Chapter 5. Gases and the Kinetic-Molecular Theory

Size: px
Start display at page:

Download "Chapter 5. Gases and the Kinetic-Molecular Theory"

Transcription

1 Chapter 5 Gases and the Kinetic-Molecular Theory

2 Macroscopic vs. Microscopic Representation

3 Kinetic Molecular Theory of Gases 1. Gas molecules are in constant motion in random directions. Collisions among molecules are perfectly elastic.

4 Kinetic Molecular Theory of Gases 2. The average kinetic energy of the molecules is proportional to the temperature of the gas in kelvins. Any two gases at the same temperature will have the same average kinetic energy 3. A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points; that is, they possess mass but have negligible volume. 4. Gas molecules exert neither attractive nor repulsive forces on one another. 5. Each gas molecule behaves as if it were alone in container (due to #3 and #4)

5 Postulates of the Kinetic-Molecular Theory Postulate 1: Particle Volume Because the volume of an individual gas particle is so small compared to the volume of its container, the gas particles are considered to have mass, but no volume. Postulate 2: Particle Motion Gas particles are in constant, random, straight-line motion except when they collide with each other or with the container walls. Postulate 3: Particle Collisions Collisions are elastic therefore the total kinetic energy(k k ) of the particles is constant.

6 Distribution of molecular speeds at three temperatures.

7 Relationship between molar mass and molecular speed.

8 Physical Characteristics of Gases Gases assume the volume and shape of their containers. Gases are the most compressible state of matter. Gases will mix evenly and completely when confined to the same container. Gases have much lower densities than liquids and solids.

9 Pressure KMT Viewpoint Origin of Pressure Gas molecules hitting container walls Temp, KE, # collisions, P Volume, # collisions, P

10 Pressure Macroscopic Viewpoint Pressure = Force Area Temp, KE, Force, P Units of Pressure 1 pascal (Pa) = 1 N/m 2 1 atm = 760 mmhg = 760 torr Volume, Area, P 1 atm = 101,325 Pa

11 Common Units of Pressure Unit Atmospheric Pressure Scientific Field pascal(pa); kilopascal(kpa) atmosphere(atm) x10 5 Pa; kpa 1 atm SI unit; physics, chemistry chemistry millimeters of mercury(hg) 760 mmhg chemistry, medicine, biology torr 760 torr chemistry pounds per square inch (psi or lb/in 2 ) 14.7lb/in 2 engineering bar bar meteorology, chemistry, physics

12 Atmospheric Pressure Barometer

13 Two types of manometer

14 Converting Units of Pressure PROBLEM: A geochemist heats a limestone (CaCO 3 ) sample and collects the CO 2 released in an evacuated flask attached to a closedend manometer. After the system comes to room temperature, Dh = 291.4mmHg. Calculate the CO 2 pressure in torrs, atmospheres, and kilopascals. PLAN: Construct conversion factors to find the other units of pressure mmHg 291.4torr 1torr 1mmHg 1atm 760torr = 291.4torr = atm atm kPa 1atm = 38.85kPa

15 Effect of Pressure on Volume Boyle s Law 1 atm 2 atm 5 atm

16 The relationship between volume and the pressure of a gas.

17 Boyle s Law P a 1/V P x V = constant P 1 x V 1 = P 2 x V 2 Constant temperature Constant amount of gas

18 1 Boyle s Law V a P n and T are fixed PV = constant V = constant/p

19 Kinetic Molecular theory of gases and Boyle s Law P a collision rate with wall Collision rate Increases with decreased volume P a 1/V Increase P, decrease volume

20 A sample of chlorine gas occupies a volume of 946 ml at a pressure of 726 mmhg. What is the pressure of the gas (in mmhg) if the volume is reduced at constant temperature to 154 ml? P 1 = 726 mmhg P 1 x V 1 = P 2 x V 2 P 2 =? V 1 = 946 ml V 2 = 154 ml P 2 = P 1 x V 1 V mmhg x 946 ml = = 4460 mmhg 154 ml

21 Applying the Volume-Pressure Relationship PROBLEM: PLAN: V 1 in cm 3 1cm 3 =1mL V 1 in ml 10 3 ml=1l V 1 in L xp 1 /P 2 V 2 in L Boyle s apprentice finds that the air trapped in a J tube occupies 24.8cm 3 at 1.12atm. By adding mercury to the tube, he increases the pressure on the trapped air to 2.64atm. Assuming constant temperature, what is the new volume of air (inl)? unit conversion gas law calculation SOLUTION: P 1 = 1.12atm V 1 = 24.8cm cm 3 P 1 V 1 n 1 T 1 = 1mL 1cm 3 P 2 V 2 n 2 T 2 P 1 V V 1 2 = = L P 2 P and T are constant L 10 3 ml P 2 = 2.64atm V 2 = unknown = L P 1 V 1 = P 2 V atm 2.46atm = L

22 Effect of Temperature on Volume (Charles Law) Low Temperature High Temperature

23 V a T V = kt V/T = k V 1 /T 1 = V 2 /T 2 As T increases, V Increases

24 Charles Law Animation

25 Applying the Temperature-Pressure Relationship A 1-L steel tank is fitted with a safety valve that opens if the internal pressure exceeds 1.00x10 3 torr. It is filled with helium at 23 0 C and 0.991atm and placed in boiling water at exactly C. Will the safety valve open? P 1 (atm) T 1 and T 2 ( 0 C) 1atm=760torr P 1 (torr) x T 2 /T 1 P 2 (torr) K= 0 C T 1 and T 2 (K) 0.991atm P 1 = 0.991atm T 1 = 23 0 C P 1 V 1 P 2 V 2 = n 1 T 1 n 2 T 2 760torr 1atm = 753torr P 2 = unknown T 2 = 100 o C P 1 P 2 = T 1 T 2 P 2 = P 1 T 2 T 1 = 753torr 373K 296K = 949torr

26 Kinetic theory of gases and Charles Law -Average kinetic energy a T -Increase T, Gas Molecules hit walls with greater Force, this Increases the Pressure BUT since pressure must remain constant, and only volume can change -Volume Increase to reduce Pressure -Increase Temperature, Increase Volume

27 Determination of Absolute Zero

28 A sample of carbon monoxide gas occupies 3.20 L at C. At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant? V 1 /T 1 = V 2 /T 2 V 1 = 3.20 L T 1 = K V 2 = 1.54 L T 2 =? T 2 = V 2 x T 1 V L x K = = 192 K 3.20 L

29 V a number of moles (n) V = constant x n V 1 /n 1 = V 2 /n 2 Avogadro s Law 5.3

30 Applying the Volume-Amount Relationship A scale model of a blimp rises when it is filled with helium to a volume of 55dm 3. When 1.10mol of He is added to the blimp, the volume is 26.2dm 3. How many more grams of He must be added to make it rise? Assume constant T and P. We are given initial n 1 and V 1 as well as the final V 2. We have to find n 2 and convert it from moles to grams. n 1 (mol) of He x V 2 /V 1 n 2 (mol) of He subtract n 1 mol to be added x M g to be added V 1 n 1 = 1.10mol n 2 = unknown V 1 = 26.2dm 3 V 2 = 55.0dm 3 V 2 V = n n 1 n 2 = n n 2 = 1.10mol 55.0dm dm 3 V 1 P and T are constant 4.003g He = 2.31mol mol He P 1 V 1 P 2 V 2 = n 1 T 1 n 2 T 2 = 4.84g He

31 Kinetic theory of gases and Avogadro s Law More moles of gas, more collisions with walls of container More collisions, higher pressure BUT since pressure must remain constant and only volume can change Volume increases to decrease pressure to original value

32 Boyle s Law V a 1 P n and T are fixed Charles s Law V a T P and n are fixed V T = constant V = constant x T Amonton s Law P a T V and n are fixed P T = constant P = constant x T combined gas law V a T P V = constant x T P PV T = constant

33

34 Gas Law Animation

35 Ideal Gas Equation Boyle s law: V a 1 (at constant n and T) P Charles law: V a T (at constant n and P) Avogadro s law: V a n (at constant P and T) V a nt P nt V = constant x P = R nt P R is the gas constant R = L atm / (mol K) PV = nrt

36 Obtaining Other Gas Law Relationship PV = nrt PV nt R PV 1 n T PV 2 n T 2 2 2

37 THE IDEAL GAS LAW PV = nrt R = PV nt = 1atm x L 1mol x K = atm*L mol*k IDEAL GAS LAW PV = nrt or V = nrt P fixed n and T fixed n and P fixed P and T Boyle s Law Charles s Law Avogadro s Law V = constant P V = constant X T V = constant X n

38 PV = nrt nr V P 1 Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and 18 0 C is heated to 85 0 C at constant volume. What is the final pressure of argon in the lightbulb (in atm)? = P T = constant P 2 = T 1 T 2 P 2 = P 1 x T 2 T 1 n, V and R are constant P 1 = 1.20 atm T 1 = 291 K = 1.20 atm x 358 K 291 K P 2 =? T 2 = 358 K = 1.48 atm

39 Types of Problems PV 1 1 PV 2 2 Make Substitution into PV = nrt n T 1 1 n 2 T 2 moles ( n) mass, g MolarMass, g / mole Given initial conditions, determine final conditions; Cancel out what is constant Density mass Volume

40 Using Gas Variables to Find Amount of Reactants and Products PROBLEM: A laboratory-scale method for reducing a metal oxide is to heat it with H 2. The pure metal and H 2 O are products. What volume of H 2 at 765torr and C is needed to form 35.5g of Cu from copper (II) oxide? PLAN: Since this problem requires stoichiometry and the gas laws, we have to write a balanced equation, use the moles of Cu to calculate mols and then volume of H 2 gas. mass (g) of Cu mol of Cu mol of H 2 L of H 2 divide by M molar ratio SOLUTION: 35.5g Cu 0.559mol H 2 x use known P and T to find V mol Cu 63.55g Cu CuO(s) + H 2 (g) Cu(s) + H 2 O(g) 1mol H 2 1 mol Cu = 0.559mol H atm*l x mol*k 1.01atm 498K = 22.6L

41 Solving for an Unknown Gas Variable at Fixed Conditions A steel tank has a volume of 438L and is filled with 0.885kg of O 2. Calculate the pressure of O 2 at 21 0 C. V, T and mass, which can be converted to moles (n), are given. We use the ideal gas law to find P. V = 438L T = 21 0 C (convert to K) n = 0.885kg (convert to mol) P = unknown 0.885kg 103 g kg nrt P = = V mol O g O 2 = 27.7mol O mol x L atm*l mol*k 21 0 C = 294K x 294K = 1.53atm

42 Using the Ideal Gas Law in a Limiting-Reactant Problem PROBLEM: The alkali metals [Group 1A(1)] react with the halogens [Group 7A(17)] to form ionic metal halides. What mass of potassium chloride forms when 5.25L of chlorine gas at 0.950atm and 293K reacts with 17.0g of potassium? PLAN: After writing the balanced equation, we use the ideal gas law to find the number of moles of reactants, the limiting reactant and moles of product. SOLUTION: 2K(s) + Cl 2 (g) 2KCl(s) P = 0.950atm V = 5.25L T = 293K n = PV Cl = 0.950atm x 5.25L = 0.207mol 2 RT atm*l x 293K mol*k 2mol KCl 17.0g mol K 0.207mol Cl = 0.435mol K 2 1mol Cl 39.10g K 2 2mol KCl Cl 2 is the limiting reactant mol K 2mol K 74.55g KCl 0.414mol KCl = 30.9 g KCl mol KCl n = unknown = 0.414mol KCl formed = 0.435mol KCl formed

43 Summary of the stoichiometric relationships among the amount (mol,n) of gaseous reactant or product and the gas variables pressure (P), volume (V), and temperature (T). P,V,T of gas A amount (mol) of gas A amount (mol) of gas B P,V,T of gas B ideal gas law molar ratio from balanced equation ideal gas law

44 Standard Molar Volume

45 Density (d) Calculations d = m V = PM RT m is the mass of the gas in g M is the molar mass of the gas Molar Mass (M ) of a Gaseous Substance M = drt P d is the density of the gas in g/l

46 Finding the Molar Mass of a Volatile Liquid A chemist isolates from a petroleum sample a colorless liquid with the properties of cyclohexane (C 6 H 12 ). The Dumas method is used to obtain the following data to determine its molar mass: Volume of flask = 213mL Mass of flask + gas = g T = C Mass of flask = g P = 754 torr Is the calculated molar mass consistent with the liquid being cyclohexane? Use unit conversions, mass of gas and density-m relationship. M = m = ( )g = 0.582g m RT = 0.582g atm*l x x 373K mol*k VP 0.213L x 0.992atm = 84.4g/mol M of C 6 H 12 is 84.16g/mol and the calculated value is within experimental error.

47 Calculating Gas Density Calculate the density (in g/l) of carbon dioxide and the number of molecules per liter (a) at STP (0 0 C and 1 atm) and (b) at ordinary room conditions (20. 0 C and 1.00atm). Density is mass/unit volume; substitute for volume in the ideal gas equation. Since the identity of the gas is known, we can find the molar mass. Convert mass/l to molecules/l with Avogardro s number. M x P d = mass/volume PV = nrt V = nrt/p d = RT 1.96g L (a) d = 44.01g/mol x 1atm = 1.96g/L atm*l mol*k x 273K mol CO x10 23 molecules 44.01g CO 2 mol = 2.68x10 22 molecules CO 2 /L

48 Calculating Gas Density continued (b) d = 44.01g/mol x 1atm atm*l mol*k x 293K = 1.83g/L 1.83g L mol CO x10 23 molecules 44.01g CO 2 mol = 2.50x10 22 molecules CO 2 /L

49 The Molar Mass of a Gas n = mass M = PV RT M = m RT VP d = m V M = d RT P

50 Dalton s Law of Partial Pressures V and T are constant P 1 P 2 P total = P 1 + P 2

51 Dalton s Law of Partial Pressures P total = P 1 + P 2 + P P 1 = c 1 x P total where c 1 is the mole fraction c 1 = n 1 n 1 + n 2 + n = n 1 n total

52 Applying Dalton s Law of Partial Pressures PROBLEM: In a study of O 2 uptake by muscle at high altitude, a physiologist prepares an atmosphere consisting of 79 mol% N 2, 17 mol% 16 O 2, and 4.0 mol% 18 O 2. (The isotope 18 O will be measured to determine the O 2 uptake.) The pressure of the mixture is 0.75atm to simulate high altitude. Calculate the mole fraction and partial pressure of 18 O 2 in the mixture. PLAN: Find the c and P from P total and mol% 18 O O 2 18 O 2 mol% 18 O 2 divide by 100 SOLUTION: c 18 O 2 = 4.0mol% 18 O = c 18 O 2 P = c x P total = x 0.75atm = 0.030atm 18 O 18 2 O 2 multiply by P total partial pressure P 18 O 2

53 Kinetic theory of gases and Dalton s Law of Partial Pressures Molecules do not attract or repel one another P exerted by one type of molecule is unaffected by the presence of another gas P total = SP i

54

55 Calculating the Amount of Gas Collected Over Water PROBLEM: PLAN: Acetylene (C 2 H 2 ), an important fuel in welding, is produced in the laboratory when calcium carbide (CaC 2 ) reaction with water: CaC 2 (s) + 2H 2 O(l) C 2 H 2 (g) + Ca(OH) 2 (aq) For a sample of acetylene that is collected over water, the total gas pressure (adjusted to barometric pressure) is 738torr and the volume is 523mL. At the temperature of the gas (23 0 C), the vapor pressure of water is 21torr. How many grams of acetylene are collected? The difference in pressures will give us the P for the C 2 H 2. The ideal gas law will allow us to find n. Converting n to grams requires the molar mass, M. P C2 H = (738-21)torr = 717torr 2 P total P C2 H 2 P H2 O n = PV RT n g C2 H 2 C2 H 2 717torr atm 760torr = 0.943atm x M

56 Calculating the Amount of Gas Collected Over Water continued n C2 H 2 = 0.943atm x 0.523L atm*l x 296K mol*k = 0.203mol 0.203mol 26.04g C 2 H 2 mol C 2 H 2 = g C 2 H 2

57

58 Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties. NH 4 Cl NH 3 17 g/mol HCl 36 g/mol

59 Avogadro s Law V a n E k = 1/2 mass x speed 2 E k = 1/2 mass x u 2 u 2 is the root-mean-square speed u rms = 3RT M R = 8.314Joule/mol*K Graham s Law of Effusion The rate of effusion of a gas is inversely related to the square root of its molar mass. rate of effusion a 1 M

60 Applying Graham s Law of Effusion PROBLEM: Calculate the ratio of the effusion rates of helium and methane (CH 4 ). PLAN: The effusion rate is inversely proportional to the square root of the molar mass for each gas. Find the molar mass of both gases and find the inverse square root of their masses. SOLUTION: M of CH 4 = 16.04g/mol M of He = 4.003g/mol rate rate He CH 4 = = 2.002

61 Real Gases Nonideal Conditions - when gas gets close to conditions where it will liquify Lower Temperature Higher Pressure P an V 2 2 V nb nrt

62 Real Gases Effect of Intermolecular Forces Corrected Pressure, a Corrected Volume, b

Some Important Industrial Gases

Some Important Industrial Gases Gaseous state Table 5.1 Some Important Industrial Gases Name (Formula) Methane (CH 4 ) Ammonia (NH 3 ) Chlorine (Cl 2 ) Oxygen (O 2 ) Ethylene (C 2 H 4 ) Origin and Use natural deposits; domestic fuel

More information

Gases and the Kinetic- Molecular Theory. ก ก ก ก Mc-Graw Hill. Gases and the Kinetic Molecular Theory

Gases and the Kinetic- Molecular Theory. ก ก ก ก Mc-Graw Hill. Gases and the Kinetic Molecular Theory ก ก Gases and the Kinetic- Molecular Theory ก ก ก ก Mc-Graw Hill 1 Gases and the Kinetic Molecular Theory 5.1 An Overview of the Physical States of Matter 5. Gas Pressure and Its Measurement 5.3 The Gas

More information

Chapter 5 Gases and the Kinetic-Molecular Theory

Chapter 5 Gases and the Kinetic-Molecular Theory Chapter 5 Gases and the Kinetic-Molecular Theory Name (Formula) Methane (CH 4 ) Ammonia (NH 3 ) Chlorine (Cl 2 ) Oxygen (O 2 ) Ethylene (C 2 H 4 ) Origin and Use natural deposits; domestic fuel from N

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas Apparatus for Studying the Relationship Between Pressure and Volume of a Gas As P (h) increases V decreases 1 Boyle s Law P α 1/V P x V = constant P 1 x V 1 = P 2 x V 2 Constant temperature Constant amount

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

Gases 5-1. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases 5-1. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases 5-1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. An Overview of the Physical States of Matter The Distinction of Gases from Liquids and Solids 1. Gas

More information

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Gases: Their Properties & Behavior. Chapter 09 Slide 1 9 Gases: Their Properties & Behavior Chapter 09 Slide 1 Gas Pressure 01 Chapter 09 Slide 2 Gas Pressure 02 Units of pressure: atmosphere (atm) Pa (N/m 2, 101,325 Pa = 1 atm) Torr (760 Torr = 1 atm) bar

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Elements that exist as gases at 250C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period. Chapter 11 Gases Energy order of the p p and s p orbitals changes across the period. Due to lower nuclear charge of B, C & N there is no s-p orbitals interaction Due to high nuclear charge of O, F& Ne

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Gases. Gases and the Kinetic Molecular Theory. Chapter 5. Gases have different physical properties compared to liquids and solids. width.

Gases. Gases and the Kinetic Molecular Theory. Chapter 5. Gases have different physical properties compared to liquids and solids. width. Gases Chapter 5 Gases and the Kinetic Molecular Theory 5.1 An Overview of the hysical States of Matter 5.2 Gas ressure and Its Measurement 5.3 The Gas Laws and Their Experimental Foundations 5.4 Further

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Chapter 11 Gases 1 Copyright McGraw-Hill 2009 Chapter 11 Gases Copyright McGraw-Hill 2009 1 11.1 Properties of Gases The properties of a gas are almost independent of its identity. (Gas molecules behave as if no other molecules are present.) Compressible

More information

Gases. Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere

Gases. Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 1 Physical Characteristics of Gases

More information

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61 Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College Cottleville, MO Chapter 10 Problems Problems

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Gases. Characteristics of Gases. Unlike liquids and solids, gases Gases Characteristics of Gases Unlike liquids and solids, gases expand to fill their containers; are highly compressible; have extremely low densities. 1 Pressure Pressure is the amount of force applied

More information

The Gaseous State. Definition

The Gaseous State. Definition The Gaseous State Lecture Material Basic Chemistry 1 2013/2014 Inneke Hantoro Definition A gas is a substance that is normally in the gaseous state at ordinary temperatures and pressures. A vapor is the

More information

AP Chemistry Ch 5 Gases

AP Chemistry Ch 5 Gases AP Chemistry Ch 5 Gases Barometer - invented by Evangelista Torricelli in 1643; uses the height of a column of mercury to measure gas pressure (especially atmospheric) Manometer- a device for measuring

More information

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties 5.1 Elements That Exist as Gases at 25 C, 1 atm Chapter 5 The Gaseous State YOU READ AND BE RESPONSIBLE FOR THIS SECTION! Gaseous compounds include CH 4, NO, NO 2, H 2 S, NH 3, HCl, etc. Gas Properties

More information

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY FOLLOW UP PROBLEMS 5.1A Plan: Use the equation for gas pressure in an open-end manometer to calculate the pressure of the gas. Use conversion factors to

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Characteristics of Unlike liquids and solids, they Expand to fill their containers.

More information

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas The Gas Laws Apparatus for Studying the Relationship Between Pressure and Volume of a Gas As P (h) increases V decreases Boyle s Law P x V = constant P 1 x V 1 = P 2 x V 2 Constant temperature Constant

More information

Chapter 10 Gases. Dr. Ayman Nafady. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chapter 10 Gases. Dr. Ayman Nafady. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Gases Dr. Ayman Nafady 2009, Prentice-Hall, 10.1. Characteristics of Gases Unlike liquids

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10. Chapter 10 Gases 10.1 Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.1) Unlike liquids and solids, gases expand to fill their

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion Chapter 3 Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

Chapter 5. The Gas Laws

Chapter 5. The Gas Laws Chapter 5 The Gas Laws 1 Pressure Force per unit area. Gas molecules fill container. Molecules move around and hit sides. Collisions are the force. Container has the area. Measured with a barometer. 2

More information

Chapter 10. Gases. The Gas Laws

Chapter 10. Gases. The Gas Laws Page 1 of 12 10.1 Characteristics of Gases. Chapter 10. Gases. All substances have three phases; solid, liquid and gas. Substances that are liquids or solids under ordinary conditions may also exist as

More information

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases Chapter 10 part 1: Ideal Gases Read: BLB 10.1 5 HW: BLB 10.2,19a,b, 23, 26, 30, 39, 41, 45, 49 Sup 10:1 6 Know: What is pressure? Gases Which elements exist as gases at ordinary temperature and pressure?

More information

Although different gasses may differ widely in their chemical properties, they share many physical properties

Although different gasses may differ widely in their chemical properties, they share many physical properties IV. Gases (text Chapter 9) A. Overview of Chapter 9 B. Properties of gases 1. Ideal gas law 2. Dalton s law of partial pressures, etc. C. Kinetic Theory 1. Particulate model of gases. 2. Temperature and

More information

What we will learn about now

What we will learn about now Chapter 4: Gases What we will learn about now We will learn how volume, pressure, temperature are related. You probably know much of this qualitatively, but we ll learn it quantitatively as well with the

More information

Gases and the Kinetic Molecular Theory

Gases and the Kinetic Molecular Theory Gases and the Kinetic olecular Theory Importance in atmospheric phenomena, gas phase reactions, combustion engines, etc. 5.1 The hysical States of atter The condensed states liquid and solid The gaseous

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 10 James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements with simple formulas

More information

Gases and Kinetic Molecular Theory

Gases and Kinetic Molecular Theory 1 Gases and Kinetic Molecular Theory 1 CHAPTER GOALS 1. Comparison of Solids, Liquids, and Gases. Composition of the Atmosphere and Some Common Properties of Gases 3. Pressure 4. Boyle s Law: The Volume-Pressure

More information

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94 CHAPTER 5GASES 1,,8,9,11,1,14,17,19,0,,4,6,8,0,,8,40,4,45,46,51,5,55,57,6,6,80,8,88,94 5.1 a) The volume of the liquid remains constant, but the volume of the gas increases to the volume of the larger

More information

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works. Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? n understanding of real world phenomena. n understanding of how science works. Gas Uniformly fills any container. Mixes completely

More information

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1.

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1. Standard T & P (STP) T = 73 K (0 o C) P = 1 atm = 101.35 kpa = 1.0135 bar At STP, 1 mol of any ideal gas occupies.4 L.4 L Gas Density We can use PV = nrt to determine the density of gases. What are the

More information

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is:

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is: Standard T & P (STP) The standard temperature and pressure for gases is: At STP, 1 mol of any ideal gas occupies 22.4 L T = 273 K (0 o C) P = 1 atm = 101.325 kpa = 1.01325 bar 22.4 L Using STP in problems

More information

Chapter 5: Gases. Definitions: Phases of Matter 10/27/2011

Chapter 5: Gases. Definitions: Phases of Matter 10/27/2011 Chapter 5: Gases 5.1 Definitions 5.2 The First Laws 5.3 The Ideal Gas Law 5.4 Stoichiometry and Gases 5.5 Mixtures of Gases (Partial Pressures) 5.6 Kinetic Molecular Theory 5.7 Effusion and Diffusion 5.8-9

More information

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory Ideal gas: a gas in which all collisions between atoms or molecules are perfectly elastic (no energy lost) there are no intermolecular attractive forces Think of an ideal gas as a collection of perfectly

More information

Gases. Announcements KNOW THESE. Gases and the Kinetic Molecular Theory. Chapter 5

Gases. Announcements KNOW THESE. Gases and the Kinetic Molecular Theory. Chapter 5 Announcements --Exam 2 Sept 5 6:00-7:30M Coverage Chapter 4-6. lease see blog for skipped material. Gases Chapter 5 Quiz 4 (Today or Thursday) Quiz 5 (Thursday Sept 23) 40 MC/2 long question format: 1.5

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 5 GASES Properties of Gases Pressure History and Application of the Gas Laws Partial Pressure Stoichiometry of

More information

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar Gases A Chemistry Lecture Outline Name: Basics on Gases composition of the atmosphere: properties of gases: vapors: gases of substances that are normally liquids or solids Equation for pressure: 1 atm

More information

Properties of Gases. Properties of Gases. Pressure. Three phases of matter. Definite shape and volume. solid. Definite volume, shape of container

Properties of Gases. Properties of Gases. Pressure. Three phases of matter. Definite shape and volume. solid. Definite volume, shape of container Properties of Gases Properties of Gases Three phases of matter solid Definite shape and volume liquid Definite volume, shape of container gas Shape and volume of container Properties of Gases A gas is

More information

12.2. The Ideal Gas Law. Density and Molar Mass of Gases SECTION. Key Terms

12.2. The Ideal Gas Law. Density and Molar Mass of Gases SECTION. Key Terms SECTION 12.2 The Ideal Gas Law You have related the combined gas law to Avogadro s volume-mole gas relationship using two sets of conditions. This enabled you to make calculations of pressure, temperature,

More information

Substances that are Gases under Normal Conditions

Substances that are Gases under Normal Conditions Chapter 5: Gases 5.1 Early Experiments 5.2 The gas laws of Boyle, Charles, and Avogadro 5.3 The Ideal Gas Law 5.4 Gas Stiochiometry 5.5 Dalton s Law of Partial Pressures 5.6 The Kinetic molecular Theory

More information

Properties of Gases. Occupy the entire volume of their container Compressible Flow readily and mix easily Have low densities, low molecular weight

Properties of Gases. Occupy the entire volume of their container Compressible Flow readily and mix easily Have low densities, low molecular weight Chapter 5 Gases Properties of Gases Occupy the entire volume of their container Compressible Flow readily and mix easily Have low densities, low molecular weight Atmospheric Pressure Atmospheric pressure

More information

Centimeters of mercury

Centimeters of mercury CHAPTER 11 PROPERTIES OF GASES Gases have an indefinite shape: a gas takes the shape of its container and fills it uniformly. If the shape of the container changes, so does the shape of the gas. Gases

More information

Comparison of Solids, Liquids, and Gases

Comparison of Solids, Liquids, and Gases CHAPTER 8 GASES Comparison of Solids, Liquids, and Gases The density of gases is much less than that of solids or liquids. Densities (g/ml) Solid Liquid Gas H O 0.97 0.998 0.000588 CCl 4.70.59 0.00503

More information

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 A Gas fills any container. completely

More information

Test Bank for Chemistry 9th Edition by Zumdahl

Test Bank for Chemistry 9th Edition by Zumdahl Test Bank for Chemistry 9th Edition by Zumdahl 1. Gases generally have A) low density B) high density C) closely packed particles D) no increase in volume when temperature is increased E) no decrease in

More information

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law)

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law) Chapter 10 Gases Conditions of ideal gases: Ideal gases have no attractive forces between the molecules. the atoms volume taken into account when looking at the volume a gas occupies. Low pressure and

More information

Warning!! Chapter 5 Gases. Chapter Objectives. Chapter Objectives. Chapter Objectives. Air Pollution

Warning!! Chapter 5 Gases. Chapter Objectives. Chapter Objectives. Chapter Objectives. Air Pollution Warning!! Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 5 Gases These slides contains visual aids for learning BUT they are NOT the actual lecture notes! Failure to attend to lectures most

More information

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws!

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws! Gases n Properties n Kinetic Molecular Theory n Variables n The Atmosphere n Gas Laws Properties of a Gas n No definite shape or volume n Gases expand to fill any container n Thus they take the shape of

More information

Gases: Units of pressure: the pascal(pa)(1 Pa = 1 N/m2 = 1 kg m-1

Gases: Units of pressure: the pascal(pa)(1 Pa = 1 N/m2 = 1 kg m-1 Gases: Units of pressure: the pascal(pa)(1 Pa = 1 N/m 2 = 1 kg m -1 s -2 ) psi(pounds per square inch) atmosphere(atm) millimeters of mercury(mm Hg) torr(1 torr = 1 mm Hg) kilopascal(kpa) Mercury Barometer:

More information

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All Preparation of the standard solution Exp 5: Copyright Houghton Mifflin Company.All 1 1 Mass of KHP: 5.2 5.5 g Volume of volumetric flask: 250.0 cm Molarity of standard (KHP) solution: M = n/v Copyright

More information

Chapter 5 Gases. A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings

Chapter 5 Gases. A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings Chapter 5 Gases A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings The properties of a gas depends upon four variables-

More information

Chapter Ten- Gases. STUDY GUIDE AP Chemistry

Chapter Ten- Gases. STUDY GUIDE AP Chemistry STUDY GUIDE AP Chemistry Chapter Ten- Gases Lecture Notes 10.1 Characteristics of Gases All substances have three phases: solid, liquid and gas. Substances that are liquids or solids under ordinary conditions

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education Lecture Presentation Chapter 10 2015 Pearson Education James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements

More information

ANNOUNCEMENTS. Exam 3 Score will update soon. Chapter 9 home work due Dec. 7th. Chapter 10 and 11 home work due Dec. 14th.

ANNOUNCEMENTS. Exam 3 Score will update soon. Chapter 9 home work due Dec. 7th. Chapter 10 and 11 home work due Dec. 14th. ANNOUNCEMENTS Exam 3 Score will update soon. Chapter 9 home work due Dec. 7th. Chapter 10 and 11 home work due Dec. 14th. Final exam is on Dec 15th, 7:30-9:30 pm LECTURE OBJECTIVES Chapter 9.1-9.3 Describe

More information

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Preview Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Section 1 Gases and Pressure Lesson Starter Make a list of gases you already know about. Separate your list into elements,

More information

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall, Inc.

More information

Chapter 10. Chapter 10 Gases

Chapter 10. Chapter 10 Gases Chapter 10 Gases Earth is surrounded by a layer of gaseous molecules - the atmosphere - extending out to about 50 km. 10.1 Characteristics of Gases Gases low density; compressible volume and shape of container

More information

Gases. Chapter 11. Preview. 27-Nov-11

Gases. Chapter 11. Preview. 27-Nov-11 Chapter 11 Gases Dr. A. Al-Saadi 1 Preview Properties and measurements of gases. Effects of temperature, pressure and volume. Boyle s law. Charles s law, and Avogadro s law. The ideal gas equation. Gas

More information

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY . Pressure CHAPER GASES AND KINEIC-MOLECULAR HEORY. Boyle s Law: he -P Relationship 3. Charles Law: he - Relationship 4. Standard &P 5. he Combined Gas Law Equation 6. Avogadro s Law and the Standard Molar

More information

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works. 10/16/018 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 1 10/16/018 A Gas Uniformly fills any container.

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

נושא 6 גזים. 1 Prof. Zvi C. Koren

נושא 6 גזים. 1 Prof. Zvi C. Koren נושא 6 גזים 1 Prof. Zvi C. Koren Torricelli Charles Avogadro Graham Dalton Boyle Gay-Lussac Kelvin Maxwell Boltzmann 2 Prof. Zvi C. Koren Gas Laws: A Practical Application - Air Bags Example: An automobile

More information

Gases and Kinetic Theory

Gases and Kinetic Theory Gases and Kinetic Theory Chemistry 35 Fall 2000 Gases One of the four states of matter Simplest to understand both physically and chemically Gas Properties Low density Fluid Can be defined by their: 1.

More information

Gases. What are the four variables needed to describe a gas?

Gases. What are the four variables needed to describe a gas? Gases What are the four variables needed to describe a gas? 1 Gases The simplest state of matter K.E. >> intermolecular forces Random motion Predictable behavior 2 Gases at STP Few Elements: H 2 N 2 O

More information

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 10. Gases. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 John Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike

More information

CHAPTER 13 Gases The Gas Laws

CHAPTER 13 Gases The Gas Laws CHAPTER 13 Gases 13.1 The Gas Laws The gas laws apply to ideal gases, which are described by the kinetic theory in the following five statements. Gas particles do not attract or repel each other. Gas particles

More information

The Gaseous State of Matter

The Gaseous State of Matter The Gaseous State of Matter Chapter 12 Hein and Arena Version 1.1 Dr. Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Company The Kinetic- Molecular Theory 2 The Kinetic-Molecular

More information

Slide 1 / A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m 2 A 55 B 0.55 C 5.5 D 1.8 E 18

Slide 1 / A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m 2 A 55 B 0.55 C 5.5 D 1.8 E 18 Slide 1 / 76 1 A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m 2 A 55 B 0.55 C 5.5 D 1.8 E 18 Slide 2 / 76 2 A pressure of 1.00 atm is the same as a pressure of of mm Hg. A 193 B

More information

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state Chapter 5 Gases and Their Properties Why Study Gases? some very common elements exist in a gaseous state our gaseous atmosphere provides one means of transferring energy and material throughout the globe

More information

Chapter 8 Gases. 8.1 Kinetic Theory of Gases. 8.2 Barometer. Properties of Gases. 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.

Chapter 8 Gases. 8.1 Kinetic Theory of Gases. 8.2 Barometer. Properties of Gases. 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8. Chapter 8 Gases 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.8 Ideal Gas Law * You do not need to know Boyle s (8.3), Charles (8.4), Gay-Lussac s (8.5), Avogadro s (8.7) or the Combined gas (8.6) laws.

More information

Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law.

Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law. Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law. 5. Dalton s law of partial pressures. Kinetic Molecular Theory

More information

Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of. 2 NaN 3 ---> > 2 Na + 3 N 2

Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of. 2 NaN 3 ---> > 2 Na + 3 N 2 1 2 Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide,, NaN 3. 2 NaN 3 ---> > 2 Na + 3 N 2 3 4 There is a lot of free space in a gas. Gases can be expanded

More information

Gas Volumes and the Ideal Gas Law

Gas Volumes and the Ideal Gas Law Section 3, 9B s Gases react in whole-number ratios. Equal volumes of gases under the same conditions contain equal numbers of molecules. All gases have a volume of 22.4 L under standard conditions. In

More information

Hood River Valley High

Hood River Valley High Chemistry Hood River Valley High Name: Period: Unit 7 States of Matter and the Behavior of Gases Unit Goals- As you work through this unit, you should be able to: 1. Describe, at the molecular level, the

More information

Ideal Gas & Gas Stoichiometry

Ideal Gas & Gas Stoichiometry Ideal Gas & Gas Stoichiometry Avogadro s Law V a number of moles (n) V = constant x n Constant temperature Constant pressure V 1 /n 1 = V 2 /n 2 Ammonia burns in oxygen to form nitric oxide (NO) and water

More information

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER CHAPTER 9 The Gaseous State CHAPTER 10 Solids, Liquids, and Phase Transitions CHAPTER 11 Solutions 392 Gas Liquid Solid 9 THE GASEOUS STATE 9.1 The

More information

Lecture 2 PROPERTIES OF GASES

Lecture 2 PROPERTIES OF GASES Lecture 2 PROPERTIES OF GASES Reference: Principles of General Chemistry, Silberberg Chapter 6 SOME FUNDAMENTAL DEFINITIONS: SYSTEM: the part of the universe being the subject of study 1 SOME FUNDAMENTAL

More information

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems

Exercises. Pressure. CHAPTER 5 GASES Assigned Problems For Review 7. a. At constant temperature, the average kinetic energy of the He gas sample will equal the average kinetic energy of the Cl 2 gas sample. In order for the average kinetic energies to be the

More information

Properties of Gases. 5 important gas properties:

Properties of Gases. 5 important gas properties: Gases Chapter 12 Properties of Gases 5 important gas properties: 1) Gases have an indefinite shape 2) Gases have low densities 3) Gases can compress 4) Gases can expand 5) Gases mix completely with other

More information

Chapter 5 Gases - 4 Gas Stoichiometry. Dr. Sapna Gupta

Chapter 5 Gases - 4 Gas Stoichiometry. Dr. Sapna Gupta Chapter 5 Gases - 4 Gas Stoichiometry Dr. Sapna Gupta Stoichiometry in Gases Amounts of gaseous reactants and products can be calculated by utilizing The ideal gas law to relate moles to T, P and V. Moles

More information

IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass

IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass TOPICS 1. Intermolecular Forces 2. Properties of Gases 3. Pressure 4. Gas Laws Boyle, Charles, Lussac 5. Ideal Gas Law 6. Gas Stoichiometry 7. Partial Pressure 8. Kinetic Molecular Theory 9. Effusion &

More information

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart Chapter 10 Gases & Kinetic Molecular Theory I) Gases, Liquids, Solids Gases Liquids Solids Particles far apart Particles touching Particles closely packed very compressible slightly comp. Incomp. D g

More information

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3.

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3. 5.6 Dalton s Law of Partial Pressures Dalton s Law of Partial Pressure; The total pressure of a gas is the sum of all its parts. P total = P 1 + P + P 3 + P n Pressures are directly related to moles: n

More information

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy I. Ideal gases. A. Ideal gas law review. GASES (Chapter 5) 1. PV = nrt Ideal gases obey this equation under all conditions. It is a combination ofa. Boyle's Law: P 1/V at constant n and T b. Charles's

More information

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J.

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Murphy Chapter 10 Gases Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry

More information

B. Characteristics of Gases assume volume and shape of container very compressible mix evenly and completely lower density than liquids and solids

B. Characteristics of Gases assume volume and shape of container very compressible mix evenly and completely lower density than liquids and solids Chapter 5: Gases Laws for gases are simpler than for liquids and solids. The behavior of gases is predictable. 5.1 Substances that exist as gases Air - 78 % N2; 21 % O2; 1 % other (including CO2 which

More information