Chapter 3: The Normal Distributions

Size: px
Start display at page:

Download "Chapter 3: The Normal Distributions"

Transcription

1 Chapter 3: The Normal Distributions graphs-normal.doc / histogram-density.txt / normal dist table / ch3-image Ch3 exercises: 3.2, 3.3, 3.4, 3.10, 3.26, 3.27, 3.43 Density curves Mean, median, and standard deviation of a density curve The Normal distributions Standardization The standard normal distribution Normal distribution calculations The family of normal distributions plays a central role in statistics. The purpose of this chapter is to introduce the idea of a density curve; to explain some of the key properties of the normal family of density curves; and to show you how to work with the normal distribution table and calculations.

2 Chapter 3 Concepts 2 Density Curves Normal Distributions The Rule The Standard Normal Distribution Finding Normal Proportions Using the Standard Normal Table Finding a Value When Given a Proportion

3 Density Curves 4 In Chapters 1 and 2, we developed a kit of graphical and numerical tools for describing distributions. Now, we ll add one more step to the strategy. Exploring Quantitative Data 1. Always plot your data: make a graph. 2. Look for the overall pattern (shape, center, and spread) and for striking departures such as outliers. 3. Calculate a numerical summary to briefly describe center and spread. 4. Sometimes the overall pattern of a large number of observations is so regular that we can describe it by a smooth curve.

4 Density Curves 5 Example: Here is a histogram of vocabulary scores of 947 seventh graders. The smooth curve drawn over the histogram is a mathematical model for the distribution.

5 Density Curves 6 The areas of the shaded bars in this histogram represent the proportion of scores in the observed data that are less than or equal to 6.0. This proportion is equal to Now the area under the smooth curve to the left of 6.0 is shaded. If the scale is adjusted so the total area under the curve is exactly 1, then this curve is called a density curve. The proportion of the area to the left of 6.0 is now equal to

6 Density Curves 7 A density curve is a curve that: is always on or above the horizontal axis has an area of exactly 1 underneath it A density curve describes the overall pattern of a distribution. The area under the curve and above any range of values on the horizontal axis is the proportion of all observations that fall in that range.

7 Density Curves 8 Our measures of center and spread apply to density curves as well as to actual sets of observations. Distinguishing the Median and Mean of a Density Curve The median of a density curve is the equal-areas point, the point that divides the area under the curve in half. The mean of a density curve is the balance point, at which the curve would balance if made of solid material. The median and the mean are the same for a symmetric density curve. They both lie at the center of the curve. The mean of a skewed curve is pulled away from the median in the direction of the long tail. 8

8 Density Curves 9 The mean and standard deviation computed from actual observations (data) are denoted by x and s, respectively. The mean and standard deviation of the actual distribution represented by the density curve are denoted by µ ( mu ) and ( sigma ), respectively.

9 Normal Distributions 10 One particularly important class of density curves are the Normal curves, which describe Normal distributions. All Normal curves are symmetric, single-peaked, and bell-shaped A Specific Normal curve is described by giving its mean µ and standard deviation σ.

10 Normal Distributions 11 A Normal distribution is described by a Normal density curve. Any particular Normal distribution is completely specified by two numbers: its mean µ and standard deviation σ. The mean of a Normal distribution is the center of the symmetric Normal curve. The standard deviation is the distance from the center to the change-of-curvature points on either side. We abbreviate the Normal distribution with mean µ and standard deviation σ as N(µ,σ).

11 The Rule 12 The Rule In the Normal distribution with mean µ and standard deviation σ: Approximately 68% of the observations fall within σ of µ. Approximately 95% of the observations fall within 2σ of µ. Approximately 99.7% of the observations fall within 3σ of µ.

12 Normal Distributions 13 The distribution of Iowa Test of Basic Skills (ITBS) vocabulary scores for 7 th -grade students in Gary, Indiana, is close to Normal. Suppose the distribution is N(6.84, 1.55). Sketch the Normal density curve for this distribution. What percent of ITBS vocabulary scores are less than 3.74? What percent of the scores are between 5.29 and 9.94?

13 , >i flout J..s'S. of scores '" (GSS t111n,,.,... t1! >.:1.! !1!1.!1-f 11.+!1 IT8Sscort: ;{.1~ 3.f'f S".'-J ~ Uf 11.1!1 ITBS!.Cbrt: WI 3.1+ S".'-! !1!l.!l.f 11.-t!l IT8S SCbrt: X- N(6.84, 1.55) What percent ofitbs vocabulary scores are less than 3.74? z = (x-mu)/sigma = ( )/1.55 = -2 P(z < -2) = (or "about 2.5%") What percent ofthe scores are between 3.74 and 9.94? P( 3.74<x<9.94) = P( ( )/1.55<Z<( )/1.55) = P(-2<Z<2) = P(Z<2)-P(Z<-2) = ~

14 , 'ftbouus's of scores (Ire tesstktn,,1-t. t1!j 3.7-f S'.j.!J !1!l.!l'f 11.'f!1 ~.1!f 3.1'f S' ,!1 5.!1-f. 1H!1 ITBSscorc,.1!1 3.'H S:'-!1 6.1'1 1.3!1!1.1'1-11.'1!1 ITBSscorc IT8Sscorc x ~ N(6.84, 1.55) What percent ofitbs vocabulary scores are less than 3.74? z = (x-mu)/sigma = ( )/1.55 = -2 P(z < -2) = (or "about 2.5%") What percent ofthe scores are between 3.74 and 9.94? P( 3.74<x<9.94) = P( ( )/1.55<Z<( )/1.55) =P(-2<Z<2) = P(Z<2)-P(Z<-2) = = What percent of scores are between 9.94 and 8.39 Z= (( )/1.55) = 2 z =(( )/1.55) = 1 P( 1 < Z < 2) = = ( )/2 # = p( 3.74< X< 9.94) = p(( )/1.55 < z < (( )/1.55) = p( -2 < z < 2) = = p( 5.29 < X < 8.39) p (( )/1.55 < z <( )/1.55) p(-1 < z < 1) = = ( )/2 =

15 x ~ N(6.84, 1.55) What percent of scores are between 5.29 and 9.94 P(5.29<X<9.94) =P( ( )/1.55<Z<( )/1.55) =P(-1<Z<2) =P(Z<2)-P(Z<-1) = =

16 The Standard Normal Distribution 14 All Normal distributions are the same if we measure in units of size σ from the mean µ as center. The standard Normal distribution is the Normal distribution with mean 0 and standard deviation 1. If a variable x has any Normal distribution N(µ,σ) with mean µ and standard deviation σ, then the standardized variable x - μ has the standard Normal distribution, N(0,1). z Key 20 3 means 203 pounds Stems = 10 s Leaves = 1 s

17 The Standard Normal Table 15 Because all Normal distributions are the same when we standardize, we can find areas under any Normal curve from a single table. The Standard Normal Table Table A is a table of areas under the standard Normal curve. The table entry for each value z is the area under the curve to the left of z. Suppose we want to find the proportion of observations from the standard Normal distribution that are less than We can use Table A: P(z < 0.81) =.7910 Z

18 Normal Calculations 16 Find the proportion of observations from the standard Normal distribution that are between and Can you find the same proportion using a different approach? 1 ( ) = =

19 Normal Calculations 17 How to Solve Problems Involving Normal Distributions State: Express the problem in terms of the observed variable x. Plan: Draw a picture of the distribution and shade the area of interest under the curve. Do: Perform calculations. Standardize x to restate the problem in terms of a standard Normal variable z. Use Table A and the fact that the total area under the curve is 1 to find the required area under the standard Normal curve. Conclude: Write your conclusion in the context of the problem.

20 Normal Calculations 18 According to the Health and Nutrition Examination Study of , the heights (in inches) of adult men aged are N(70, 2.8). How tall must a man be in the lower 10% for men aged 18 to 24? N(70, 2.8).10? 70

21 Normal Calculations 19 How tall must a man be in the lower 10% for men aged 18 to 24?.10 N(70, 2.8)? 70 Look up the closest probability (closest to 0.10) in the table. Find the corresponding standardized score. The value you seek is that many standard deviations from the mean. Z = -1.28

22 Normal Calculations 20 How tall must a man be in the lower 10% for men aged 18 to 24? Z = ? 70 N(70, 2.8) We need to unstandardize the z-score to find the observed value (x): z x x z x = 70 + z(2.8) = 70 + [(1.28 ) (2.8)] = 70 + (3.58) = A man would have to be approximately inches tall or less to place in the lower 10% of all men in the population.

23 BMTables.indd Page /15/11 4:25:16 PM user-s163 user-f TABLES Table entry for z is the area under the standard Normal curve to the left of z. Table entry z TABLE A Standard Normal cumulative proportions z

24 BMTables.indd Page /15/11 4:25:16 PM user-s163 user-f452 TABLES 677 Table entry for z is the area under the standard Normal curve to the left of z. Table entry z TABLE A Standard Normal cumulative proportions (continued) z

25 EXAMPLE 3.2 Iowa Test scores the distribution of Iowa Test vocabulary scores for seventh-grade students is close to Normal. Suppose that the distribution is exactly Normal with mean μ = 6.84 and standard deviation σ = (These are the mean and standard deviation of the 947 actual scores.) FIGURE 3.10 The rule applied to the distribution of Iowa Test scores for seventh-grade students in Gary, Indiana, for Example 3.2. The mean and standard deviation are μ = 6.84 and σ = Figure 3.10 applies the rule to the Iowa Test scores. The 95 part of the rule says that 95% of all scores are between μ 2σ = 6.84 (2)(1.55) = = 3.74 and μ + 2σ = (2)(1.55) = = 9.94 The other 5% of scores are outside this range. Because Normal distributions are symmetric, half of these scores are lower than 3.74 and half are higher than That is, 2.5% of the scores are below 3.74 and 2.5% are above 9.94.

26 EXAMPLE 3.3 Iowa Test scores Mean = 6.84 standard deviation = 1.55 A score of 5.29 is one standard deviation ( = 1.55) below the mean. What percent of scores are higher than 5.29? Find the answer by adding areas in the figure. Here is the calculation in pictures: Be sure you understand where the 16% came from. We know that 68% of scores are between 5.29 and 8.39, so 32% of scores are outside that range. These are equally split between the two tails, 16% below 5.29 and 16% above Z = ( ) / 1.55 = P(z < -1) = =

27 EXAMPLE 3.4 Example 3.4 Standardizing women s heights The heights of women aged 20 to 29 are approximately Normal with μ = 64.3 inches and σ = 2.7 inches. The standardized height is A woman s standardized height is the number of standard deviations by which her height differs from the mean height of all young women. A woman 70 inches tall, for example, has standardized height or 2.11 standard deviations above the mean. Similarly, a woman 5 feet (60 inches) tall has standardized height or 1.59 standard deviations less than the mean height.

28 Example 3.5 Who qualifies for college sports? The National Collegiate Athletic Association (NCAA) uses a sliding scale for eligibility for Division I athletes. Those students with a 2.5 high school GPA must have a combined score of at least 820 on the Mathematics and Reading parts of the SAT in order to compete in their first college year. The scores of the 1.5 million high school seniors taking the SAT this year are approximately Normal with mean 1026 and standard deviation 209. What percent of high school seniors meet this SAT requirement of a combined score of 820 or better? Here is the calculation in a picture: the proportion of scores above 820 is the area under the curve to the right of 820. That s the total area under the curve (which is always 1) minus the cumulative proportion up to 820. pnorm(( )/209) # = pnorm(( )/209) # = Z = ( ) / 209 = P(z> ) = 1 P(z<-0.986) = = 0.84 About 84% of all high school seniors meet this SAT requirement of a combined math and reading score of 820 or higher.

29 EXAMPLE 3.6 The standard Normal table What proportion of observations on a standard Normal variable z take values less than 1.47? Solution: To find the area to the left of 1.47, locate 1.4 in the left-hand column of Table A, then locate the remaining digit 7 as.07 in the top row. The entry opposite 1.4 and under.07 is This is the cumulative proportion we seek. Figure 3.11 illustrates this area.

30 EXAMPLE 3.7 Who qualifies for college sports? Scores of high school seniors on the SAT follow the Normal distribution with mean μ = 1026 and standard deviation σ = 209. What proportion of seniors score at least 820? Step 1. Draw a picture. The picture shows that area to the right of 820 = 1 area to the left of 820 Step 2. Standardize. Call the SAT score x. Subtract the mean and then divide by the standard deviation to transform the problem about x into a problem about a standard Normal z: Step 3. Use the table. The picture shows that we need the cumulative proportion for x = 820. Step 2 says that this is the same as the cumulative proportion for z = The Table A entry for z = 0.99 says that this cumulative proportion is The area to the right of 0.99 is therefore =

31 EXAMPLE 3.8 Who qualifies for college sports? the National Collegiate Athletic Association uses a sliding scale for eligibility for Division I athletics. What proportion of all students who take the SAT would meet an SAT requirement of at least 720, but not 820? Step 1. State the problem and draw a picture. Call the SAT score x. The variable x has the N(1026, 209) distribution. What proportion of SAT scores fall between 720 and 820? Here is the picture: Step 2. Standardize. Subtract the mean and then divide by the standard deviation to turn x into a standard Normal z: Step 3. Use the table. Follow the picture (we added the z scores to the picture to help you): pnorm(-0.99)-pnorm(-1.46) # = About 9% of high school seniors have SAT scores between 720 and 820.

32 EXAMPLE 3.9 Find the top 10% using software Scores on the SAT Reading test in recent years follow approximately the N(504, 111) distribution. How high must a student score to place in the top 10% of all students taking the SAT? We want to find the SAT score x with area 0.1 to its right under the Normal curve with mean μ = 504 and standard deviation σ = 111. That s the same as finding the SAT score x with area 0.9 to its left. Figure 3.12 poses the question in graphical form. Most software will tell you x when you plug in mean 504, standard deviation 111, and cumulative proportion 0.9. Here is Minitab s output: FIGURE 3.12 Locating the point on a Normal curve with area 0.10 to its right, for Examples 3.9 and qnorm(0.9) # = (qnorm(0.9)*111)+504 # = Minitab gives x = So scores above 647 are in the top 10%. (Round up because SAT scores can only be whole numbers.)

33 EXAMPLE 3.10 Find the top 10% using Table A Scores on the SAT Reading test in recent years follow approximately the N(504, 111) distribution. How high must a student score to place in the top 10% of all students taking the SAT? Step 1. State the problem and draw a picture. This step is exactly as in Example 3.9. The picture is Figure The x-value that puts a student in the top 10% is the same as the x-value for which 90% of the area is to the left of x. Step 2. Use the table. Look in the body of Table A for the entry closest to 0.9. It is This is the entry corresponding to z = So z = 1.28 is the standardized value with area 0.9 to its left. Step 3. Unstandardize to transform z back to the original x scale. We know that the standardized value of the unknown x is z = This means that x itself lies 1.28 standard deviations above the mean on this particular Normal curve. That is, A student must score at least 647 to place in the highest 10%.

34 EXAMPLE 3.11 Find the first quartile High levels of cholesterol in the blood increase the risk of heart disease. For 14-yearold boys, the distribution of blood cholesterol is approximately Normal with mean μ = 170 milligrams of cholesterol per deciliter of blood (mg/dl) and standard deviation σ = 30 mg/dl. 8 What is the first quartile of the distribution of blood cholesterol? Step 1. State the problem and draw a picture. Call the cholesterol level x. The variable x has the N(170, 30) distribution. The first quartile is the value with 25% of the distribution to its left. Figure 3.13 is the picture. Step 2. Use the table. Look in the body of Table A for the entry closest to It is This is the entry corresponding to z = So z = 0.67 is the standardized value with area 0.25 to its left. Step 3. Unstandardize. The cholesterol level corresponding to z = 0.67 lies 0.67 standard deviations below the mean, so The first quartile of blood cholesterol levels in 14-year-old boys is about 150 mg/dl. qnorm(0.25,170,30) # =

STA 218: Statistics for Management

STA 218: Statistics for Management Al Nosedal. University of Toronto. Fall 2017 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Simple Example Random Experiment: Rolling a fair

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Q: What is data? Q: What does the data look like? Q: What conclusions can we draw from the data? Q: Where is the middle of the data? Q: Why is the spread of the data important? Q:

More information

The Standard Deviation as a Ruler and the Normal Model

The Standard Deviation as a Ruler and the Normal Model The Standard Deviation as a Ruler and the Normal Model Al Nosedal University of Toronto Summer 2017 Al Nosedal University of Toronto The Standard Deviation as a Ruler and the Normal Model Summer 2017 1

More information

Percentile: Formula: To find the percentile rank of a score, x, out of a set of n scores, where x is included:

Percentile: Formula: To find the percentile rank of a score, x, out of a set of n scores, where x is included: AP Statistics Chapter 2 Notes 2.1 Describing Location in a Distribution Percentile: The pth percentile of a distribution is the value with p percent of the observations (If your test score places you in

More information

6.3 Use Normal Distributions. Page 399 What is a normal distribution? What is standard normal distribution? What does the z-score represent?

6.3 Use Normal Distributions. Page 399 What is a normal distribution? What is standard normal distribution? What does the z-score represent? 6.3 Use Normal Distributions Page 399 What is a normal distribution? What is standard normal distribution? What does the z-score represent? Normal Distribution and Normal Curve Normal distribution is one

More information

Looking at data: distributions - Density curves and Normal distributions. Copyright Brigitte Baldi 2005 Modified by R. Gordon 2009.

Looking at data: distributions - Density curves and Normal distributions. Copyright Brigitte Baldi 2005 Modified by R. Gordon 2009. Looking at data: distributions - Density curves and Normal distributions Copyright Brigitte Baldi 2005 Modified by R. Gordon 2009. Objectives Density curves and Normal distributions!! Density curves!!

More information

Density Curves and the Normal Distributions. Histogram: 10 groups

Density Curves and the Normal Distributions. Histogram: 10 groups Density Curves and the Normal Distributions MATH 2300 Chapter 6 Histogram: 10 groups 1 Histogram: 20 groups Histogram: 40 groups 2 Histogram: 80 groups Histogram: 160 groups 3 Density Curve Density Curves

More information

+ Check for Understanding

+ Check for Understanding n Measuring Position: Percentiles n One way to describe the location of a value in a distribution is to tell what percent of observations are less than it. Definition: The p th percentile of a distribution

More information

11. The Normal distributions

11. The Normal distributions 11. The Normal distributions The Practice of Statistics in the Life Sciences Third Edition 2014 W. H. Freeman and Company Objectives (PSLS Chapter 11) The Normal distributions Normal distributions The

More information

Chapter 5: Exploring Data: Distributions Lesson Plan

Chapter 5: Exploring Data: Distributions Lesson Plan Lesson Plan Exploring Data Displaying Distributions: Histograms Interpreting Histograms Displaying Distributions: Stemplots Describing Center: Mean and Median Describing Variability: The Quartiles The

More information

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things.

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things. (c) Epstein 2013 Chapter 5: Exploring Data Distributions Page 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms Individuals are the objects described by a set of data. These individuals

More information

Continuous random variables

Continuous random variables Continuous random variables A continuous random variable X takes all values in an interval of numbers. The probability distribution of X is described by a density curve. The total area under a density

More information

EQ: What is a normal distribution?

EQ: What is a normal distribution? Unit 5 - Statistics What is the purpose EQ: What tools do we have to assess data? this unit? What vocab will I need? Vocabulary: normal distribution, standard, nonstandard, interquartile range, population

More information

are the objects described by a set of data. They may be people, animals or things.

are the objects described by a set of data. They may be people, animals or things. ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2016 C h a p t e r 5 : E x p l o r i n g D a t a : D i s t r i b u t i o n s P a g e 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms

More information

Statistics Lecture 3

Statistics Lecture 3 Statistics 111 - Lecture 3 Continuous Random Variables The probable is what usually happens. (Aristotle ) Moore, McCabe and Craig: Section 4.3,4.5 Continuous Random Variables Continuous random variables

More information

The empirical ( ) rule

The empirical ( ) rule The empirical (68-95-99.7) rule With a bell shaped distribution, about 68% of the data fall within a distance of 1 standard deviation from the mean. 95% fall within 2 standard deviations of the mean. 99.7%

More information

Finding Quartiles. . Q1 is the median of the lower half of the data. Q3 is the median of the upper half of the data

Finding Quartiles. . Q1 is the median of the lower half of the data. Q3 is the median of the upper half of the data Finding Quartiles. Use the median to divide the ordered data set into two halves.. If n is odd, do not include the median in either half. If n is even, split this data set exactly in half.. Q1 is the median

More information

6 THE NORMAL DISTRIBUTION

6 THE NORMAL DISTRIBUTION CHAPTER 6 THE NORMAL DISTRIBUTION 341 6 THE NORMAL DISTRIBUTION Figure 6.1 If you ask enough people about their shoe size, you will find that your graphed data is shaped like a bell curve and can be described

More information

STP 420 INTRODUCTION TO APPLIED STATISTICS NOTES

STP 420 INTRODUCTION TO APPLIED STATISTICS NOTES INTRODUCTION TO APPLIED STATISTICS NOTES PART - DATA CHAPTER LOOKING AT DATA - DISTRIBUTIONS Individuals objects described by a set of data (people, animals, things) - all the data for one individual make

More information

Section 5.4. Ken Ueda

Section 5.4. Ken Ueda Section 5.4 Ken Ueda Students seem to think that being graded on a curve is a positive thing. I took lasers 101 at Cornell and got a 92 on the exam. The average was a 93. I ended up with a C on the test.

More information

ACMS Statistics for Life Sciences. Chapter 11: The Normal Distributions

ACMS Statistics for Life Sciences. Chapter 11: The Normal Distributions ACMS 20340 Statistics for Life Sciences Chapter 11: The Normal Distributions Introducing the Normal Distributions The class of Normal distributions is the most widely used variety of continuous probability

More information

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67 Chapter 6 The Standard Deviation as a Ruler and the Normal Model 1 /67 Homework Read Chpt 6 Complete Reading Notes Do P129 1, 3, 5, 7, 15, 17, 23, 27, 29, 31, 37, 39, 43 2 /67 Objective Students calculate

More information

68% 95% 99.7% x x 1 σ. x 1 2σ. x 1 3σ. Find a normal probability

68% 95% 99.7% x x 1 σ. x 1 2σ. x 1 3σ. Find a normal probability 11.3 a.1, 2A.1.B TEKS Use Normal Distributions Before You interpreted probability distributions. Now You will study normal distributions. Why? So you can model animal populations, as in Example 3. Key

More information

8.1 Frequency Distribution, Frequency Polygon, Histogram page 326

8.1 Frequency Distribution, Frequency Polygon, Histogram page 326 page 35 8 Statistics are around us both seen and in ways that affect our lives without us knowing it. We have seen data organized into charts in magazines, books and newspapers. That s descriptive statistics!

More information

Chapter 6 The Standard Deviation as a Ruler and the Normal Model

Chapter 6 The Standard Deviation as a Ruler and the Normal Model Chapter 6 The Standard Deviation as a Ruler and the Normal Model Overview Key Concepts Understand how adding (subtracting) a constant or multiplying (dividing) by a constant changes the center and/or spread

More information

The Normal Distribution. Chapter 6

The Normal Distribution. Chapter 6 + The Normal Distribution Chapter 6 + Applications of the Normal Distribution Section 6-2 + The Standard Normal Distribution and Practical Applications! We can convert any variable that in normally distributed

More information

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected What is statistics? Statistics is the science of: Collecting information Organizing and summarizing the information collected Analyzing the information collected in order to draw conclusions Two types

More information

Recall that the standard deviation σ of a numerical data set is given by

Recall that the standard deviation σ of a numerical data set is given by 11.1 Using Normal Distributions Essential Question In a normal distribution, about what percent of the data lies within one, two, and three standard deviations of the mean? Recall that the standard deviation

More information

Chapter 5: Exploring Data: Distributions Lesson Plan

Chapter 5: Exploring Data: Distributions Lesson Plan Lesson Plan Exploring Data Displaying Distributions: Histograms For All Practical Purposes Mathematical Literacy in Today s World, 7th ed. Interpreting Histograms Displaying Distributions: Stemplots Describing

More information

MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline.

MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline. MATH 2560 C F03 Elementary Statistics I Lecture 1: Displaying Distributions with Graphs. Outline. data; variables: categorical & quantitative; distributions; bar graphs & pie charts: What Is Statistics?

More information

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability

Section 6-1 Overview. Definition. Definition. Using Area to Find Probability. Area and Probability Chapter focus is on: Continuous random variables Normal distributions Figure 6-1 Section 6-1 Overview ( -1 e 2 x-µ σ ) 2 f(x) = σ 2 π Formula 6-1 Slide 1 Section 6-2 The Standard Normal Distribution Key

More information

Math 223 Lecture Notes 3/15/04 From The Basic Practice of Statistics, bymoore

Math 223 Lecture Notes 3/15/04 From The Basic Practice of Statistics, bymoore Math 223 Lecture Notes 3/15/04 From The Basic Practice of Statistics, bymoore Chapter 3 continued Describing distributions with numbers Measuring spread of data: Quartiles Definition 1: The interquartile

More information

Section 3.2 Measures of Central Tendency

Section 3.2 Measures of Central Tendency Section 3.2 Measures of Central Tendency 1 of 149 Section 3.2 Objectives Determine the mean, median, and mode of a population and of a sample Determine the weighted mean of a data set and the mean of a

More information

Francine s bone density is 1.45 standard deviations below the mean hip bone density for 25-year-old women of 956 grams/cm 2.

Francine s bone density is 1.45 standard deviations below the mean hip bone density for 25-year-old women of 956 grams/cm 2. Chapter 3 Solutions 3.1 3.2 3.3 87% of the girls her daughter s age weigh the same or less than she does and 67% of girls her daughter s age are her height or shorter. According to the Los Angeles Times,

More information

Math 2311 Sections 4.1, 4.2 and 4.3

Math 2311 Sections 4.1, 4.2 and 4.3 Math 2311 Sections 4.1, 4.2 and 4.3 4.1 - Density Curves What do we know about density curves? Example: Suppose we have a density curve defined for defined by the line y = x. Sketch: What percent of observations

More information

Remember your SOCS! S: O: C: S:

Remember your SOCS! S: O: C: S: Remember your SOCS! S: O: C: S: 1.1: Displaying Distributions with Graphs Dotplot: Age of your fathers Low scale: 45 High scale: 75 Doesn t have to start at zero, just cover the range of the data Label

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 382 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation σ. These measurements should have the following properties:

More information

STT 315 This lecture is based on Chapter 2 of the textbook.

STT 315 This lecture is based on Chapter 2 of the textbook. STT 315 This lecture is based on Chapter 2 of the textbook. Acknowledgement: Author is thankful to Dr. Ashok Sinha, Dr. Jennifer Kaplan and Dr. Parthanil Roy for allowing him to use/edit some of their

More information

Solutions to Additional Questions on Normal Distributions

Solutions to Additional Questions on Normal Distributions Solutions to Additional Questions on Normal Distributions 1.. EPA fuel economy estimates for automobile models tested recently predicted a mean of.8 mpg and a standard deviation of mpg for highway driving.

More information

Essential Question: What are the standard intervals for a normal distribution? How are these intervals used to solve problems?

Essential Question: What are the standard intervals for a normal distribution? How are these intervals used to solve problems? Acquisition Lesson Planning Form Plan for the Concept, Topic, or Skill Normal Distributions Key Standards addressed in this Lesson: MM3D2 Time allotted for this Lesson: Standard: MM3D2 Students will solve

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Engineers and scientists are constantly exposed to collections of facts, or data. The discipline of statistics provides methods for organizing and summarizing data, and for drawing

More information

3.1 Measure of Center

3.1 Measure of Center 3.1 Measure of Center Calculate the mean for a given data set Find the median, and describe why the median is sometimes preferable to the mean Find the mode of a data set Describe how skewness affects

More information

The normal distribution

The normal distribution The normal distribution Patrick Breheny March 3 Patrick Breheny to Biostatistics (BIOS 4120) 1/25 A common histogram shape Histograms of infant mortality rates, heights, and cholesterol levels: Africa

More information

Descriptive statistics

Descriptive statistics Patrick Breheny February 6 Patrick Breheny to Biostatistics (171:161) 1/25 Tables and figures Human beings are not good at sifting through large streams of data; we understand data much better when it

More information

Describing Distributions With Numbers Chapter 12

Describing Distributions With Numbers Chapter 12 Describing Distributions With Numbers Chapter 12 May 1, 2013 What Do We Usually Summarize? Measures of Center. Percentiles. Measures of Spread. A Summary. 1.0 What Do We Usually Summarize? source: Prof.

More information

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Chapter 2: Summarising numerical data Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Extract from Study Design Key knowledge Types of data: categorical (nominal and ordinal)

More information

Chapter 2 Solutions Page 15 of 28

Chapter 2 Solutions Page 15 of 28 Chapter Solutions Page 15 of 8.50 a. The median is 55. The mean is about 105. b. The median is a more representative average" than the median here. Notice in the stem-and-leaf plot on p.3 of the text that

More information

Chapters 1 & 2 Exam Review

Chapters 1 & 2 Exam Review Problems 1-3 refer to the following five boxplots. 1.) To which of the above boxplots does the following histogram correspond? (A) A (B) B (C) C (D) D (E) E 2.) To which of the above boxplots does the

More information

(quantitative or categorical variables) Numerical descriptions of center, variability, position (quantitative variables)

(quantitative or categorical variables) Numerical descriptions of center, variability, position (quantitative variables) 3. Descriptive Statistics Describing data with tables and graphs (quantitative or categorical variables) Numerical descriptions of center, variability, position (quantitative variables) Bivariate descriptions

More information

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode.

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. Chapter 3 Numerically Summarizing Data Chapter 3.1 Measures of Central Tendency Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. A1. Mean The

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Reminders. Homework due tomorrow Quiz tomorrow

Reminders. Homework due tomorrow Quiz tomorrow Reminders Homework due tomorrow Quiz tomorrow 1 Warm Up - ACT Math Scores Distribution of ACT Math Scores Density 0 5 10 15 20 25 30 35 scores What percent of scores are between 12 and 24? Options: 38%,

More information

Z-tables. January 12, This tutorial covers how to find areas under normal distributions using a z-table.

Z-tables. January 12, This tutorial covers how to find areas under normal distributions using a z-table. Z-tables January 12, 2019 Contents The standard normal distribution Areas above Areas below the mean Areas between two values of Finding -scores from areas Z tables in R: Questions This tutorial covers

More information

Section 7.1 Properties of the Normal Distribution

Section 7.1 Properties of the Normal Distribution Section 7.1 Properties of the Normal Distribution In Chapter 6, talked about probability distributions. Coin flip problem: Difference of two spinners: The random variable x can only take on certain discrete

More information

Chapter 5. Understanding and Comparing. Distributions

Chapter 5. Understanding and Comparing. Distributions STAT 141 Introduction to Statistics Chapter 5 Understanding and Comparing Distributions Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 27 Boxplots How to create a boxplot? Assume

More information

A C E. Answers Investigation 4. Applications

A C E. Answers Investigation 4. Applications Answers Applications 1. 1 student 2. You can use the histogram with 5-minute intervals to determine the number of students that spend at least 15 minutes traveling to school. To find the number of students,

More information

Standard Normal Calculations

Standard Normal Calculations Standard Normal Calculations Section 4.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 10-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Introduction to Statistics

Introduction to Statistics Introduction to Statistics Data and Statistics Data consists of information coming from observations, counts, measurements, or responses. Statistics is the science of collecting, organizing, analyzing,

More information

Measures of. U4 C 1.2 Dot plot and Histogram 2 January 15 16, 2015

Measures of. U4 C 1.2 Dot plot and Histogram 2 January 15 16, 2015 U4 C 1. Dot plot and Histogram January 15 16, 015 U 4 : C 1.1 CCSS. 9 1.S ID.1 Dot Plots and Histograms Objective: We will be able to represent data with plots on the real number line, using: Dot Plots

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 183 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation!. These measurements should have the following properties:

More information

Chapter 2: Tools for Exploring Univariate Data

Chapter 2: Tools for Exploring Univariate Data Stats 11 (Fall 2004) Lecture Note Introduction to Statistical Methods for Business and Economics Instructor: Hongquan Xu Chapter 2: Tools for Exploring Univariate Data Section 2.1: Introduction What is

More information

QUANTITATIVE DATA. UNIVARIATE DATA data for one variable

QUANTITATIVE DATA. UNIVARIATE DATA data for one variable QUANTITATIVE DATA Recall that quantitative (numeric) data values are numbers where data take numerical values for which it is sensible to find averages, such as height, hourly pay, and pulse rates. UNIVARIATE

More information

Chapter 1 Introduction & 1.1: Analyzing Categorical Data

Chapter 1 Introduction & 1.1: Analyzing Categorical Data Chapter 1 Chapter 1 Introduction & 1.1: Analyzing Categorical Data Population Sample Make an inference about the population. Collect data from a representative sample... Perform Data Analysis, keeping

More information

Units. Exploratory Data Analysis. Variables. Student Data

Units. Exploratory Data Analysis. Variables. Student Data Units Exploratory Data Analysis Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison Statistics 371 13th September 2005 A unit is an object that can be measured, such as

More information

Chapter 4. Displaying and Summarizing. Quantitative Data

Chapter 4. Displaying and Summarizing. Quantitative Data STAT 141 Introduction to Statistics Chapter 4 Displaying and Summarizing Quantitative Data Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 31 4.1 Histograms 1 We divide the range

More information

Density Curves & Normal Distributions

Density Curves & Normal Distributions Density Curves & Normal Distributions Sections 4.1 & 4.2 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

GRE Quantitative Reasoning Practice Questions

GRE Quantitative Reasoning Practice Questions GRE Quantitative Reasoning Practice Questions y O x 7. The figure above shows the graph of the function f in the xy-plane. What is the value of f (f( ))? A B C 0 D E Explanation Note that to find f (f(

More information

Module 1. Identify parts of an expression using vocabulary such as term, equation, inequality

Module 1. Identify parts of an expression using vocabulary such as term, equation, inequality Common Core Standards Major Topic Key Skills Chapters Key Vocabulary Essential Questions Module 1 Pre- Requisites Skills: Students need to know how to add, subtract, multiply and divide. Students need

More information

The Normal Distribution (Pt. 2)

The Normal Distribution (Pt. 2) Chapter 5 The Normal Distribution (Pt 2) 51 Finding Normal Percentiles Recall that the Nth percentile of a distribution is the value that marks off the bottom N% of the distribution For review, remember

More information

Describing Distributions

Describing Distributions Describing Distributions With Numbers April 18, 2012 Summary Statistics. Measures of Center. Percentiles. Measures of Spread. A Summary Statement. Choosing Numerical Summaries. 1.0 What Are Summary Statistics?

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimating with Confidence Section 8.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE The One-Sample z Interval for a Population Mean In Section 8.1, we estimated the

More information

Section 2.3: One Quantitative Variable: Measures of Spread

Section 2.3: One Quantitative Variable: Measures of Spread Section 2.3: One Quantitative Variable: Measures of Spread Objectives: 1) Measures of spread, variability a. Range b. Standard deviation i. Formula ii. Notation for samples and population 2) The 95% rule

More information

Section 3. Measures of Variation

Section 3. Measures of Variation Section 3 Measures of Variation Range Range = (maximum value) (minimum value) It is very sensitive to extreme values; therefore not as useful as other measures of variation. Sample Standard Deviation The

More information

Statistics 528: Homework 2 Solutions

Statistics 528: Homework 2 Solutions Statistics 28: Homework 2 Solutions.4 There are several gaps in the data, as can be seen from the histogram. Minitab Result: Min Q Med Q3 Max 8 3278 22 2368 2624 Manual Result: Min Q Med Q3 Max 8 338 22.

More information

6.1 Normal Distribution

6.1 Normal Distribution GOALS: 1. Understand properties of: a) Density Curves b) Normal Curves c) Standard Normal Curve 2. Relate area under the curve to proportions of the population represented by the curve. Study Ch. 6.1,

More information

Statistics 100 Exam 2 March 8, 2017

Statistics 100 Exam 2 March 8, 2017 STAT 100 EXAM 2 Spring 2017 (This page is worth 1 point. Graded on writing your name and net id clearly and circling section.) PRINT NAME (Last name) (First name) net ID CIRCLE SECTION please! L1 (MWF

More information

The MidTerm Next Weak Until the end of Discrete Probability Distribution (Ch 5)

The MidTerm Next Weak Until the end of Discrete Probability Distribution (Ch 5) The MidTerm Next Weak Until the end of Discrete Probability Distribution (Ch 5) 1 1 Chapter 6. Continuous Random Variables Reminder: Continuous random variable takes infinite values Those values can be

More information

Chapter 8: Estimating with Confidence

Chapter 8: Estimating with Confidence Chapter 8: Estimating with Confidence Section 8.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 8 Estimating with Confidence n 8.1 Confidence Intervals: The Basics n 8.2

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- #

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- # Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Review and Preview 3-2 Measures

More information

1) What is the probability that the random variable has a value less than 3? 1)

1) What is the probability that the random variable has a value less than 3? 1) Ch 6 and 7 Worksheet Disclaimer; The actual exam differs NOTE: ON THIS TEST YOU WILL NEED TO USE TABLES (NOT YOUR CALCULATOR) TO FIND PROBABILITIES UNDER THE NORMAL OR CHI SQUARED OR T DISTRIBUTION! SHORT

More information

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 The aspect of the data we want to describe/measure is relative position z scores tell us how many standard deviations above or below

More information

Stat 20 Midterm 1 Review

Stat 20 Midterm 1 Review Stat 20 Midterm Review February 7, 2007 This handout is intended to be a comprehensive study guide for the first Stat 20 midterm exam. I have tried to cover all the course material in a way that targets

More information

Sampling, Frequency Distributions, and Graphs (12.1)

Sampling, Frequency Distributions, and Graphs (12.1) 1 Sampling, Frequency Distributions, and Graphs (1.1) Design: Plan how to obtain the data. What are typical Statistical Methods? Collect the data, which is then subjected to statistical analysis, which

More information

Data set B is 2, 3, 3, 3, 5, 8, 9, 9, 9, 15. a) Determine the mean of the data sets. b) Determine the median of the data sets.

Data set B is 2, 3, 3, 3, 5, 8, 9, 9, 9, 15. a) Determine the mean of the data sets. b) Determine the median of the data sets. FOUNDATIONS OF MATH 11 Ch. 5 Day 1: EXPLORING DATA VOCABULARY A measure of central tendency is a value that is representative of a set of numerical data. These values tend to lie near the middle of a set

More information

Describing Distributions With Numbers

Describing Distributions With Numbers Describing Distributions With Numbers October 24, 2012 What Do We Usually Summarize? Measures of Center. Percentiles. Measures of Spread. A Summary Statement. Choosing Numerical Summaries. 1.0 What Do

More information

MAT 155. Key Concept. Density Curve

MAT 155. Key Concept. Density Curve MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal Distributions 6 4

More information

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall)

Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) Announcements: You can turn in homework until 6pm, slot on wall across from 2202 Bren. Make sure you use the correct slot! (Stats 8, closest to wall) We will cover Chs. 5 and 6 first, then 3 and 4. Mon,

More information

1 Probability Distributions

1 Probability Distributions 1 Probability Distributions In the chapter about descriptive statistics sample data were discussed, and tools introduced for describing the samples with numbers as well as with graphs. In this chapter

More information

MODULE 9 NORMAL DISTRIBUTION

MODULE 9 NORMAL DISTRIBUTION MODULE 9 NORMAL DISTRIBUTION Contents 9.1 Characteristics of a Normal Distribution........................... 62 9.2 Simple Areas Under the Curve................................. 63 9.3 Forward Calculations......................................

More information

OCR Maths S1. Topic Questions from Papers. Representation of Data

OCR Maths S1. Topic Questions from Papers. Representation of Data OCR Maths S1 Topic Questions from Papers Representation of Data PhysicsAndMathsTutor.com 12 The back-to-back stem-and-leaf diagram below shows the number of hours of television watched per week by each

More information

MATH 1150 Chapter 2 Notation and Terminology

MATH 1150 Chapter 2 Notation and Terminology MATH 1150 Chapter 2 Notation and Terminology Categorical Data The following is a dataset for 30 randomly selected adults in the U.S., showing the values of two categorical variables: whether or not the

More information

AP Statistics - Chapter 2A Extra Practice

AP Statistics - Chapter 2A Extra Practice AP Statistics - Chapter 2A Extra Practice 1. A study is conducted to determine if one can predict the yield of a crop based on the amount of yearly rainfall. The response variable in this study is A) yield

More information

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides Chapter 7 Inference for Distributions Introduction to the Practice of STATISTICS SEVENTH EDITION Moore / McCabe / Craig Lecture Presentation Slides Chapter 7 Inference for Distributions 7.1 Inference for

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Math 140 Introductory Statistics Professor Silvia Fernández Chapter 2 Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. Visualizing Distributions Recall the definition: The

More information

Math 140 Introductory Statistics

Math 140 Introductory Statistics Visualizing Distributions Math 140 Introductory Statistics Professor Silvia Fernández Chapter Based on the book Statistics in Action by A. Watkins, R. Scheaffer, and G. Cobb. Recall the definition: The

More information

Scatterplots. 3.1: Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Section 3.1 Scatterplots and Correlation

Scatterplots. 3.1: Scatterplots & Correlation. Scatterplots. Explanatory & Response Variables. Section 3.1 Scatterplots and Correlation 3.1: Scatterplots & Correlation Scatterplots A scatterplot shows the relationship between two quantitative variables measured on the same individuals. The values of one variable appear on the horizontal

More information

University of California, Berkeley, Statistics 131A: Statistical Inference for the Social and Life Sciences. Michael Lugo, Spring 2012

University of California, Berkeley, Statistics 131A: Statistical Inference for the Social and Life Sciences. Michael Lugo, Spring 2012 University of California, Berkeley, Statistics 3A: Statistical Inference for the Social and Life Sciences Michael Lugo, Spring 202 Solutions to Exam Friday, March 2, 202. [5: 2+2+] Consider the stemplot

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

Measures of Central Tendency and their dispersion and applications. Acknowledgement: Dr Muslima Ejaz

Measures of Central Tendency and their dispersion and applications. Acknowledgement: Dr Muslima Ejaz Measures of Central Tendency and their dispersion and applications Acknowledgement: Dr Muslima Ejaz LEARNING OBJECTIVES: Compute and distinguish between the uses of measures of central tendency: mean,

More information

Unit 4 Probability. Dr Mahmoud Alhussami

Unit 4 Probability. Dr Mahmoud Alhussami Unit 4 Probability Dr Mahmoud Alhussami Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from

More information