K eq = K since all f the substances invlved in the reactin are gases. We can nw evaluate G. G = -RT In K eq = -( J ml K )(1000 K) In (3.41) 4 = x 10 J/ml = kj/ml

4 (b) We can evaluate Q fr this situatin and cmare the value with that f K. c c Since Q c is less than K c, the reactin will shift t the right t rduce mre rducts until the reactin reaches equilibrium and these tw values are equal Since K = K fr this reactin, eq G = -RT In K eq = -RT In K = -( x 10 kj ml K )(298 K)In(6.5x10 ) = kj/ml CO(g) + Cl 2(g) COCl 2(g) G = -67.4kJ/ml C(grahite) + ½O 2(g) CO(g) G f = kj/ml C(grahite) + ½O (g) + CI (g) COCl (g) G = kj/ml f G f f COCI 2(g) given in Aendix D is kj/ml which is in excellent agreement with this calculated value (a) H = H f [CO 2(g)] + H f [H 2(g)] - H f [CO(g)] - H f [H2O(l)] = { ( l) - (-241.8)} kj/ml = kj/ml S = S f [CO 2(g)] + S f [H 2(g)] - S f [CO(g)] - S f [H2O(l)] = { } J ml K = J ml K G = H - T S -3 = kj/ml - ( K)(-42.1 X 10 kj ml K ) = kj/ml (b) G = H - T S -3 = kj/ml - (875 K)(-42.1 X 10 kj ml K ) = -4.4 kj/ml Since K eq = K fr this reactin, G = -RT In K eq = -RT In K 3 In K = - G /RT = (-4.4 X 10 J/ml)/{( J ml K )(875 K)} = 0.60 K = ex(0.60) = 1.8

5 19.67 (a) We cmute G fr the given reactin in the fllwing manner: H = H f [TiCl 4(l)] + H f [O 2(g)] - H f [TiO 2(s)] - 2 H f [Cl 2(g)] = { ( ) - 2(0.00)} kj/ml = kj/ml S = S f [TiCl 4(l)] + S f [O 2(g)] - S f [TiO 2(s)] - 2 S f [Cl 2(g)] = { (50.33) - 2(223.1)} J ml K = J ml K G = H - T S -3 = kj/ml - (298K)(-39.1x10 kj ml K ) = kj/ml kj/ml = kj/ml This reactin is nnsntaneus at 250 C. (We als culd have used values f G t calculate G.) f (b) Fr the cited reactin, G = 2 G f[co 2 (g)]- 2 G f[ CO (g)] - G f [O 2 (g)] G = {2(-394.4) - 2(-137.2) } kj/ml = kj/ml Then we cule the tw reactins. TiO 2 (s) + 2Cl 2 (g) TiCl 4 (l) + O 2(g) 2CO(g) + O (g) 2CO (g) 2 2 G = kj/ml G = kj/ml TiO 2 (s) + 2Cl 2 (g) + 2CO(g) TiCl 4 (l) + 2CO 2(g) G = kj/ml The culed reactin has G < 0, and, therefre, is sntaneus.

CHAPTER 19 SPONTANEOUS CHANGE: ENTROPY AND GIBBS ENERGY

CHAPTER 19 SPONTANEOUS CHANGE: ENTROPY AND GIBBS ENERGY CHAPTER 9 SPONTANEOUS CHANGE: ENTROPY AND GIBBS ENERGY PRACTICE EXAMPLES A (E) In general, S 0 if n gas 0. This is because gases are very disersed cmared t liquids r slids; (gases ssess large entries).

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

Chemical Equilibrium

Chemical Equilibrium 0.110/5.60 Fall 005 Lecture #10 age 1 Chemical Equilibrium Ideal Gases Questin: What is the cmsitin f a reacting miture f ideal gases? e.g. ½ N (g, T, ) + 3/ H (g, T, ) = NH 3 (g, T, ) What are N,, and

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Nv. 26 Chapter 19 Chemical Thermdynamics Entrpy, Free Energy, and Equilibrium Nv. 26 Spntaneus Physical and Chemical Prcesses Thermdynamics: cncerned with the questin: can a reactin ccur? A waterfall runs

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q Chemistry Ntes Lecture 15 [st] 3/6/09 IMPORTANT NOTES: -( We finished using the lecture slides frm lecture 14) -In class the challenge prblem was passed ut, it is due Tuesday at :00 P.M. SHARP, :01 is

More information

Chapter 4 Thermodynamics and Equilibrium

Chapter 4 Thermodynamics and Equilibrium Chapter Thermdynamics and Equilibrium Refer t the fllwing figures fr Exercises 1-6. Each represents the energies f fur mlecules at a given instant, and the dtted lines represent the allwed energies. Assume

More information

Solutions to the Extra Problems for Chapter 14

Solutions to the Extra Problems for Chapter 14 Slutins t the Extra Prblems r Chapter 1 1. The H -670. T use bnd energies, we have t igure ut what bnds are being brken and what bnds are being made, s we need t make Lewis structures r everything: + +

More information

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj Chemistry 102 ANSWER KEY REVIEW QUESTIONS Chapter 18 1. Calculate the heat reactin ( H ) in kj/ml r the reactin shwn belw, given the H values r each substance: NH (g) + F 2 (g) NF (g) + HF (g) H (kj/ml)

More information

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes Chapter 17: hermdynamics: Spntaneus and Nnspntaneus Reactins and Prcesses Learning Objectives 17.1: Spntaneus Prcesses Cmparing and Cntrasting the hree Laws f hermdynamics (1 st Law: Chap. 5; 2 nd & 3

More information

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions Chem 116 POGIL Wrksheet - Week 3 - Slutins Intermlecular Frces, Liquids, Slids, and Slutins Key Questins 1. Is the average kinetic energy f mlecules greater r lesser than the energy f intermlecular frces

More information

Chemistry 1A Fall 2000

Chemistry 1A Fall 2000 Chemistry 1A Fall 2000 Midterm Exam III, versin B Nvember 14, 2000 (Clsed bk, 90 minutes, 155 pints) Name: SID: Sectin Number: T.A. Name: Exam infrmatin, extra directins, and useful hints t maximize yur

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Advanced Chemistry Practice Prblems Thermdynamics: Gibbs Free Energy 1. Questin: Is the reactin spntaneus when ΔG < 0? ΔG > 0? Answer: The reactin is spntaneus when ΔG < 0. 2. Questin: Fr a reactin with

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Thermochemistry. Thermochemistry

Thermochemistry. Thermochemistry Thermchemistry Petrucci, Harwd and Herring: Chapter 7 CHEM 1000A 3.0 Thermchemistry 1 Thermchemistry The study energy in chemical reactins A sub-discipline thermdynamics Thermdynamics studies the bulk

More information

Lecture 14 Chapter 16, Sections 3-4 Equilibrium. Nifty K eq math Q and K eq Connection with G Le Chatelier

Lecture 14 Chapter 16, Sections 3-4 Equilibrium. Nifty K eq math Q and K eq Connection with G Le Chatelier Lecture 14 Chater 16, Sectins 3-4 Equilibrium Nifty K math Q and K Cnnectin with G Le Chatelier Remember In general fr a reactin like aa + bb dd + ee K [ ] d D [ E] e [ ] a A [ ] b B K s can be cmbined

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Heat Effects of Chemical Reactions

Heat Effects of Chemical Reactions eat Effects f hemical Reactins Enthalpy change fr reactins invlving cmpunds Enthalpy f frmatin f a cmpund at standard cnditins is btained frm the literature as standard enthalpy f frmatin Δ (O (g = -9690

More information

Lecture 16 Thermodynamics II

Lecture 16 Thermodynamics II Lecture 16 Thermdynamics II Calrimetry Hess s Law Enthalpy r Frmatin Cpyright 2013, 2011, 2009, 2008 AP Chem Slutins. All rights reserved. Fur Methds fr Finding H 1) Calculate it using average bnd enthalpies

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

SPONTANEITY, ENTROPY, AND FREE ENERGY

SPONTANEITY, ENTROPY, AND FREE ENERGY CHAER 7 SONANEIY, ENROY, AND FREE ENERGY Questins. Living rganisms need an external surce f energy t carry ut these prcesses. Green plants use the energy frm sunlight t prduce glucse frm carbn dixide and

More information

188 CHAPTER 6 THERMOCHEMISTRY

188 CHAPTER 6 THERMOCHEMISTRY 188 CHAPTER 6 THERMOCHEMISTRY 4. a. ΔE = q + w = J + 100. J = 77 J b. w = PΔV = 1.90 atm(.80 L 8.0 L) = 10.5 L atm ΔE = q + w = 50. J + 1060 = 1410 J c. w = PΔV = 1.00 atm(9.1 L11. L) = 17.9 L atm 101.

More information

CHAPTER PRACTICE PROBLEMS CHEMISTRY

CHAPTER PRACTICE PROBLEMS CHEMISTRY Chemical Kinetics Name: Batch: Date: Rate f reactin. 4NH 3 (g) + 5O (g) à 4NO (g) + 6 H O (g) If the rate f frmatin f NO is 3.6 0 3 ml L s, calculate (i) the rate f disappearance f NH 3 (ii) rate f frmatin

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol Recitatin 06 Mixture f Ideal Gases 1. Chapter 5: Exercise: 69 The partial pressure f CH 4 (g) is 0.175 atm and that f O 2 (g) is 0.250 atm in a mixture f the tw gases. a. What is the mle fractin f each

More information

Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions

Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions Chem 116 POGIL Wrksheet - Week 8 Equilibrium Cntinued - Slutins Key Questins 1. Cnsider the fllwing reatin At 425 C, an equilibrium mixture has the fllwing nentratins What is the value f K? -2 [HI] = 1.01

More information

CHEM 103 Calorimetry and Hess s Law

CHEM 103 Calorimetry and Hess s Law CHEM 103 Calrimetry and Hess s Law Lecture Ntes March 23, 2006 Prf. Sevian Annuncements Exam #2 is next Thursday, March 30 Study guide, practice exam, and practice exam answer key are already psted n the

More information

Lecture 4. The First Law of Thermodynamics

Lecture 4. The First Law of Thermodynamics Lecture 4. The First Law f Thermdynamics THERMODYNAMICS: Basic Cncepts Thermdynamics: (frm the Greek therme, meaning "heat" and, dynamis, meaning "pwer") is the study f energy cnversin between heat and

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t eep this site up and bring yu even mre cntent cnsider dnating via the lin n ur site. Still having truble understanding the material? Chec ut ur Tutring

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Answer Key ALE 28. ess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 4 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk neatly using dimensinal analysis

More information

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C? NOTES: Thermchemistry Part 1 - Heat HEAT- TEMPERATURE - Thermchemistry: the study f energy (in the frm f heat) changes that accmpany physical & chemical changes heat flws frm high t lw (ht cl) endthermic

More information

lecture 5: Nucleophilic Substitution Reactions

lecture 5: Nucleophilic Substitution Reactions lecture 5: Nuclephilic Substitutin Reactins Substitutin unimlecular (SN1): substitutin nuclephilic, unimlecular. It is first rder. The rate is dependent upn ne mlecule, that is the substrate, t frm the

More information

Chemistry 114 First Hour Exam

Chemistry 114 First Hour Exam Chemistry 114 First Hur Exam Please shw all wrk fr partial credit Name: (4 pints) 1. (12 pints) Espress is made by frcing very ht water under high pressure thrugh finely grund, cmpacted cffee. (Wikipedia)

More information

Spontaneous Processes, Entropy and the Second Law of Thermodynamics

Spontaneous Processes, Entropy and the Second Law of Thermodynamics Chemical Thermdynamics Spntaneus Prcesses, Entrpy and the Secnd Law f Thermdynamics Review Reactin Rates, Energies, and Equilibrium Althugh a reactin may be energetically favrable (i.e. prducts have lwer

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

BIT Chapters = =

BIT Chapters = = BIT Chapters 17-0 1. K w = [H + ][OH ] = 9.5 10 14 [H + ] = [OH ] =.1 10 7 ph = 6.51 The slutin is neither acidic nr basic because the cncentratin f the hydrnium in equals the cncentratin f the hydride

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Semester 2 AP Chemistry Unit 12

Semester 2 AP Chemistry Unit 12 Cmmn In Effect and Buffers PwerPint The cmmn in effect The shift in equilibrium caused by the additin f a cmpund having an in in cmmn with the disslved substance The presence f the excess ins frm the disslved

More information

Chem 116 POGIL Worksheet - Week 4 Properties of Solutions

Chem 116 POGIL Worksheet - Week 4 Properties of Solutions Chem 116 POGIL Wrksheet - Week 4 Prperties f Slutins Key Questins 1. Identify the principal type f slute-slvent interactin that is respnsible fr frming the fllwing slutins: (a) KNO 3 in water; (b) Br 2

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Name Chem 161, Sectin: Grup Number: ALE 28. Hess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 5 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Chem 75 February 16, 2017 Exam 2 Solutions

Chem 75 February 16, 2017 Exam 2 Solutions 1. (6 + 6 pints) Tw quick questins: (a) The Handbk f Chemistry and Physics tells us, crrectly, that CCl 4 bils nrmally at 76.7 C, but its mlar enthalpy f vaprizatin is listed in ne place as 34.6 kj ml

More information

Hess Law - Enthalpy of Formation of Solid NH 4 Cl

Hess Law - Enthalpy of Formation of Solid NH 4 Cl Hess Law - Enthalpy f Frmatin f Slid NH 4 l NAME: OURSE: PERIOD: Prelab 1. Write and balance net inic equatins fr Reactin 2 and Reactin 3. Reactin 2: Reactin 3: 2. Shw that the alebraic sum f the balanced

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

GOAL... ability to predict

GOAL... ability to predict THERMODYNAMICS Chapter 18, 11.5 Study f changes in energy and transfers f energy (system < = > surrundings) that accmpany chemical and physical prcesses. GOAL............................. ability t predict

More information

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia:

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia: University Chemistry Quiz 3 2015/04/21 1. (10%) Cnsider the xidatin f ammnia: 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(l) (a) Calculate the ΔG fr the reactin. (b) If this reactin were used in a fuel cell,

More information

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points

Chem 112, Fall 05 (Weis/Garman) Exam 4A, December 14, 2005 (Print Clearly) +2 points +2 pints Befre yu begin, make sure that yur exam has all 7 pages. There are 14 required prblems (7 pints each) and tw extra credit prblems (5 pints each). Stay fcused, stay calm. Wrk steadily thrugh yur

More information

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY CHEMICAL REACTIONS INVOLVE ENERGY The study energy and its transrmatins is knwn as thermdynamics. The discussin thermdynamics invlve the cncepts energy, wrk, and heat. Types Energy Ptential energy is stred

More information

AP Chemistry Assessment 2

AP Chemistry Assessment 2 AP Chemistry Assessment 2 DATE OF ADMINISTRATION: January 8 January 12 TOPICS COVERED: Fundatinal Tpics, Reactins, Gases, Thermchemistry, Atmic Structure, Peridicity, and Bnding. MULTIPLE CHOICE KEY AND

More information

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY Name: Perid: Date: BONDING NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

Chem 111 Summer 2013 Key III Whelan

Chem 111 Summer 2013 Key III Whelan Chem 111 Summer 2013 Key III Whelan Questin 1 6 Pints Classify each f the fllwing mlecules as plar r nnplar? a) NO + : c) CH 2 Cl 2 : b) XeF 4 : Questin 2 The hypthetical mlecule PY 3 Z 2 has the general

More information

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Chem 115 POGIL Wrksheet - Week 8 Thermchemistry (Cntinued), Electrmagnetic Radiatin, and Line Spectra Why? As we saw last week, enthalpy and internal energy are state functins, which means that the sum

More information

CHM 152 Practice Final

CHM 152 Practice Final CM 152 Practice Final 1. Of the fllwing, the ne that wuld have the greatest entrpy (if cmpared at the same temperature) is, [a] 2 O (s) [b] 2 O (l) [c] 2 O (g) [d] All wuld have the same entrpy at the

More information

CHE 105 EXAMINATION III November 11, 2010

CHE 105 EXAMINATION III November 11, 2010 CHE 105 EXAMINATION III Nvember 11, 2010 University f Kentucky Department f Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely imprtant that yu fill in the answer

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermdynamics Objectives 1. Be capable f stating the First, Secnd, and Third Laws f Thermdynamics and als be capable f applying them t slve prblems. 2. Understand what the parameter entrpy means.

More information

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions?

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions? 1 CHEM 1032 FALL 2017 Practice Exam 4 1. Which f the fllwing reactins is spntaneus under nrmal and standard cnditins? A. 2 NaCl(aq) 2 Na(s) + Cl2(g) B. CaBr2(aq) + 2 H2O(aq) Ca(OH)2(aq) + 2 HBr(aq) C.

More information

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 (Nte: questins 1 t 14 are meant t be dne WITHOUT calculatrs!) 1.Which f the fllwing is prbably true fr a slid slute with a highly endthermic heat

More information

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS

CHAPTER 6 / HARVEY A. CHEMICAL EQUILIBRIUM B. THERMODYNAMICS AND EQUILIBRIUM C. MANUPULATING EQUILIBRIUM CONSTANTS CHPTER 6 / HRVEY. CHEMICL B. THERMODYNMICS ND C. MNUPULTING CONSTNTS D. CONSTNTS FOR CHEMICL RECTIONS 1. Precipitatin Reactins 2. cid-base Reactins 3. Cmplexatin Reactins 4. Oxidatin-Reductin Reactins

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

4 electron domains: 3 bonding and 1 non-bonding. 2 electron domains: 2 bonding and 0 non-bonding. 3 electron domains: 2 bonding and 1 non-bonding

4 electron domains: 3 bonding and 1 non-bonding. 2 electron domains: 2 bonding and 0 non-bonding. 3 electron domains: 2 bonding and 1 non-bonding [4.3D VSEPR] pg. 1 f 7 Curriculum The use f VSEPR thery t predict the electrn dmain gemetry and the mlecular gemetry fr species with tw, three and fur electrn dmains. Shapes f species are determined by

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P Thermchemistry The study energy changes that ccur during chemical : at cnstant vlume ΔU = q V n at cnstant pressure = q P nly wrk Fr practical reasns mst measurements are made at cnstant, s thermchemistry

More information

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O WYSE Academic Challenge Sectinal Chemistry Exam 2008 SOLUTION SET 1. Crrect answer: B. Use PV = nrt t get: PV = nrt 2. Crrect answer: A. (2.18 atm)(25.0 L) = n(0.08206 L atm/ml K)(23+273) n = 2.24 ml Assume

More information

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW GASES Pressure & Byle s Law Temperature & Charles s Law Avgadr s Law IDEAL GAS LAW PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2 Earth s atmsphere: 78% N 2 21% O 2 sme Ar, CO 2 Sme Cmmn Gasses Frmula Name

More information

O C S polar - greater force. H polar greater force. H polar. polar H-bond

O C S polar - greater force. H polar greater force. H polar. polar H-bond hapter 10 : 29, 30, 31, 33, 36, 40, 46, 48, 50, 72, 87, 91, 93, 110 29. a. Lndn e. Lndn b. diple-diple f. diple-diple c. -bnding g. in-in d. in-in 30. a. in-in e. -bnding b. Lndn f. diple-diple c. Lndn

More information

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s)

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s) Chapter 9 - Stichimetry Sectin 9.1 Intrductin t Stichimetry Types f Stichimetry Prblems Given is in mles and unknwn is in mles. Given is in mles and unknwn is in mass (grams). Given is in mass and unknwn

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Chapter 8 Reduction and oxidation

Chapter 8 Reduction and oxidation Chapter 8 Reductin and xidatin Redx reactins and xidatin states Reductin ptentials and Gibbs energy Nernst equatin Disprprtinatin Ptential diagrams Frst-Ebswrth diagrams Ellingham diagrams Oxidatin refers

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

Heat Effects of Chemical Reactions

Heat Effects of Chemical Reactions * eat Effect f hemical Reactin Enthalpy change fr reactin invlving cmpund Enthalpy f frmatin f a cmpund at tandard cnditin i btained frm the literature a tandard enthalpy f frmatin Δ O g = -9690 J/mle

More information

enthalpies of formation for a few thousand compounds can be used for thermochemical calculations for millions of different chemical reactions

enthalpies of formation for a few thousand compounds can be used for thermochemical calculations for millions of different chemical reactions hater 4. hermchemistry Summary thermchemistry: branch f thermdynamics dealing with energy changes f chemical reactins, w, U, and are calculated fr chemical reactin rcesses enthalies f frmatin are intrduced

More information

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity:

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity: [15.1B Energy Cycles Lattice Enthalpy] pg. 1 f 5 CURRICULUM Representative equatins (eg M+(g) M+(aq)) can be used fr enthalpy/energy f hydratin, inizatin, atmizatin, electrn affinity, lattice, cvalent

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 6 Hmewrk Questins TEXTBOOK HOMEWORK 6.25 A 27.7-g sample f the radiatr clant ethylene glycl releases 688 J f heat. What was the initial temperature f the sample if the final temperature

More information

Thermochemistry Heats of Reaction

Thermochemistry Heats of Reaction hermchemistry Heats f Reactin aa + bb cc + dd hermchemical Semantics q V = Heat f Rxn at [V] = U = Energy (change) f Rxn q P = Heat f Rxn at [P] = H = Enthalpy (change) f Rxn Exthermic rxns: q < 0 Endthermic

More information

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above 6.3-110 In the half reactin I 2 2 I the idine is (a) reduced (b) xidized (c) neither f the abve 6.3-120 Vitamin C is an "antixidant". This is because it (a) xidizes readily (b) is an xidizing agent (c)

More information

Supporting information

Supporting information Electrnic Supplementary Material (ESI) fr Physical Chemistry Chemical Physics This jurnal is The wner Scieties 01 ydrgen perxide electrchemistry n platinum: twards understanding the xygen reductin reactin

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes. Edexcel IGCSE Chemistry Tpic 1: Principles f chemistry Chemical frmulae, equatins and calculatins Ntes 1.25 write wrd equatins and balanced chemical equatins (including state symbls): fr reactins studied

More information

Unit 10: Kinetics And Equilibrium

Unit 10: Kinetics And Equilibrium Name Unit 10: Kinetics And Equilibrium Skills 1. Understand thery f reactin kinetics 2. Understand factrs affecting reactin rate 3. Drawing and interpreting ptential energy diagrams 4. Distinguish between

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Midterm Review Notes - Unit 1 Intro

Midterm Review Notes - Unit 1 Intro Midterm Review Ntes - Unit 1 Intr 3 States f Matter Slid definite shape, definite vlume, very little mlecular mvement Liquid definite vlume, takes shape f cntainer, mlecules mve faster Gas des nt have

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

CHEMICAL EQUILIBRIUM

CHEMICAL EQUILIBRIUM 14 CHAPTER CHEMICAL EQUILIBRIUM 14.1 The Nature f Chemical Equilibrium 14. The Empirical Law f Mass Actin 14.3 Thermdynamic Descriptin f the Equilibrium State 14.4 The Law f Mass Actin fr Related and Simultaneus

More information

University of Waterloo DEPARTMENT OF CHEMISTRY CHEM 123 Test #2 Wednesday, March 11, 2009

University of Waterloo DEPARTMENT OF CHEMISTRY CHEM 123 Test #2 Wednesday, March 11, 2009 University f Waterl DEPARTMENT OF CHEMISTRY CHEM 13 Test # Wednesday, March 11, 009 This is test versin 001. Fill in vals 001 fr the Card Number (r Test Master) n yur cmputer answer card. Name (Print in

More information

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command NUPOC SUDY GUIDE ANSWER KEY Navy Recruiting Cmmand CHEMISRY. ph represents the cncentratin f H ins in a slutin, [H ]. ph is a lg scale base and equal t lg[h ]. A ph f 7 is a neutral slutin. PH < 7 is acidic

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information