Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method"

Transcription

1 The Open echanics Journal, 007, 1, Thermal Vibration of agnetostrictive aterial in Laminated Plates by the GDQ ethod C.C. Hong * Department of echanical Engineering, Hsiuping Institute of Technology, Taichung, 41 Taiwan, ROC Abstract: The study of magnetostrictive material in laminated plate under thermal vibration is calculated by using the generalized differential quadrature (GDQ) method. The YS shear deformation effect is included in the time dependent of displacement field. In the thermoelastic stress-strain relations that containing the linear temperature rise and the magnetostrictive coupling terms with velocity feedback control. We use the GDQ method to normalize and discrete the dynamic differential equations in terms of displacements and shear rotations into the form of dynamic discretized equations. Four edges of rectangular laminate with simply supported boundary conditions are considered. The time responses of thermal stresses and center displacement with and without velocity control are obtained. Keywords: agnetostrictive material, thermal vibration, generalized differential quadrature method, GDQ, shear deformation, velocity feedback control. 1. ITRODUCTIO One of the new trends of material in the mechanical engineering is the functionally gradient materials (FG). In each type of FG, there are some functional layers e.g. piezoelectric, magnetostrictive, electrostrictive, shape memory alloys, in their sections can make a controlled progressive change of smart structures [1,]. agnetostrictive materials have the agneto-electric coupling property under the action of magnetism and mechanism. Terfenol-D is one of available agnetostrictive materials, can be used usually in the sensors and actuators [3]. In 005, Lee and Reddy presented the finite element method to analyze the non-linear response of laminated plate of agnetostrictive material under thermo-mechanical loading [3]. They found the temperature can decrease the amplitude and period of deflection. In 005, Pradhan presented the analytical solutions for the FG shells of embedded agnetostrictive layers under vibration [1]. It was found that the agnetostrictive layers should be placed away from the neutral plane and made thinner to get better attenuation effects. In 006, Ramirez, Heyliger and Pan present the Ritz approach to get an approximate solution for the free vibration problem of two-dimensional magnetoelectro-elastic laminates [4]. They obtained the elastic displacements, electric potential, and magnetic potential numerical solutions. In 004, Buchanan presented the candidate materials of multiphase magneto-electro-elastic composites [5]. They found the multiphase material properties vary depending upon the ratio of fiber material to matrix material. In 003, Hong and Jane presented the GDQ method to study the shear deformation in the thermal vibration and bending of laminated plates [6,7]. They found that the maximum deflection and interlaminar stresses at center posi- *Address correspondence to this author at the Department of echanical Engineering, Hsiuping Institute of Technology, Taichung, 41 Taiwan, ROC; tion of laminate increasing with the side-to-thickness ratio value decreasing. In 005, Hong et al. presented the GDQ method to study the thermal vibration of a thermal sleeve [8]. They found that the computational GDQ solutions of the natural frequency, displacement and thermal stress. In 006, Hong et al. used the GDQ method to study the piezoelectric material under mechanical and electric loads [9]. They found that the numerical GDQ solutions of stress and electric potential function for the analyses of local symmetric pressure with no overshoot and no Gibbs effect and under tractionfree boundary condition of the strip. ow it is interesting to study and find the natural frequency, displacement and thermal stress of the agnetostrictive material in laminated plates with the GDQ method.. FORULATIO.1. Displacement Field The time dependent of displacements fields are assumed in the following YS (Yang-orris-Stavsky, 1966) form [6], which is the first-order shear deformation theory in the linear equation: u = u 0 (x, y, + z x (x, y, v = v 0 (x, y, + z y (x, y, w = w(x, y, where u 0 and v 0 are tangential displacements, w is transverse displacement of the middle-plane, x and y are the shear rotations, t is time... GDQ ethod The GDQ method was presented in 1990 by Shu and Richards [11]. The GDQ method approximates the derivative of function would be used [6] and can be restated that: the derivative of a smooth function at a discrete point in a domain can be discretized by using an approximated weighting linear sum of the function values at all the discrete points in the direction [10,11]. For example, the first-order and the / Bentham Science Publishers Ltd.

2 30 The Open echanics Journal, 007, Volume 1 C.C. Hong second-order derivatives of function f * (x, y) at coordinates (x i, y j ) of grid point (i, j) can be discretized by: f * A x f * i, j i,l, f * B l, j y f * i, j j,m, i,m f * A () x i, j i,l f * l, j, f * B () y i, j j,m f * i,m, f * xy i, j (m) where A i, j B f * j,m l,m (m) and B i, j () denote the weighting coefficients for the m th -order derivative of the function f * (x, y) with respect to the x and y directions..3. Thermoelastic Stress-Strain Relations with agnetostrictive Effect We consider a homogeneous, orthotropic, rectangular laminated host plate that mounted with magnetostrictive layers under uniformly distributed loading and thermal effect. Typical three-layer laminate with upper surface magnetostrictive layer which is shown in Fig., where a and b is the length in the x, y direction of the plate, h * is the plate thickness, p 1 and p are the in-plane distributed forces, q is the applied pressure load, T = T 0 (x, y, + z h T * 1 (x, y, is the temperature difference between the laminate and curing area. For simplicity, the heat conduction equation for the host laminate would be used [6]. For the plane stress in a laminated material, the in-plane stresses constitute the membrance stresses, bending stresses and thermal stresses with magnetostrictive effect for the k th layer are in the following equations [3]: x y xy 0 0 e e e 36 Q 11 Q 1 Q 16 = Q 1 Q Q 6 Q 16 Q 6 Q H z x x T y y T xy xy T and the interlaminar shear stresses are calculated from the following equation: yz xz = Q 44 Q 45 Q 45 Q 55 e 14 e 4 0 e 15 e H z yz xz where x and y are the coefficients of thermal expansion, xy is the coefficient of thermal shear. Q ij is the so called transformed reduced stiffness can be in terms of the elastic stiffness of materials and can be explained more detail by Whitney [1]. x, y, xy are in-plane strains and yz, xz are shear strains in terms of displacement components and shear rotation, respectively. e ij is the transformed magnetostrictive coupling moduli. H z is the magnetic field intensity, expressed in the following equation. H z (x, y, = k c I (x, y, (3) (4) Fig.. Typical three-layer laminate with magnetostrictive layers.

3 Thermal Vibration of agnetostrictive aterial in Laminated Plates by the GDQ ethod The Open echanics Journal, 007, Volume 1 31 with velocity feedback control I w (x, y, = c( where k c t is the coil constant, I (x, y, is the coil current, c( is the control gain..4. Dynamic Equilibrium Differential Equations The dynamic equilibrium differential equations in terms of displacements and shear rotations included the magnetostrictive loads are expressed in the following matrix forms [3,6,1]: A 11 A 16 A 66 A 16 A 1 + A 66 A A 16 A 1 + A 66 A 6 A 66 A 6 A A 55 A 45 A 44 B 11 B 16 B 66 B 16 B 1 B B 16 B 1 B 6 B 66 B 6 B u 0 u 0 x xy u 0 v 0 v 0 y x xy v 0 y w x B 11 B 16 B 66 B 16 B 1 B 6 B 16 B 1 B 6 B 66 B 6 B D 11 D 16 D 66 D 16 D 1 + D 66 D 6 D 16 D 1 + D 66 D 6 D 66 D 6 D x x x xy x y y x y xy y y t w xy A 55 A 45 A 45 A 44 A 55 A A 45 A t w w x x y y x y x y x y A 55 A 45 A 45 A 44 = f 1 f f 3 f 4 f I x t y t u 0 t v 0 t w t H t w y x y u 0 t v 0 t x t y t (5) where f 1,, f 5 are the expressions of thermal loads (, ), mechanical loads (p 1, p, q) and magnetostrictive loads (, ). f 1 = x x + xy y + p 1 + x x + xy y f = xy x + y y + p + xy x + y y f 3 = q f 4 = x x + xy y + x x + xy y f 5 = xy x + y y + xy x + y y h * ( y, y ) = (Q 1 h * x + Q y + Q 6 xy )(T 0, z z h T 1)dz * h * ( xy, xy ) = (Q 16 h * x + Q 6 y + Q 66 xy )(T 0, z z h T 1)dz * h * h * ( x, x ) = e 31 H z (1, z )dz ( y, y ) = e 3 H z (1, z )dz h * h * ( xy, xy ) = e 36 H z (1, z )dz h * h * h * h * (A ij, B ij, D ij ) = Q ij (1, z, z )dz, (i, j = 1,, 6) h * h * Ai * j * = k k Qi * j * dz, (i *, j * = 4,5; = 6 i *, = 6 j * ) h * h * (, H, I) = 0 (1, z, z )dz in which k, k are the shear correction coefficients, 0 is the density of ply..5. Dynamic Discretized Equations We apply the weighting coefficients of discretized equations () in the two-dimensional generalized differential qradrature (GDQ) method to discrete the differential equations (5) under the vibration of time sinusoidal displacement and temperature: u = [u 0 (x, y) + z x (x, y)]sin( mn, v = [v 0 (x, y) + z y (x, y)]sin( mn w = w(x, y)sin( mn, T = [T 0 (x, y) + z h * T 1(x, y)]sin(

4 3 The Open echanics Journal, 007, Volume 1 C.C. Hong where mn is natural frequency of the plate, is frequency of applied heat flux. And the following non-dimensional parameters are introduced: X = x / a, Y = y / b, U = u 0 / a, V = v 0 / b, under the vibration of time sinusoidal displacement and temperature. W = 10h * w /( x T 1 a ) We obtain the following dynamic discretized equations in matrix notation: [ A ]{ SUVW }+ [ B ]{ SSIXY }+ [ KE] { SWSI} (6) + [ FQ] { UVWSI}= { F} where { SUVW }= { A () i,l U l, j V l,m () V i,m A () i,l W l, j { SSIXY }= { A () i,l x l, j () y l, j { SWSI}= { A i,l W l, j B j,m x i,m U l,m y l,m W i,m y l, j () U i,m W l,m A () i,l V l, j () W i,m x l,m y i,m () y i,m A i,l x l, j () x i,m { UVWSI}= {U i, j V i, j W i, j x i, j y i, j { F}= {F 1 F F 3 F 4 F 5 The elements of 5 9 matrix [ A ], 5 6 matrix [ B ], 5 6 matrix [ KE] and 5 5 matrix [ FQ] are as follows: A 11 = (A 11 / a)sin( mn A 1 = (A 16 / b)sin( mn A 13 = (A 66 a / b )sin( mn A 14 = (A 16 b / a )sin( mn A 15 = [(A 1 + A 66 )/a]sin( mn A 16 = (A 6 / b)sin( mn A 17 = A 18 = A 19 A 1 = (A 16 / a)sin( mn A = [(A 1 + A 66 )/b]sin( mn A 3 = (A 6 a / b )sin( mn A 4 = (A 66 b / a )sin( mn A 5 = (A 6 / a)sin( mn A 6 = (A / b)sin( mn A 7 = A 8 = A 9 A 31 = A 3 = A 33 = A 34 = A 35 = A 36 A 37 = xt 1 10h * A 55 sin( mn A 38 = x T 1 10h * (A 45 a / b)sin( mn A 39 = xt 1 10h * (A 44 a / b )sin( mn A 41 = (B 11 / a)sin( mn A 4 = (B 16 / b)sin( mn A 43 = (B 66 a / b )sin( mn A 44 = (B 16 b / a )sin( mn A 45 = (B 1 )(1 / a)sin( mn A 46 = (B 6 / b)sin( mn A 47 = A 48 = A 49 A 51 = (B 16 / a)sin( mn A 5 = (B 1 )(1 / b)sin( mn A 53 = (B 6 a / b )sin( mn A 54 = (B 66 b / a )sin( mn A 55 = (B 6 / a)sin( mn A 56 = (B / b)sin( mn A 57 = A 58 = A 59 B 11 = (B 11 / a )sin( mn B 1 = [B 16 /(ab)]sin( mn B 13 = (B 66 / b )sin( mn B 14 = (B 16 / a )sin( mn B 15 = [(B 1 )/(ab)]sin( mn B 16 = (B 6 / b )sin( mn B 1 = (B 16 / a )sin( mn B = [(B 1 )/(ab)]sin( mn B 3 = (B 6 / b )sin( mn B 4 = (B 66 / a )sin( mn B 5 = [B 6 /(ab)]sin( mn B 6 = (B / b )sin( mn B 31 = B 3 = B 33 = B 34 = B 35 = B 36 B 41 = (D 11 / a )sin( mn B 4 = [D 16 /(ab)]sin( mn B 43 = (D 66 / b )sin( mn B 44 = (D 16 / a )sin( mn B 45 = [(D 1 + D 66 )/(ab)]sin( mn B 46 = (D 6 / b )sin( mn B 51 = (D 16 / a )sin( mn B 5 = [(D 1 + D 66 )/(ab)]sin( mn B 53 = (D 6 / b )sin( mn B 54 = (D 66 / a )sin( mn B 55 = [D 6 /(ab)]sin( mn B 56 = (D / b )sin( mn k KE 11 = T x 1 a [ 1 10h * a k c( e c 31(z k z k1 )] mn cos( mn k KE 1 = T x 1 a [ 1 10h * b k c( e c 36(z k z k1 )] mn cos( mn KE 13 = KE 14 = KE 15 = KE 16

5 Thermal Vibration of agnetostrictive aterial in Laminated Plates by the GDQ ethod The Open echanics Journal, 007, Volume 1 33 k KE 1 = T x 1 a [ 1 10h * a k c( e c 36(z k z k1 )] mn cos( mn k KE = T x 1 a [ 1 10h * b k c( e c 3(z k z k1 )] mn cos( mn KE 3 = KE 4 = KE 5 = KE 6 KE 31 = KE 3 KE 33 = (A 55 / a)sin( mn KE 34 = (A 45 / b)sin( mn KE 35 = (A 45 / a)sin( mn KE 36 = (A 44 / b)sin( mn KE 41 = xt 1 10h * A 55 a sin( mn T x 1 a [ 1 10h * a k c( 1 c 3 k e 31 KE 4 = xt 1 10h * (A 45 a / b)sin( mn T x 1 a [ 1 10h * b k c( 1 c 3 k e 36 KE 43 = KE 44 = KE 45 = KE 46 KE 51 = xt 1 10h * A 45 a sin( mn T x 1 a [ 1 10h * a k c( 1 c 3 k e 36 KE 5 = x T 1 10h * (A 44 a / b)sin( mn T x 1 a [ 1 10h * b k c( 1 c 3 k e 3 KE 53 = KE 54 = KE 55 = KE 56 z 3 3 k z k1 ] h * mn cos( mn z 3 3 k z k1 ] h * mn cos( mn z 3 3 k z k1 ] h * mn cos( mn z 3 3 k z k1 ] h * mn cos( mn FQ 11 = mn a sin( mn FQ 1 = FQ 13 = FQ 15 FQ 14 = H mn sin( mn FQ = mn b sin( mn FQ 5 = H mn sin( mn FQ 1 = FQ 3 = FQ 4 FQ 31 = FQ 3 = FQ 34 = FQ 35 FQ 33 = mn [ x T 1 a /(10h * )]sin( mn FQ 41 = H mn a sin( mn FQ 4 = FQ 43 FQ 44 = (A 55 +I mn )sin( mn FQ 45 = A 45 sin( mn FQ 51 = FQ 53 FQ 5 = H mn b sin( mn FQ 54 = A 45 sin( mn FQ 55 = (A 44 + I mn )sin( mn in which F 1,..., F 5 are represented in the following discretized equation: F 1 = ( 1 a F = ( 1 a F 3 = q i, j F 4 = ( 1 a xl, j + 1 b xyi,m )sin( + p 1i, j xyl, j + 1 yi,m + p i, b j )sin( xl, j + 1 xyi,m )sin( b F 5 = ( 1 xyl, a j + 1 yi,m )sin( b in which p 1 and p are the in-plane distributed forces, q is the applied pressure load. The force resultants x, xy, y and moment resultants x, xy, y are expressed as follows: T T T T T x = x, xy = xy, y = y, x = x, xy = xy, T y = y in which { T } is the thermal force resultant, { T } is the thermal moment resultant. 3. SOE UERICAL RESULTS AD DISCUS- SIOS We consider the cross-ply laminates including shear deformation under four sides simply supported. The elastic modules of the typical host material and Terfenol-D magnetostrictive material are listed in the following Table 1 [3,6]. The value of shear correction coefficient is K K = 5/6. For the simplification the typical host material conductivity Btu /(sin F), specific heat C v.16 Btu /(lbm F) are used to calculate K = /(C v ) value, and find some of the lowest frequency of applied heat flux and vibration frequency 11 of plate, Table 1. aterial Properties of Typical Host and Terfenol-D aterial E 1 E G 1 E G 3 E G 1 E 1 (lb / in 3 ) x (1 / F) y (1 / F) Typical Host Terfenol-D

6 34 The Open echanics Journal, 007, Volume 1 C.C. Hong at time t =0.003s, 1s, s,, 9s, for a / b = 1, three-layer (0 m /90 /0 ) laminate as shown in Fig. (). vibration of sinusoidal temperature only ( T 0, T 1 = 1.0 F, p 1 = p = q ) at time 6sec, m = n = 1 mode shape, with k c c( = 10 8, aspect ratio a / b.5, 1.0, and.0, side-to-thickness ratio a / h * =100, 50, 0, 10 and 5. Fig. (3) shows that W (a /,b /) in the grid point = 9 9, and of GDQ method for the upper surface magnetostrictive layer of the three-layer (0 m /90 /0 ) We find that W (a /,b /) is in good convergence in grid point = Fig. (a). The lowest frequency of three-layer (0 m /90 /0 ) laminate. Fig. (3a). Convergence for a / b.5, three-layer (0 m /90 /0 ) Fig. (b). The lowest vibration frequency 11 of three-layer (0 m /90 /0 ) laminate. The magnetostrictive coupling moduli is e 31 = e 3 = E m d m and E m = 6.5GPa, d m = ma 1 for Terfenol-D. We use the following coordinates for the grid points: x i.5[1 cos( i 1 )]a,i = 1,,..., 1 y j.5[1 cos( j 1 )]b, j = 1,,..., (7) 1 Firstly, we make the studies of dynamic convergence of center deflection amplitude W (a /,b /) in the thermal Fig. (3b). Convergence for a / b = 1.0, three-layer (0 m /90 /0 ) Fig. (4) shows that W (a /,b /) in the grid point = 9 9, and of GDQ method for the upper and lower surface magnetostrictive layers of the ten-

7 Thermal Vibration of agnetostrictive aterial in Laminated Plates by the GDQ ethod The Open echanics Journal, 007, Volume 1 35 layer (0 m /90 /0 /90 /0 ) s symmetrical The superscript of m denotes magnetostrictive layer, the subscript s denotes the symmetric of laminate. We find that the 1313 grid point have the convergence result and used further in the GDQ analyses of time responses for deflection and stress. We used the k c c( values to control and reduce the amplitude of center deflection W (a /,b /). Fig. (4c). Convergence for a / b =.0, (0 m /90 /0 /90 /0 ) s Figs. (5,6) show that the k c c( values with time for thick laminated plate ah * = 10 and thin laminated ah * = 100, in three-layer and ten-layer magnetostrictive layer of laminate, respectively. Fig. (3c). Convergence for a / b =.0, three-layer (0 m /90 /0 ) Fig. (5). k c c( values vs time t (sec) in (0 m /90 /0 ) laminated plate. Fig. (4a). Convergence for a / b.5, (0 m /90 /0 /90 /0 ) s Fig. (6). k c c( values vs time t (sec) in (0 m /90 /0 /90 /0 ) s Fig. (4b). Convergence for a / b = 1.0, (0 m /90 /0 /90 /0 ) s Fig. (7) shows that time response of the non-dimensional transverse center deflection amplitude W (a /,b /) with and without k c c( values at ah * = 10 and ah * = 100, respectively, for three-layer (0 m /90 /0 ) laminated plate, ab= 1, = 13 13, m = 1, n = 1, q, T 1 = 1, p 1 = p under shear effect. We find that the values of the center deflection amplitude W (a /,b /) with k c c(

8 36 The Open echanics Journal, 007, Volume 1 C.C. Hong are smaller than the values of W (a /,b /) without k c c(. The amplitude W (a /,b /) can be controlled and adjusted to a desired smaller value by using a suitable k c c( value, especially at time 0.003s, 1.s, 5.9s and 8.8s in Fig. (7a) with thick plate ah * = 10 of the GDQ method. But in Fig. (7b) with thin plate ah * = 100 of the GDQ method, the variations are small, except at time 0.003s and 0.8s. Fig. (9) shows that time response of the non-dimensional transverse center deflection amplitude W (a /,b /) with and without k c c( values at ah * = 10 and ah * = 100, respectively, for ten-layer (0 m /90 /0 /90 /0 ) s symmetric laminate, ab= 1, = 13 13, m = 1, n = 1, q, T 1 = 1, p 1 = p under shear effect. We find that the values of the center deflection amplitude W (a /,b /) with k c c( are smaller than the values of W (a /,b /) without k c c(. The amplitude W (a /,b /) can be controlled and adjusted to a desired smaller value by using a suitable k c c( value, especially at time 0.003s,.6s, 5.s and 7.8s in Fig. (9a) with thick plate ah * = 10 of the GDQ method. But in Fig. (9b) with thin plate ah * = 100 of the GDQ method, the variations are small, except at time 5.1s. Fig. (7a). Thick, three-layer laminated magnetostrictive plate. Fig. (8a). Thick, three-layer laminated magnetostrictive plate. Fig. (7b). Thin, three-layer laminated magnetostrictive plate. Fig. (8). shows that time response of the dominated nondimensional stress x = x h * / ( x T 1 ae ) at center position of lower surface Z.5h * with and without k c c( values as the analyses of deflection W (a /,b /) at ah * = 10 and ah * = 100, respectively, for three-layer (0 m /90 /0 ) laminate, ab= 1, = 13 13, m = 1, n = 1, q, T 1 = 1, p 1 = p under shear effect. We find that the amplitudes of the stress x do not become the smaller values under the controlled W (a /,b /) condition in Fig. (8a) with plate ah * = 10 of GDQ method. But in Fig. (8b) with thin plate ah * = 100 of the GDQ method, the variations are small. Fig. (8b). Thin, three-layer laminated magnetostrictive plate. Fig. (9a). Thick, ten-layer laminated magnetostrictive plate.

9 Thermal Vibration of agnetostrictive aterial in Laminated Plates by the GDQ ethod The Open echanics Journal, 007, Volume 1 37 Fig. (9b). Thin, ten-layer laminated magnetostrictive plate. Fig. (10) shows that time response of the dominated nondimensional stress y = y h * / ( x TaE ) at center position of lower surface Z.5h * with and without k c c( values as the analyses of deflection W (a /,b /) at ah * = 10 and ah * = 100, respectively, for ten-layer (0 m /90 /0 /90 /0 ) s symmetric laminate, ab= 1, = 13 13, m = 1, n = 1, q, T 1 = 1, p 1 = p under shear effect. We find that the amplitudes of the stress y are almost the same value in controlled and uncontrolled W (a /,b /) condition of thick plate ah * = 10 and thin plate ah * = 100 by the GDQ method. Fig. (10a). thick, ten-layer laminated magnetostrictive plate. Fig. (10b). Thin, ten-layer laminated magnetostrictive plate. 4. COCLUSIOS (a) The numerical GDQ calculations provides an efficient method to compute the deflection and stress in the cross ply laminated plate with magnetostrictive layer subjected to thermal vibration of sinusoidal temperature including shear deformation. (b) The amplitude of transverse center deflection W (a /,b /) can be controlled to a smaller desirable value with suitable velocity feedback gain k c c( value, especially in the thick plate ah * = 10 by using the GDQ method. (c) The amplitude of the dominated stress x is not become a smaller values under the corresponding controlled W (a /,b /) condition for three-layer (0 m /90 /0 ) laminate in the thick plate ah * = 10 of the GDQ method. But the amplitudes of the dominated stress y are almost the same value in the corresponding controlled and uncontrolled W (a /,b /) condition for ten-layer (0 m /90 /0 /90 /0 ) s symmetric laminate of the GDQ method. (d) The GDQ method provide the less grid points ( = 13 13) and less computational time to get the numerical solutions of deflection and stress for magnetostrictive layer laminates. ACKOWLEDGEETS The completion of this study was made possible by a grant SC-95-1-E from ational Science Council, Taiwan, ROC. REFERECES [1] Pradhan SC. Vibration suppression of FG shells using embedded magnetostrictive layers. Int J Solids Struct 005; 4: [] Wojciechowski S. ew trends in the development of mechanical engineering materials. J ater Process Tech 000; 106: [3] Lee SJ, Reddy J. on-linear response of laminated composite plates under thermomechanical loading. Int J on-linear ech 005; 40: [4] Ramirez F, Heyliger PR, Pan E. Free vibration response of twodimensional magneto-electro-elastic laminated plates. J Sound Vibrat 006; 9: [5] Buchanan GR. Layered versus multiphase magneto-electro-elastic composites. Composites Part B. Eng 004; 35: [6] Hong CC, Jane KC, Shear deformation in thermal bending analysis of laminated plates by the GDQ method. ech Res Commun 003; 30: [7] Hong CC, Liao HW, Lee LT, Ke JB, Jane KC, Thermally induced vibration of a thermal sleeve with the GDQ method. Int J ech Sci 005; 47: [8] Hong CC, Liao HW, Lee LT, Ke JB, Jane KC, Thermally induced vibration of a thermal sleeve with the GDQ method. Int J ech Sci 005; 47: [9] Hong CC, Liao HW, Jane KC. umerical analyses of piezoelectric materials with the GDQ method. Comput at Sci 006; 35: [10] Bert CW, Jang SK, Striz AG. onlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comput ech 1989; 5: [11] Shu C, Du H. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analyses of beams and plates. Int J Solds Struct 1997; 34: [1] Whitney J. Structural analysis of laminated anisotropic plates. Lancaster, PA, USA: Technomic Publishing Company, Inc., Received: July 7, 007 Revised: August 3, 007 Accepted: August 9, 007

Bending of Simply Supported Isotropic and Composite Laminate Plates

Bending of Simply Supported Isotropic and Composite Laminate Plates Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto Gutierrez-Miravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,

More information

FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR THIN PLATES EMBEDDED WITH SHAPE MEMORY ALLOY FIBERS

FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR THIN PLATES EMBEDDED WITH SHAPE MEMORY ALLOY FIBERS Journal of Thermal Stresses, 33: 79 96, 2010 Copyright Taylor & Francis Group, LLC ISSN: 0149-5739 print/1521-074x online DOI: 10.1080/01495730903409235 FREE VIBRATION OF THERMALLY PRE/POST-BUCKLED CIRCULAR

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,

More information

NONLINEAR DYNAMIC ANALYSIS OF AN ORTHOTROPIC COMPOSITE ROTOR BLADE

NONLINEAR DYNAMIC ANALYSIS OF AN ORTHOTROPIC COMPOSITE ROTOR BLADE Journal of Marine Science and Technology, Vol., o. 4, pp. 47-55 (4) 47 OIEAR DYAMIC AAYSIS OF A ORTHOTROPIC COMPOSITE ROTOR BADE Ming-Hung Hsu Key words: orthotropic composite rotor blade, differential

More information

Passive Damping Characteristics of Carbon Epoxy Composite Plates

Passive Damping Characteristics of Carbon Epoxy Composite Plates Journal of aterials Science and Engineering A 6 (1-2) (2016) 35-42 doi: 10.17265/2161-6213/2016.1-2.005 D DAVID PUBLISHIG Passive Damping Characteristics of Carbon Epoxy Composite Plates Dileep Kumar K

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Presented By: EAS 6939 Aerospace Structural Composites

Presented By: EAS 6939 Aerospace Structural Composites A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have

More information

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites Copyright c 2007 ICCES ICCES, vol.1, no.2, pp.61-67, 2007 Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites K. Gordnian 1, H. Hadavinia 1, G. Simpson 1 and A.

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (217), NO 1, 5-22 EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING Arnab Choudhury 1,

More information

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements CIVL 7/8117 Chapter 12 - Plate Bending Elements 1/34 Chapter 12 Plate Bending Elements Learning Objectives To introduce basic concepts of plate bending. To derive a common plate bending element stiffness

More information

Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials

Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Engineering Mechanics Dissertations & Theses Mechanical & Materials Engineering, Department of Winter 12-9-2011 Generic

More information

Differential Quadrature Method for Solving Hyperbolic Heat Conduction Problems

Differential Quadrature Method for Solving Hyperbolic Heat Conduction Problems Tamkang Journal of Science and Engineering, Vol. 12, No. 3, pp. 331 338 (2009) 331 Differential Quadrature Method for Solving Hyperbolic Heat Conduction Problems Ming-Hung Hsu Department of Electrical

More information

Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method. Eric A. Butcher and Ma en Sari

Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method. Eric A. Butcher and Ma en Sari Free Vibration Analysis of Kirchoff Plates with Damaged Boundaries by the Chebyshev Collocation Method Eric A. Butcher and Ma en Sari Department of Mechanical and Aerospace Engineering, New Mexico State

More information

2D damping predictions of fiber composite plates: Layup effects

2D damping predictions of fiber composite plates: Layup effects Available online at www.sciencedirect.com Composites Science and Technology 68 (2008) 727 733 COMPOSITES SCIENCE AND TECHNOLOGY www.elsevier.com/locate/compscitech 2D damping predictions of fiber composite

More information

Flexural Analysis of Deep Aluminum Beam

Flexural Analysis of Deep Aluminum Beam Journal of Soft Computing in Civil Engineering -1 (018) 71-84 journal homepage: http://www.jsoftcivil.com/ Fleural Analysis of Deep Aluminum Beam P. Kapdis 1, U. Kalwane 1, U. Salunkhe 1 and A. Dahake

More information

Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 9, 1995 WIT Press,  ISSN X An alternative boundary element formulation for plate bending analysis J.B. Paiva, L.O. Neto Structures Department, Sao Carlos Civil Engineering School, f, BrazzY Abstract This work presents an alternative

More information

THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE

THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE Journal of Applied Mathematics and Computational Mechanics 013, 1(4), 13-1 THE INFLUENCE OF THERMAL ACTIONS AND COMPLEX SUPPORT CONDITIONS ON THE MECHANICAL STATE OF SANDWICH STRUCTURE Jolanta Błaszczuk

More information

A Piezoelectric Screw Dislocation Interacting with an Elliptical Piezoelectric Inhomogeneity Containing a Confocal Elliptical Rigid Core

A Piezoelectric Screw Dislocation Interacting with an Elliptical Piezoelectric Inhomogeneity Containing a Confocal Elliptical Rigid Core Commun. Theor. Phys. 56 774 778 Vol. 56, No. 4, October 5, A Piezoelectric Screw Dislocation Interacting with an Elliptical Piezoelectric Inhomogeneity Containing a Confocal Elliptical Rigid Core JIANG

More information

Finite Element Analysis of the Local Effect of a Piezoelectric Patch on an Aluminum Plate

Finite Element Analysis of the Local Effect of a Piezoelectric Patch on an Aluminum Plate Mechanics and Mechanical Engineering Vol. 21, No. 2 (2017) 233 242 c Lodz University of Technology Finite Element Analysis of the Local Effect of a Piezoelectric Patch on an Aluminum Plate Aziz Lebied

More information

Modeling of the Bending Stiffness of a Bimaterial Beam by the Approximation of One-Dimensional of Laminated Theory

Modeling of the Bending Stiffness of a Bimaterial Beam by the Approximation of One-Dimensional of Laminated Theory . Flores-Domínguez Int. Journal of Engineering Research and Applications RESEARCH ARTICLE OPEN ACCESS odeling of the Bending Stiffness of a Bimaterial Beam by the Approimation of One-Dimensional of Laminated

More information

Comparison of Functionally Graded Material Plate with Metaland Ceramic Plateunder Transverse Loadfor Various Boundary Conditions

Comparison of Functionally Graded Material Plate with Metaland Ceramic Plateunder Transverse Loadfor Various Boundary Conditions Comparison of Functionally Graded Material Plate with Metaland Ceramic Plateunder Transverse Loadfor Various Boundary Conditions Manish Bhandari Jodhpur Institute of Engineering and Technology, Jodhpur

More information

Analysis of Functionally Graded Material Plate under Transverse Load for Various Boundary Conditions

Analysis of Functionally Graded Material Plate under Transverse Load for Various Boundary Conditions IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 10, Issue 5 (Jan. 2014), PP 46-55 Analysis of Functionally Graded Material Plate under Transverse

More information

ELASTICITY (MDM 10203)

ELASTICITY (MDM 10203) LASTICITY (MDM 10203) Lecture Module 5: 3D Constitutive Relations Dr. Waluyo Adi Siswanto University Tun Hussein Onn Malaysia Generalised Hooke's Law In one dimensional system: = (basic Hooke's law) Considering

More information

Nonlinear Response of Functionally Graded Panels with stiffeners in Supersonic Flow

Nonlinear Response of Functionally Graded Panels with stiffeners in Supersonic Flow ASDJournal (2017), Vol. 5, No. 1, pp. 1 16 1 Nonlinear Response of Functionally Graded Panels with stiffeners in Supersonic Flow (Received: September 24, 2016. Revised: October 26, 2016. Accepted: January

More information

SHELL STRUCTURES. THEORY AND APPLICATIONS

SHELL STRUCTURES. THEORY AND APPLICATIONS The 5th Conference SHELL STRUCTURES. THEORY AND APPLICATIONS Janowice * 15-18 October MODERATE ROTATION THEORY FEM ANALYSIS OF LAMINATED ANISOTROPIC COMPOSITE PLATES AND SHELLS I. Kreja 1 ) and R. Schmidt

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES

A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES A NEW REFINED THEORY OF PLATES WITH TRANSVERSE SHEAR DEFORMATION FOR MODERATELY THICK AND THICK PLATES J.M. MARTÍNEZ VALLE Mechanics Department, EPS; Leonardo da Vinci Building, Rabanales Campus, Cordoba

More information

A simple plane-strain solution for functionally graded multilayered isotropic cylinders

A simple plane-strain solution for functionally graded multilayered isotropic cylinders Structural Engineering and Mechanics, Vol. 24, o. 6 (2006) 000-000 1 A simple plane-strain solution for functionally graded multilayered isotropic cylinders E. Pan Department of Civil Engineering, The

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model

More information

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Mechanics of Materials and Structures

Mechanics of Materials and Structures Journal of Mechanics of Materials and Structures EXACT CLOSED-FORM SOLUTION OF THE DYNAMIC COUPLED THERMOELASTIC RESPONSE OF A FUNCTIONALLY GRADED TIMOSHENKO BEAM Mostafa Abbasi, Mehdy Sabbaghian and M.

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHTER MECHNICS OF MTERILS 10 Ferdinand. Beer E. Russell Johnston, Jr. Columns John T. DeWolf cture Notes: J. Walt Oler Texas Tech University 006 The McGraw-Hill Companies, Inc. ll rights reserved. Columns

More information

PLAT DAN CANGKANG (TKS 4219)

PLAT DAN CANGKANG (TKS 4219) PLAT DAN CANGKANG (TKS 4219) SESI I: PLATES Dr.Eng. Achfas Zacoeb Dept. of Civil Engineering Brawijaya University INTRODUCTION Plates are straight, plane, two-dimensional structural components of which

More information

Stability of Smart Beams with Varying Properties Based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Stability of Smart Beams with Varying Properties Based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation Australian Journal of Basic and Applied Sciences, 5(7): 743-747, ISSN 99-878 Stability of Smart Beams wit Varying Properties Based on te First Order Sear Deformation Teory ocated on a Continuous Elastic

More information

Understand basic stress-strain response of engineering materials.

Understand basic stress-strain response of engineering materials. Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities

More information

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress Mathematica Aeterna, Vol. 4, 4, no. 8, 877-93 Reflection of SV- Waves from the Free Surface of a Magneto-Thermoelastic Isotropic Elastic Half-Space under Initial Stress Rajneesh Kakar Faculty of Engineering

More information

COMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS

COMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS 6 th International Conference Computational Mechanics and Virtual Engineering COMEC 15 15-16 October 15, Braşov, Romania COMPUER AIDED DESIGN IN CASE OF HE LAMINAED COMPOSIE MAERIALS Camelia Cerbu ransilvania

More information

APPLICATION OF THE DIFFERENTIAL QUADRATURE METHOD TO THE LONGITUDINAL VIBRATION OF NON-UNIFORM RODS

APPLICATION OF THE DIFFERENTIAL QUADRATURE METHOD TO THE LONGITUDINAL VIBRATION OF NON-UNIFORM RODS Engineering MECHANICS, Vol 14, 2007, No 5, p 303 310 303 APPLICATION OF THE DIFFERENTIAL QUADRATURE METHOD TO THE LONGITUDINAL VIBRATION OF NON-UNIFORM RODS A M A Al Kaisy*, Ramadan A Esmaeel*, Mohamed

More information

A *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G - ( - ) +"' ( + -"( (' (& -+" % '('%"' +"-2 ( -!"',- % )% -.C>K:GH>IN D; AF69>HH>6,-+

A *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G - ( - ) +' ( + -( (' (& -+ % '('%' +-2 ( -!',- % )% -.C>K:GH>IN D; AF69>HH>6,-+ The primary objective is to determine whether the structural efficiency of plates can be improved with variable thickness The large displacement analysis of steel plate with variable thickness at direction

More information

THE USE OF AUXETIC MATERIALS IN SMART STRUCTURES

THE USE OF AUXETIC MATERIALS IN SMART STRUCTURES COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 10(2), 147-160 (2004) THE USE OF AUXETIC MATERIALS IN SMART STRUCTURES E. P. HADJIGEORGIOU 1 AND G. E. STAVROULAKIS 2,3 * 1 Department of Materials Science

More information

Flexure of Thick Cantilever Beam using Third Order Shear Deformation Theory

Flexure of Thick Cantilever Beam using Third Order Shear Deformation Theory International Journal of Engineering Research and Development e-issn: 78-67X, p-issn: 78-8X, www.ijerd.com Volume 6, Issue 1 (April 13), PP. 9-14 Fleure of Thick Cantilever Beam using Third Order Shear

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

Bending Analysis of a Cantilever Nanobeam With End Forces by Laplace Transform

Bending Analysis of a Cantilever Nanobeam With End Forces by Laplace Transform International Journal of Engineering & Applied Sciences (IJEAS) Vol.9, Issue (Special Issue: Composite Structures) (07) 03- http://.doi.org/0.407/ijeas.34635 Int J Eng Appl Sci 9() (07) 03- Bending Analysis

More information

C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.docx 6

C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.docx 6 C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.doc 6 p. 1 of Torsion of circular bar The cross-sections rotate without deformation. The deformation that does occur results from

More information

INTRODUCTION TO PIEZO TRANSDUCERS

INTRODUCTION TO PIEZO TRANSDUCERS PIEZO SYSTEMS, INC. 65 Tower Office Park Woburn, MA 01801 USA Tel: 781 933 4850 Fax: 781 933 4743 email: sales@piezo.com Find Search for a product or category HOME PRODUCTS CUSTOM OEM CATALOG TECHNICAL

More information

VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD

VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD VIBRATION ANALYSIS OF EULER AND TIMOSHENKO BEAMS USING DIFFERENTIAL TRANSFORMATION METHOD Dona Varghese 1, M.G Rajendran 2 1 P G student, School of Civil Engineering, 2 Professor, School of Civil Engineering

More information

Geometry-dependent MITC method for a 2-node iso-beam element

Geometry-dependent MITC method for a 2-node iso-beam element Structural Engineering and Mechanics, Vol. 9, No. (8) 3-3 Geometry-dependent MITC method for a -node iso-beam element Phill-Seung Lee Samsung Heavy Industries, Seocho, Seoul 37-857, Korea Hyu-Chun Noh

More information

DESIGN OF COMPOSITE LAMINATED STRUCTURES BY POLAR METHOD AND TOPOLOGY OPTIMISATION

DESIGN OF COMPOSITE LAMINATED STRUCTURES BY POLAR METHOD AND TOPOLOGY OPTIMISATION DESIGN OF COMPOSIE LAMINAED SUCUES BY POLA MEOD AND OPOLOGY OPIMISAION A. Jibawy,,3, C. Julien,,3, B. Desmorat,,4, (*), A. Vincenti UPMC Univ Paris 6, UM 79, Institut Jean Le ond d Alembert B.P. 6 4, place

More information

2008 by authors and 2008 Springer Science+Business Media

2008 by authors and 2008 Springer Science+Business Media Antti H. Niemi, Harri Hakula, and Juhani Pitkäranta. 28. Point load on a shell. In: Karl Kunisch, Günther Of, and Olaf Steinbach (editors). Numerical Mathematics and Advanced Applications. Proceedings

More information

Overview of Hygrothermally Stable Laminates with Improved Extension-twist Coupling

Overview of Hygrothermally Stable Laminates with Improved Extension-twist Coupling Overview of Hygrothermally Stable Laminates with Improved Extension-twist Coupling R. Haynes epartment of erospace Engineering, Georgia Institute of Technology 27 Ferst rive W, tlanta, G 3332-5, US robert.haynes@gatech.edu

More information

Geometrically Nonlinear Free Transversal Vibrations of Thin-Walled Elongated Panels with Arbitrary Generatrix

Geometrically Nonlinear Free Transversal Vibrations of Thin-Walled Elongated Panels with Arbitrary Generatrix Vibrations in Physical Systems Vol.6 (0) Geometrically Nonlinear Free ransversal Vibrations of hin-walled Elongated Panels with Arbitrary Generatrix Mykhailo MARCHUK Pidstryhach Institute for Applied Problems

More information

functionally graded material, piezoelectric material, circular plates, uniform electric potential, direct displacement

functionally graded material, piezoelectric material, circular plates, uniform electric potential, direct displacement Science in China Series G: Physics, Mechanics & Astronomy 008 SCIENCE IN CHINA PRESS Springer-Verlag www.scichina.com phys.scichina.com www.springerlink.com Three-dimensional analytical solution for a

More information

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon. Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

More information

Piezoelectric Bimorph Response with Imperfect Bonding Conditions

Piezoelectric Bimorph Response with Imperfect Bonding Conditions Copyright c 28 ICCES ICCES, vol.6, no.3, pp.5-56 Piezoelectric Bimorph Response with Imperfect Bonding Conditions Milazzo A., Alaimo A. and Benedetti I. Summary The effect of the finite stiffness bonding

More information

ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM BEHAVIOR UNDER THE EFFECT OF EXTERNAL SOLICITATIONS

ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM BEHAVIOR UNDER THE EFFECT OF EXTERNAL SOLICITATIONS Third International Conference on Energy, Materials, Applied Energetics and Pollution. ICEMAEP016, October 30-31, 016, Constantine,Algeria. ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM

More information

Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition

Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition Fluid Structure Interaction and Moving Boundary Problems IV 63 Hydroelastic vibration of a rectangular perforated plate with a simply supported boundary condition K.-H. Jeong, G.-M. Lee, T.-W. Kim & J.-I.

More information

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms Continuum mechanics office Math 0.107 ales.janka@unifr.ch http://perso.unifr.ch/ales.janka/mechanics Mars 16, 2011, Université de Fribourg 1. Constitutive equation: definition and basic axioms Constitutive

More information

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5

BTECH MECHANICAL PRINCIPLES AND APPLICATIONS. Level 3 Unit 5 BTECH MECHANICAL PRINCIPLES AND APPLICATIONS Level 3 Unit 5 FORCES AS VECTORS Vectors have a magnitude (amount) and a direction. Forces are vectors FORCES AS VECTORS (2 FORCES) Forces F1 and F2 are in

More information

Finite Element Method for Active Vibration Suppression of Smart Composite Structures using Piezoelectric Materials

Finite Element Method for Active Vibration Suppression of Smart Composite Structures using Piezoelectric Materials Finite Element Method for Active Vibration Suppression of Smart Composite Structures using Piezoelectric Materials Mehrdad N. Ghasemi-Nejhad, Saeid Pourjalali, Mark Uyema, Ali Yousefpour To cite this version:

More information

Fracture Mechanics of Composites with Residual Thermal Stresses

Fracture Mechanics of Composites with Residual Thermal Stresses J. A. Nairn Material Science & Engineering, University of Utah, Salt Lake City, Utah 84 Fracture Mechanics of Composites with Residual Thermal Stresses The problem of calculating the energy release rate

More information

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

More information

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS Chapter 9 CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS Figure 9.1: Hooke memorial window, St. Helen s, Bishopsgate, City of London 211 212 CHAPTR 9. CONSTITUTIV RLATIONS FOR LINAR LASTIC SOLIDS 9.1 Mechanical

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

THE BENDING STIFFNESSES OF CORRUGATED BOARD

THE BENDING STIFFNESSES OF CORRUGATED BOARD AMD-Vol. 145/MD-Vol. 36, Mechanics of Cellulosic Materials ASME 1992 THE BENDING STIFFNESSES OF CORRUGATED BOARD S. Luo and J. C. Suhling Department of Mechanical Engineering Auburn University Auburn,

More information

Analysis of Vibrating Timoshenko Beams Using the Method of Differential Quadrature

Analysis of Vibrating Timoshenko Beams Using the Method of Differential Quadrature P. A. A. Laura R. H. Gutierrez Institute of Applied Mechanics (CONICET-SENID-ACCE) and Department of Engineering Universidad Nacional del Sur BOOO-Bahia Blanca, Argentina Analysis of Vibrating Timoshenko

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHAPTER 6 MECHANCS OF MATERALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Lecture Notes: J. Walt Oler Texas Tech University Shearing Stresses in Beams and Thin- Walled Members

More information

Composite Mechanics in the Last 50 Years

Composite Mechanics in the Last 50 Years Composite Mechanics in the Last 50 Years Tarun Kant Department of Civil Engineering Indian Institute of Technology Bombay Powai, Mumbai - 400 076 Composite Laminate Introduction FRC Lamina (or Ply) is

More information

Gerald Allen Cohen, 83, passed away Oct. 1, 2014, at his home in Laguna Beach.

Gerald Allen Cohen, 83, passed away Oct. 1, 2014, at his home in Laguna Beach. Dr Gerald Allen Cohen (1931-2014) Ring-stiffened shallow conical shell designed with the use of FASOR for NASA s Viking project in the 1970s. (from NASA TN D-7853, 1975, by Walter L. Heard, Jr., Melvin

More information

Analysis of piezoelectric bimorphs and plates with segmented actuators

Analysis of piezoelectric bimorphs and plates with segmented actuators Thin-Walled Structures 39 (2) 23 44 www.elsevier.com/locate/tws Analysis of piezoelectric bimorphs and plates with segmented actuators Senthil S. Vel, R.C. Batra * Department of Engineering Science and

More information

Effects of a pulsed electromagnetic field on the impact response of electrically conductive. composite plates

Effects of a pulsed electromagnetic field on the impact response of electrically conductive. composite plates Effects of a pulsed electromagnetic field on the impact response of electrically conductive composite plates 1. Introduction Electromagnetic solids encompass a broad class of materials in which the interaction

More information

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

More information

Semi-Membrane and Effective Length Theory of Hybrid Anisotropic Materials

Semi-Membrane and Effective Length Theory of Hybrid Anisotropic Materials International Journal of Composite Materials 2017, 7(3): 103-114 DOI: 10.5923/j.cmaterials.20170703.03 Semi-Membrane and Effective Length Theory of Hybrid Anisotropic Materials S. W. Chung 1,*, G. S. Ju

More information

Micro-meso draping modelling of non-crimp fabrics

Micro-meso draping modelling of non-crimp fabrics Micro-meso draping modelling of non-crimp fabrics Oleksandr Vorobiov 1, Dr. Th. Bischoff 1, Dr. A. Tulke 1 1 FTA Forschungsgesellschaft für Textiltechnik mbh 1 Introduction Non-crimp fabrics (NCFs) are

More information

SUB-SURFACE DAMAGE LOCATION AND IDENTIFICATION USING INFRA-RED TECHNIQUES

SUB-SURFACE DAMAGE LOCATION AND IDENTIFICATION USING INFRA-RED TECHNIQUES SUB-SURFACE DAMAGE LOCATION AND IDENTIFICATION USING INFRA-RED TECHNIQUES T.R. Emery 1, J. M. Dulieu-Barton 1, P.R. Cunningham 2 1 University of Southampton, School of Engineering Sciences, SO17 1BJ, UK

More information

Inhomogeneity Material Effect on Electromechanical Stresses, Displacement and Electric Potential in FGM Piezoelectric Hollow Rotating Disk

Inhomogeneity Material Effect on Electromechanical Stresses, Displacement and Electric Potential in FGM Piezoelectric Hollow Rotating Disk Journal of Solid Mechanics Vol. 2, No. 2 (2010) pp. 144-155 Inhomogeneity Material Effect on Electromechanical Stresses, Displacement and Electric Potential in FGM Piezoelectric Hollow Rotating Disk A.

More information

Slender Structures Load carrying principles

Slender Structures Load carrying principles Slender Structures Load carrying principles Continuously Elastic Supported (basic) Cases: Etension, shear Euler-Bernoulli beam (Winkler 1867) v2017-2 Hans Welleman 1 Content (preliminary schedule) Basic

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Lesson 8 The Force Method of Analysis: Beams Instructional Objectives After reading this chapter the student will be

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

ACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY THE SUPERPOSITION METHOD

ACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY THE SUPERPOSITION METHOD Journal of Sound and Vibration (1999) 219(2), 265 277 Article No. jsvi.1998.1874, available online at http://www.idealibrary.com.on ACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY

More information

Elastic plastic bending of stepped annular plates

Elastic plastic bending of stepped annular plates Applications of Mathematics and Computer Engineering Elastic plastic bending of stepped annular plates JAAN LELLEP University of Tartu Institute of Mathematics J. Liivi Street, 549 Tartu ESTONIA jaan.lellep@ut.ee

More information

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber Kibong Han Mechatronics Department, Jungwon University, 85 Munmu-ro, Goesan-gun, South Korea.

More information

Finite Difference Dynamic Analysis of Railway Bridges Supported by Pasternak Foundation under Uniform Partially Distributed Moving Railway Vehicle

Finite Difference Dynamic Analysis of Railway Bridges Supported by Pasternak Foundation under Uniform Partially Distributed Moving Railway Vehicle , October 21-23, 2015, San Francisco, USA Finite Difference Dynamic Analysis of Railway Bridges Supported by Pasternak Foundation under Uniform Partially Distributed Moving Railway Vehicle M. C. Agarana

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS The Q4 element has four nodes and eight nodal dof. The shape can be any quadrilateral; we ll concentrate on a rectangle now. The displacement field in terms

More information

Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs)

Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs) Electromechanical Finite Element Modeling of Unstiffened Smart Steel Shear Walls (SSSWs) Y. Shahbazi 1, M. Eghbalian 2, M.R. Chenaghlou 3, K.Abedi 4 1- PhD Student of structural Engineering, Sahand University

More information

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture,

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture, 09.21.07 1. In the beam considered in PS1, steel beams carried the distributed weight of the rooms above. To reduce stress on the beam, it

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Enhancement of the dynamic buckling load for a plate by using piezoceramic actuators

Enhancement of the dynamic buckling load for a plate by using piezoceramic actuators INSTITUTE OF PHYSICS PUBLISHING Smart Mater. Struct. 1 (1) 95 933 SMART MATERIALS AND STRUCTURES PII: S964-176(1)7853-7 Enhancement of the dynamic buckling load for a plate by using piezoceramic actuators

More information

The stiffness tailoring of megawatt wind turbine

The stiffness tailoring of megawatt wind turbine IOP Conference Series: Materials Science and Engineering OPEN ACCESS The stiffness tailoring of megawatt wind turbine To cite this article: Z M Li et al 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52 052008

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13

ARC 341 Structural Analysis II. Lecture 10: MM1.3 MM1.13 ARC241 Structural Analysis I Lecture 10: MM1.3 MM1.13 MM1.4) Analysis and Design MM1.5) Axial Loading; Normal Stress MM1.6) Shearing Stress MM1.7) Bearing Stress in Connections MM1.9) Method of Problem

More information

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses 7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

More information

THEORY OF PLATES AND SHELLS

THEORY OF PLATES AND SHELLS THEORY OF PLATES AND SHELLS S. TIMOSHENKO Professor Emeritus of Engineering Mechanics Stanford University S. WOINOWSKY-KRIEGER Professor of Engineering Mechanics Laval University SECOND EDITION MCGRAW-HILL

More information

Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method

Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method Acta Mech Sin 2011 276:967 976 DOI 101007/s10409-011-0514-0 RESEARCH PAPER Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method

More information