Or why this won t work very well


 Oscar French
 1 years ago
 Views:
Transcription
1 Friction
2 Friction Friction causes objects to slow down. Friction creates heat. Friction degrades an object s energy
3 Friction is: Friction: A force that resists the relative motion or tendency to such motion of two bodies in contact. Source: Dictionary.com Or why this won t work very well
4 Places where friction is good The soles of shoes Car tires The feet of table legs Rock climbing holds Brakes etc
5 Places where friction is bad In engines In transmissions On the bottoms of skis and snowboards (To a point) When you are trying to move a box by pushing it along the floor etc
6 What causes friction?
7 Source of Friction At the microscopic level even the smoothest of surfaces is dotted with little mountain peaks. The tips of the peaks are the only parts that touch the other material. Only a very small portion of the apparent surface area is in contact with the other surface Picture of extremely smooth mica with a scanned probe microscope This causes extremely high pressures to form on the parts that touch. This causes the two surfaces to become welded almost at the points of contact
8 Friction Surface imperfections and microwelds.
9 Source of friction (continued) The true surface contact area is proportional to the normal force because the peaks will deform plastically when force is applied increasing the contact area Plastic deformation: to change shape permanently without fracturing Other lesser reasons for friction Surface adhesion between pure metals Ploughing of one surface by the other harder one Elastic deformation
10 Experiment: Does the friction force depend on surface area? We stick a 1kg mass on a piece of plexiglass on top of the clean surface and, using a Newton meter, pull the weight across the table with the string provided at constant speed. We put the same weight on a different piece of plexiglass with drastically different surface area and repeat What do you notice?
11 Friction doesn t depend on apparent surface area (much) You may have noticed a small dependence. This is partially due to the greater weight of the larger piece of plexiglass, and also partially due to the fact that there is a dependence of friction on surface area, just one that is small enough to be ignored under most circumstances. Why is the friction force approximately independent of surface area? Because as discussed previously the materials plastically deform at the peaks depending on the pressure increasing real surface area. RSA = real surface area, F = Normal Force, SA = Surface area, F/SA = P Pressure, C = constant depending on the materials RSA = SA x P x C = SA x F/SA x C = F x C
12 Static Friction
13 Static Friction Normal force Friction, Resistance Applied Force Objects at rest. Applied force is insufficient to move object. Weight = mg
14 Finally something useful.. The only formula you need for friction forces: Friction Force = coefficient of kinetic friction x norrnal force or F f = µf n
15 Newton s Second and Third Laws Newton s Second Law: If there is an unbalanced force on an object it will accelerate according to F Unbalanced = m a Newton s Third Law: If you exert a force on an object it exerts an equal and opposite force on you
16 Block at Rest on a Table
17 Normal Force From Newton s third law we know that if gravity or some other force pushes an object (like a block) into a second object (like a table) that second object will be exerting an equal force back on the first. Normal force is the force the table exerts back on the block Normal force is always exerted perpendicular to the surface Friction Force is always parallel to the surface So if the table is horizontal and gravity is the only force on the block F n = F g
18 Normal force on a hill Normal force is exerted perpendicular to the surface in accordance with Newton s Third law No unbalanced force so the block is stationary or at least not accelerating
19 Static Friction The relationship is µ s = force of friction/normal force. Where µ is called the coefficient of static friction. It has no units and varies between 0 and 2 in general. We usually rearrange the equation: f = µ s N (Mu)
20 Example of Static Friction What is the coefficient of static friction between a tabletop and a 2 kg block of wood if a 2 N force is required to start the block moving? Identify knowns and unknown: m = 2 kg, applied force = 2 N, v = 0, µ s =?
21 Appropriate equation: f = µ N. What is N? On a level surface the normal force upward is equal to the weight of the object downward, i.e. N = W = mg. So, f = µ mg or µ = f/mg = 2 N/(2 kg *9.8m/s 2 ) µ = 0.102
22 Kinetic Friction
23 Kinetic Friction The word kinetic stems from the Greek word, kinema meaning motion, so kinetic friction deals with the friction present when motion is occurring. The resistance is less because the microscopic impediments are being sheared off and no time for microwelds to form.
24 Kinetic Friction Constant Less than static friction. This is the key to nonskid brakes. Force Frictional Applied Force, N
25 Why? The slightly larger value for static friction results from irregularities and contaminants on the surfaces and is less accurate in general than the coefficient of kinetic friction Between (very) carefully cleaned surfaces the difference between the two coefficients disappears
26 Compare skidding with no skidding. A car moving at 25 m/s slams on its brakes. The coefficient of static friction with the road is 1.2 and the kinetic coefficient is How far does the car slide? Knowns: v o = 25 m/s, v = 0 m/s, µ s = 0.4. Unknown: x =? Equations: v 2 =v o2 +2 ax, F = ma, N = mg, f =µn.
27 Solve for x: x = v o2 /2a = v o2 /2(F/m) =v o2 /2(µN/m) =v o2 /2(µmg/m) = v 2 o2 /2 /2µg =(25 m/s) 2 /(2*0.85*9.8 m/s 2 ) =37.5 m
28 Now, solve the same problem using nonskid brakes so the wheels keep turning while the car slows down. In this case we use the state coefficient of friction x = v o2 /2µg =(25 m/s) 2 /(2*1.2*9.8 m/s 2 ) =26.6m Imagine if the pavement wear wet and the coefficient of kinetic friction was The stopping distance would be nearly 75 m!
29 Frictional force and normal force. Frictional force is proportional to the normal force, f α N. On a level surface N = W, but what if someone is lifting up on the object? Won t that reduce the normal force?
30 Free Body Diagram N + T = W, so N = W T. If T pulls at some angle, then just decompose into components. Normal, N Lift from person,t Weight, W
31 Example: A person pulls on a 300 N crate with a rope that makes a 37 0 angle to the ground. If the coefficient of static friction is 0.6, how much tension must the person exert to get the crate moving? Knowns: W = 300 N, θ = 37 o, µ = 0.6. Unknown: T =? Equations: f = µn. All forces balance when at rest.
32 Horizontal Tension = T cos θ Vertical Tension = T sin θ Net vertical force = N + Tsin θ W = 0, so N = W  Tsin θ. Net horizontal force = Tcos θ f = 0 Tcos θ = f = µn = µ(w  Tsin θ), so
33 Tcos θ = µ(w  Tsin θ) Tcos θ + µ Tsin θ = µw T(cos θ + µ sin θ) = µw T = µw/(cos θ + µ sin θ) T = 0.6*300N/(cos *sin30 0 ) T = 180N/( ) T = 180 N/(1.166) T = 154 N
+F N = F g. F g = m٠a g
Force Normal = F N Force Normal (or the Normal Force, abbreviated F N ) = F N = The contact force exerted by a surface on an object. The word Normal means perpendicular to Therefore, the Normal Force is
More informationThere are two main types of friction:
Section 4.15: Friction Friction is needed to move. Without friction, a car would sit in one spot spinning its tires, and a person would not be able to step forward. However, the motion of an object along
More information2. A 10 kg box is being pushed by a 100 N force 30 above the horizontal. The acceleration of the box is 5 m/s 2. What is the value of µ k?
Physics Whiteboard Forces with Friction 1. A 70 kg block is being pushed across a tabletop with a constant force of 350 N exerted in the direction of travel. If the coefficient of kinetic friction (µ k
More informationConsider the case of a 100 N. mass on a horizontal surface as shown below:
1.9.1 Introduction The study of friction is called: The force of friction is defined as: The force of friction acting between two surfaces has three properties: i) ii) iii) Consider the case of a 100 N.
More informationApplying Newton s Laws
Applying Newton s Laws Free Body Diagrams Draw and label the forces acting on the object. Examples of forces: weight, normal force, air resistance, friction, applied forces (like a push or pull) Velocity
More informationFriction Can Be Rough
8.1 Observe and Find a Pattern Friction Can Be Rough Perform the following experiment: Rest a brick on a rough surface. Tie a string around the brick and attach a large spring scale to it. Pull the scale
More informationFORCE. Definition: Combining Forces (Resultant Force)
1 FORCE Definition: A force is either push or pull. A Force is a vector quantity that means it has magnitude and direction. Force is measured in a unit called Newtons (N). Some examples of forces are:
More informationPOGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.
POGIL: Newton s First Law of Motion and Statics Name Purpose: To become familiar with the forces acting on an object at rest Part 1: Net Force Model: Read the following carefully and study the diagrams
More informationChapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion
Matter in Motion Preview Section 1 Measuring Motion Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Section 4 Gravity: A Force of Attraction Concept Mapping Section 1 Measuring
More informationNewton s 3 Laws of Motion
Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of
More informationSEE the list given for chapter 04 where Newton s laws were introduced.
PH2213 : Examples from Chapter 5 : Applying Newton s Laws Key Concepts Newton s Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (lefthand side) to the motion of the object,
More informationMarch 10, P12 Inclined Planes.notebook. Physics 12. Inclined Planes. Push it Up Song
Physics 12 Inclined Planes Push it Up Song 1 Bell Work A box is pushed up a ramp at constant velocity. Draw a neatly labeled FBD showing all of the forces acting on the box. direction of motion θ F p F
More information9/20/11. Physics 101 Tuesday 9/20/11 Class 8" Chapter " Weight and Normal forces" Frictional Forces"
Reading Quiz Physics 101 Tuesday 9/20/11 Class 8" Chapter 5.6 6.1" Weight and Normal forces" Frictional Forces" The force due to kinetic friction is usually larger than the force due to static friction.
More informationReview 3: Forces. 1. Which graph best represents the motion of an object in equilibrium? A) B) C) D)
1. Which graph best represents the motion of an object in equilibrium? A) B) C) D) 2. A rock is thrown straight up into the air. At the highest point of the rock's path, the magnitude of the net force
More informationPhysics 2A Chapter 4: Forces and Newton s Laws of Motion
Physics 2A Chapter 4: Forces and Newton s Laws of Motion There is nothing either good or bad, but thinking makes it so. William Shakespeare It s not what happens to you that determines how far you will
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More informationChapter: The Laws of Motion
Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationApplying Newton s Laws
Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Goals for Chapter 5 To use and apply Newton s Laws
More informationUniversity Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1
University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction
More informationREVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions
REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,
More informationCHAPTER 4 TEST REVIEW  Answer Key
AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST
More informationPHYSICS 231 Laws of motion PHY 231
PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was
More informationNewton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.
Newton s Laws Newton s first law: An object will stay at rest or in a state of uniform motion with constant velocity, in a straight line, unless acted upon by an external force. In other words, the bodies
More informationIsaac Newton ( )
Isaac Newton (16421727) In the beginning of 1665 I found the rule for reducing any degree of binomial to a series. The same year in May I found the method of tangents and in November the method of fluxions
More informationPHY131H1F  Class 9. Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag
PHY131H1F  Class 9 Today, finishing Chapter 5: Kinetic Friction Static Friction Rolling without slipping (intro) Drag Microscopic bumps and holes crash into each other, causing a frictional force. Kinetic
More informationNewton s First Law and IRFs
Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D
More informationAP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.
P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the
More informationName Period Date. Record all givens, draw a picture, arrow all vectors, write the formula, substitute and solve. units
Example Problems 5.2 Friction E1. A monkey is dragging a box full of books from his office to his car. The combined weight of the box and books is 134 N. If the coefficient of static friction between the
More information5. Two forces are applied to a 2.0kilogram block on a frictionless horizontal surface, as shown in the diagram below.
1. The greatest increase in the inertia of an object would be produced by increasing the A) mass of the object from 1.0 kg to 2.0 kg B) net force applied to the object from 1.0 N to 2.0 N C) time that
More informationPhysics Mechanics. Lecture 11 Newton s Laws  part 2
Physics 170  Mechanics Lecture 11 Newton s Laws  part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of
More informationQuestion: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.
Question: Are distance and time important when describing motion? DESCRIBING MOTION Motion occurs when an object changes position relative to a. DISTANCE VS. DISPLACEMENT Distance Displacement distance
More informationAP PHYSICS Chapter 5. Friction Inclines Circular Motion
AP PHYSICS Chapter 5 Friction Inclines Circular Motion Friction Force that opposes motion due to contact between surfaces. Depends on: Composition and Qualities of the two surfaces in contact (μ) Roughness,
More informationForces I. Newtons Laws
Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N
More informationForces. Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics
FORCES Forces Isaac Newton stated 3 laws that deal with forces and describe motion. Backbone of Physics Inertia Tendency of an object to remain in the same state of motion. Resists a change in motion.
More informationGet Solution of These Packages & Learn by Video Tutorials on FRICTION
1. FRICTION : When two bodies are kept in contact, electromagnetic forces act between the charged particles (molecules) at the surfaces of the bodies. Thus, each body exerts a contact force of the other.
More informationWhat Causes Friction?
What Causes Friction? Friction is the force that opposes the motion between two surfaces that touch (parallel to the surface). The surface of any object is rough. Even an object that feels smooth is covered
More informationReading Quiz. Chapter 5. Physics 111, Concordia College
Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic
More informationSection 3: Motion and Force. Preview Key Ideas Bellringer Fundamental Forces Balanced and Unbalanced Forces The Force of Friction Friction and Motion
: Motion and Force Preview Key Ideas Bellringer Fundamental Forces Balanced and Unbalanced Forces The Force of Friction Friction and Motion Key Ideas What do scientists identify as the fundamental forces
More information3 Friction: A Force That Opposes Motion
CHAPTER 1 SECTION Matter in Motion 3 Friction: A Force That Opposes Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: What is friction? How does friction
More informationChapter Test A. Teacher Notes and Answers Forces and the Laws of Motion. Assessment
Assessment Chapter Test A Teacher Notes and Answers Forces and the Laws of Motion CHAPTER TEST A (GENERAL) 1. c 2. d 3. d 4. c 5. c 6. c 7. c 8. b 9. d 10. d 11. c 12. a 13. d 14. d 15. b 16. d 17. c 18.
More informationFRICTIONAL FORCES. Direction of frictional forces... (not always obvious)... CHAPTER 5 APPLICATIONS OF NEWTON S LAWS
RICTIONAL ORCES CHAPTER 5 APPLICATIONS O NEWTON S LAWS rictional forces Static friction Kinetic friction Centripetal force Centripetal acceleration Looptheloop Drag force Terminal velocity Direction
More informationEndofChapter Exercises
EndofChapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass
More informationChapter: Newton s Laws of Motion
Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement
More informationFriction. Objectives. Assessment. Assessment. Physics terms. Equations 5/20/14. Models for friction
Objectives Friction Calculate friction forces from equation models for static, kinetic, and rolling friction. Solve onedimensional force problems that include friction. 1. A box with a mass of 10 kg is
More informationA force is could described by its magnitude and by the direction in which it acts.
8.2.a Forces Students know a force has both direction and magnitude. P13 A force is could described by its magnitude and by the direction in which it acts. 1. Which of the following could describe the
More informationFriction is always opposite to the direction of motion.
6. Forces and MotionII Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:
More informationPS113 Chapter 4 Forces and Newton s laws of motion
PS113 Chapter 4 Forces and Newton s laws of motion 1 The concepts of force and mass A force is described as the push or pull between two objects There are two kinds of forces 1. Contact forces where two
More informationLecture 4. Newton s 3rd law and Friction
Lecture 4 Newton s 3rd law and Friction Newtons First Law or Law of Inertia If no net external force is applied to an object, its velocity will remain constant ("inert"). OR A body cannot change its state
More informationChapter 7 Newton s Third Law
Chapter 7 Newton s Third Law Chapter Goal: To use Newton s third law to understand interacting objects. Slide 72 Chapter 7 Preview Slide 73 Chapter 7 Preview Slide 74 Chapter 7 Preview Slide 76 Chapter
More informationNewton s Laws PreTest
Newton s Laws PreTest 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)
More informationSection 2: Friction, Gravity, and Elastic Forces
Chapter 10, Section 2 Friction, Gravity, & Elastic Forces Section 2: Friction, Gravity, and Elastic Forces What factors determine the strength of the friction force between two surfaces? What factors affect
More informationTypes of Forces. Pressure Buoyant Force Friction Normal Force
Types of Forces Pressure Buoyant Force Friction Normal Force Pressure Ratio of Force Per Unit Area p = F A P = N/m 2 = 1 pascal (very small) P= lbs/in 2 = psi = pounds per square inch Example: Snow Shoes
More informationFriction: A Force That Opposes Motion
3 What You Will Learn The magnitude of the force of can vary. Kinetic is a force that, when unbalanced, can change the velocity of a moving object. Static balances an applied force and can prevent motion.
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More informationNewton s Laws and FreeBody Diagrams General Physics I
Newton s Laws and FreeBody Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are
More informationDirected Reading A. Section: Friction: A Force That Opposes Motion THE SOURCE OF FRICTION. Skills Worksheet
Skills Worksheet Directed Reading A Section: Friction: A Force That Opposes Motion Write the letter of the correct answer in the space provided. (pp. 350 355) 1. Which of the following is a force that
More informationE X P E R I M E N T 6
E X P E R I M E N T 6 Static & Kinetic Friction Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 6: Static and Kinetic
More informationThe Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.
Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More information66 Chapter 6: FORCE AND MOTION II
Chapter 6: FORCE AND MOTION II 1 A brick slides on a horizontal surface Which of the following will increase the magnitude of the frictional force on it? A Putting a second brick on top B Decreasing the
More informationDynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i
Dynamic equilibrium: object moves with constant velocity in a straight line. We note that F net a s are both vector quantities, so in terms of their components, (F net ) x = i (F i ) x = 0, a x = i (a
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. A/Prof Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 The Laws of Motion A/Prof Tay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while
More informationSPH3U Practice Test. True/False Indicate whether the statement is true or false.
True/False Indicate whether the statement is true or false. 1. The reason your head feels like it jerks backward when pulling away from a stop sign is best explained by Newton's First Law. 2. An airplane
More informationSolutions to Phsics: Principles with Applications, 5/E, Giancoli Chapter 4 CHAPTER 4 1. If we select the sled and child as the object, we appl Newton s second law to find the force: F = ma; F = (60.0 kg)(1.15
More informationThe workenergy theorem
The workenergy theorem Objectives Investigate quantities using the workenergy theorem in various situations. Calculate quantities using the workenergy theorem in various situations. Design and implement
More informationWhich, if any, of the velocity versus time graphs below represent the movement of the sliding box?
Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone
More information4.1.1 Extra Practice 4.1 Analyze the effects of a uniform force (magnitude and direction.)
4.1.1 Extra Practice 4.1 Analyze the effects of a uniform force (magnitude and direction.) Frictional Forces LEVEL 2 1. (HRW 63) A bedroom bureau with a mass of 45 kg, including drawers and clothing,
More informationNewton s Laws and Friction Friction is a Doubled Edge Sword
Newton s Laws and Friction Friction is a Doubled Edge Sword Description This lesson introduces GEARS users to three related concepts, these are: 1.) The nature of forces 2.) Newton s laws of motion 3.)
More informationChapter Four Holt Physics. Forces and the Laws of Motion
Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces  a. Force  a push or a pull. It can change the motion of an object; start or stop movement; and,
More informationLECTURE 12 FRICTION & SPRINGS. Instructor: Kazumi Tolich
LECTURE 12 FRICTION & SPRINGS Instructor: Kazumi Tolich Lecture 12 2 Reading chapter 61 to 62 Friction n Static friction n Kinetic friction Springs Origin of friction 3 The origin of friction is electromagnetic
More informationCEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.45
1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.45 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES
More informationPhysics 12 Unit 2: Vector Dynamics
1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be
More informationApplying Newton s Laws
Chapter 5 Applying Newton s Laws 5.1 Using Newton s First Law First Law. Abodyactedonbynonetforce,i.e. F i =0 i has a constant velocity (which may be zero) and zero acceleration. Example 5.1. Agymnastwithmassm
More informationChapter 5. Forces in Two Dimensions
Chapter 5 Forces in Two Dimensions Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically. Use Newton s laws to analyze motion when
More informationPractice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)
Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of
More informationNote on Posted Slides. Net Force. Normal Force a.k.a. Support Force. PHY205H1S Physics of Everyday Life Class 3. Review from Class 1: What is a force?
Note on Posted Slides These are the slides that I intended to show in class on Tue. Jan. 14, 014. They contain important ideas and questions from your reading. Due to time constraints, I was probably not
More informationChapter 4 NEWTONS LAWS. Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces
Chapter 4 NEWTONS LAWS Newton s 3 Laws Force Diagrams Balanced Forces Unbalanced Forces Force: a push or a pull Measured in Newton Vector Quantity Contact Force: applied by direct contact Field Force:
More information(a) On the dots below that represent the students, draw and label freebody diagrams showing the forces on Student A and on Student B.
2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest
More informationThe Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples
The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal
More informationFORCE & MOTION Instructional Module 6
FORCE & MOTION Instructional Module 6 Dr. Alok K. Verma Lean Institute  ODU 1 Description of Module Study of different types of forces like Friction force, Weight force, Tension force and Gravity. This
More informationPRACTICE TEST for Midterm Exam
South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications
More informationPractice Honors Physics Test: Newtons Laws
Name: Class: Date: Practice Honors Physics Test: Newtons Laws Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Acceleration is defined as the CHANGE in
More informationName Date Period PROBLEM SET: ROTATIONAL DYNAMICS
Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget
More informationChapter 4. The Laws of Motion. Dr. Armen Kocharian
Chapter 4 The Laws of Motion Dr. Armen Kocharian Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Conditions when Classical
More informationForces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219
Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit
More informationChapter 5. Force and MotionI
Chapter 5 Force and MotionI 5.3 Newton s First Law Newton s First Law: If no force acts on a body, the body s velocity cannot change The purpose of Newton s First Law is to introduce the special frames
More informationFreeBody Diagrams: Introduction
FreeBody Diagrams: Introduction Learning Goal: To learn to draw freebody diagrams for various reallife situations. Imagine that you are given a description of a reallife situation and are asked to
More informationChapter 5: Forces in Two Dimensions. Click the mouse or press the spacebar to continue.
Chapter 5: Forces in Two Dimensions Click the mouse or press the spacebar to continue. Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically.
More informationChapter 4: Newton s Second Law F = m a. F = m a (4.2)
Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.
More informationQ16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)
Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string
More informationPHYSICS 221 SPRING EXAM 1: February 21, 2013; 8:15pm 10:15pm
PHYSICS 221 SPRING 2013 EXAM 1: February 21, 2013; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit questions,
More informationPhysics 111 Lecture 4 Newton`s Laws
Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac
More informationPHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.
More informationCHAPTER 2. FORCE and Motion. CHAPTER s Objectives
19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who
More informationWhat factors affect friction?
Friction What factors affect friction? What factors affect friction? Survey says: Surface texture Surface material Surface area Speed of slide Mass Weight Angle of surface Normal Force What really affects
More informationName: Class: Date: GRAVITY. 1. Gravity is the force of between all objects. It increases when items are or together.
Name: Class: Date: GRAVITY 1. Gravity is the force of between all objects. It increases when items are or together. 2. The moon has the gravity of Earth. Jupiter has the gravity of Earth. 3. List these
More informationAnswers !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 th Grade Phsics Workbook METU Development Foundation High School 1 Answers 11th Grade Chapter1 Newton s Laws Motion Activit  1.3.1 Applications of Newton s Laws 1. 2. Three blocks of masses 5 kg,
More information