. Using our polar coordinate conversions, we could write a

Size: px
Start display at page:

Download ". Using our polar coordinate conversions, we could write a"

Transcription

1 504 Chapte 8 Section Dot Poduct Now that we can add, sutact, and scale vectos, you might e wondeing whethe we can multiply vectos. It tuns out thee ae two diffeent ways to multiply vectos, one which esults in a nume, and one which esults in a vecto. In this section, we'll focus on the fist, called the dot poduct o scala poduct, since it poduces a single numeic value (a scala). We'll egin with some motivation. In physics, we often want to know how much of a foce is acting in the diection of motion. To detemine this, we need to know the angle etween diection of foce and the diection of motion. Likewise, in compute gaphics, the lighting system detemines how ight a tiangle on the oject should e ased on the angle etween oject and the diection of the light. In oth applications, we'e inteested in the angle etween the vectos, so let's stat thee. Suppose we have two vectos, a = a, a 1 and =, 1. Using ou pola coodinate convesions, we could wite a = a cos( α), a sin( α) and = cos( β ), sin( β ). Now, if we knew the angles α and β, we wouldn't have much wok to do - the angle etween the vectos would e θ = α β. While we cetainly could using some invese tangents to find the two angles, it would e geat if we could find a way to detemine the angle etween the vecto just fom the vecto components. To help us manipulate θ = α β, we might ty intoducing a tigonometic function: cos θ = cos α β ( ) ( ) Now we can apply the diffeence of angles identity cos θ = cos α cos β + sin α sin β ( ) ( ) ( ) ( ) ( ) Now a = a cos( ), so 1 α cos( α ) = a1 a Making those sustitutions, a1 1 a a11 + a cos( θ ) = + = a a a a cos θ = a + a ( ) 1 1, and likewise fo the othe thee components. Notice the expession on the ight is a vey simple calculation ased on the components of the vectos. It comes up so fequently we define it to e the dot poduct of the two vectos, notated y a dot. This gives us two definitions of the dot poduct.

2 Section Dot Poduct 505 Definitions of the Dot Poduct a = a1 1 + a a = a cos( θ ) The fist definition, a = a1 1 + a, gives us a simple way to calculate the dot poduct a = a cos θ, gives us a geometic fom components. The second definition, ( ) intepetation of the dot poduct, and gives us a way to find the angle etween two vectos, as we desied. Example 11 Find the dot poduct 3, 5, 1. Using the fist definition, we can calculate the dot poduct y multiplying the x components and adding that to the poduct of the y components. 3, 5,1 = (3)(5) + ( )(1) = 15 = 13 Example 1 Find the dot poduct of the two vectos shown. We can immediately see that the magnitudes of the 30 two vectos ae 7 and 6. We can quickly calculate that the angle etween the vectos is 150. Using the geometic definition of the dot poduct, 3 a = a cos ( θ ) = (6)(7) cos(150 ) = 4 = Ty it Now 1. Calculate the dot poduct 7,3, 6 Now we can etun to ou goal of finding the angle etween vectos.

3 506 Chapte 8 Example 13 An oject is eing pulled up a amp in the diection 5, 1 y a ope pulling in the diection 4,. What is the angle etween the ope and the amp? Using the component fom, we can easily calculate the dot poduct. a = 5,1 4, = (5)(4) + (1)() = 0 + = We can also calculate the magnitude of each vecto. a = = 6, = 4 + = 0 Using the geometic definition, we can solve fo the angle etween the vectos. a = a = 6 cos( θ ) 0 cos( θ ) θ = cos Example 14 Calculate the angle etween the vectos 6, 4 and, 3. Calculating the dot poduct, 6,4,3 = (6)( ) + (4)(3) = = 0 We don't even need to calculate the magnitudes in this case since the dot poduct is 0. a = a cos( θ ) 0 = a θ = cos cos( θ ) 1 0 a = cos 1 ( 0) = 90 Ty it Now. Ae the vectos 7, 3 and, 6 othogonal? If not, find the angle etween them. With the dot poduct equaling zeo, as in the last example, the angle etween the vectos will always e 90, indicating that the vectos ae othogonal, a moe geneal way of saying pependicula. This gives us a quick way to check if vectos ae othogonal.

4 Section Dot Poduct 507 Also, if the dot poduct is positive, then the inside of the invese cosine will e positive, giving an angle less than 90. A negative dot poduct will then lead to an angle lage than 90 Sign of the Dot Poduct If the dot poduct is: Zeo The vectos ae othogonal (pependicula). Positive The angle etween the vectos is less than 90 Negative The angle etween the vectos is geate than 90 Pojections In addition to finding the angle etween vectos, sometimes we want to know how much one vecto points in the diection of anothe. Fo example, when pulling an oject up a amp, we might want to know how much of the foce is exeted in the diection of motion. To detemine this we can use the idea of a pojection. a a u v In the pictue aove, u is a pojection of a onto. In othe wods, it is the potion of a that points in the same diection as. To find the length of u, we could notice that it is one side of a ight tiangle. If we define θ to e the angle etween a and u u, then cos(θ ) =, so a cos(θ ) = u. a While we could find the angle etween the vectos to detemine this magnitude, we could skip some steps y using the dot poduct diectly. Since a = a cos(θ ), a a a cos(θ ) =. Using this, we can ewite u = a cos(θ ) as u =. This gives us a the length of the pojection, sometimes denoted as comp a = u =. To find the vecto u itself, we could fist scale to a unit vecto with length 1:. Multiplying this y the length of the pojection will give a vecto in the diection of ut with the coect length.

5 508 Chapte 8 poj a a a u = = = Pojection Vecto The pojection of vecto a onto a is poj a = a The magnitude of the pojection is comp a = Example 15 Find the pojection of the vecto 3, onto the vecto 8, 6. We will need to know the dot poduct of the vectos and the magnitude of the vecto we ae pojecting onto. 3, 8,6 = (3)(8) + ( )(6) = 4 1 = 1 8,6 = = = 100 = 10 The magnitude of the pojection will e 3, 8,6 8,6 1 = = To find the pojection vecto itself, we would multiply that magnitude y 8, 6 scaled to a unit vecto. 6 8,6 6 8, = = 8,6 =, =,. 5 8, Based on the sketch aove, this answe seems easonale. Ty it Now 3. Find the component of the vecto 3, 4 that is othogonal to the vecto 8, 4 Wok In physics, when a constant foce causes an oject to move, the mechanical wok done y that foce is the poduct of the foce and the distance the oject is moved. Howeve, we only conside the potion of foce that is acting in the diection of motion.

6 Section Dot Poduct 509 This is simply the magnitude of the pojection of the foce F d vecto onto the distance vecto,. The wok done is the d poduct of that component of foce times the distance moved, the magnitude of the distance vecto. F d Wok = d = F d d F u d It tuns out that wok is simply the dot poduct of the foce vecto and the distance vecto. Wok When a foce F causes an oject to move some distance d, the wok done is Wok = F d Example 16 A cat is pulled 0 feet y applying a foce of 30 pounds on a ope held at a 30 degee angle. How much wok is done? Since wok is simply the dot poduct, we can take advantage of the geometic definition of the dot poduct in this case. Wok = F d = F d cos( θ ) = (30)(0) cos(30 ) ft-ls. 30 pounds 30 0 feet Ty it Now 4. Find the wok down moving an oject fom the point (1, 5) to (9, 14) y the foce vecto F = 3, Impotant Topics of This Section Calculate Dot Poduct Using component defintion Using geometic definition Find the angle etween two vectos Sign of the dot poduct Pojections Wok

7 510 Chapte 8 Ty it Now Answes 1. 7,3, 6 = ( 7)( ) + (3)( 6) = = 4. In the pevious Ty it Now, we found the dot poduct was -4, so the vectos ae not othogonal. The magnitudes of the vectos ae ( 7) + 3 = 58 ( ) + 6 = 40 4 θ = cos The angle etween the vectos will e and 3. We want to find the component of 3, 4 that is othogonal to the vecto 8, 4. In the pictue to the ight, that component is vecto v. Notice that u + v = a, so if we can find the pojection vecto, we can find v. 3,4 8,4 a 40 u = poj a = = 8,4 = 8,4 = 4, ( ( 8) 4 ) v u a Now we can solve u + v = a fo v. v = a u = 3,4 4, = 1, 4. The distance vecto is 9 1,14 5 = 8, 9. The wok is the dot poduct: Wok = F d = 3, 8,9 = = 4

8 Section Dot Poduct 511 Section Execises Two vectos ae descied y thei magnitude and diection in standad position. Find the dot poduct of the vectos. 1. Magnitude: 6, Diection: 45 ; Magnitude: 10, Diection: 10. Magnitude: 8, Diection: 0 ; Magnitude: 7, Diection: 305 Find the dot poduct of each pai of vectos. 3. 0, 4 ; 3, , 5 ; 3, 7 5., 1 ; 10, 13 6., 5 ; 8, 4 Find the angle etween the vectos 7. 0, 4 ; 3, , 5 ; 3, 7 9., 4 ; 1, , 1 ; 8, 11. 4, ; 8, , 3 ; 6, Find a value fo k so that, 7 and k, 4 will e othogonal. 14. Find a value fo k so that 3, 5 and, k will e othogonal. 15. Find the magnitude of the pojection of 8, 4 onto 1, Find the magnitude of the pojection of, 7 onto 4, Find the pojection of 6, 10 onto 1, Find the pojection of 0, 4 onto 3, A scientist needs to detemine the angle of eflection when a lase hits a mio. The pictue shows the vecto epesenting the lase eam, and a vecto that is othogonal to the mio. Find the acute angle etween these, the angle of eflection. 0. A tiangle has coodinates at A: (1,4), B: (,7), and C: (4,). Find the angle at point B. 1. A oat is tapped ehind a log lying paallel to the dock. It only equies 10 pounds of foce to pull the oat diectly towads you, ut ecause of the log, you'll have to pull at a 45 angle. How much foce will you have to pull with? (We'e going to assume that the log is vey slimy and doesn't contiute any additional esistance.)

9 51 Chapte 8 1. A lage oulde needs to e dagged to a new position. If pulled diectly hoizontally, the oulde would 15 equie 400 pounds of pulling foce to move. We need to pull the oulde using a ope tied to the ack of a lage tuck, foming a 15 angle fom the gound. How much foce will the tuck need to pull with? 1. Find the wok done against gavity y pushing a 0 pound cat 10 feet up a amp that is 10 aove hoizontal. Assume thee is no fiction, so the only foce is 0 pounds downwads due to gavity.. Find the wok done against gavity y pushing a 30 pound cat 15 feet up a amp that is 8 aove hoizontal. Assume thee is no fiction, so the only foce is 30 pounds downwads due to gavity. 3. An oject is pulled to the top of a 40 foot amp that foms a 10 angle with the gound. It is pulled y ope exeting a foce of 10 pounds at a 35 angle elative to the gound. Find the wok done An oject is pulled to the top of a 30 foot amp that foms a 0 angle with the gound. It is pulled y ope exeting a foce of 80 pounds at a 30 angle elative to the gound. Find the wok done.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math Pecalculus Ch. 6 Review Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. ) ) 6 7 0 Two sides and an angle (SSA) of a tiangle ae

More information

Practice Problems Test 3

Practice Problems Test 3 Pactice Poblems Test ********************************************************** ***NOTICE - Fo poblems involving ʺSolve the Tiangleʺ the angles in this eview ae given by Geek lettes: A = α B = β C = γ

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

CALCULUS II Vectors. Paul Dawkins

CALCULUS II Vectors. Paul Dawkins CALCULUS II Vectos Paul Dawkins Table of Contents Peface... ii Vectos... 3 Intoduction... 3 Vectos The Basics... 4 Vecto Aithmetic... 8 Dot Poduct... 13 Coss Poduct... 21 2007 Paul Dawkins i http://tutoial.math.lama.edu/tems.aspx

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

Sides and Angles of Right Triangles 6. Find the indicated side length in each triangle. Round your answers to one decimal place.

Sides and Angles of Right Triangles 6. Find the indicated side length in each triangle. Round your answers to one decimal place. Chapte 7 Peequisite Skills BLM 7-1.. Convet a Beaing to an Angle in Standad Position 1. Convet each beaing to an angle in standad position on the Catesian gaph. a) 68 127 c) 215 d) 295 e) N40 W f) S65

More information

Physics Tutorial V1 2D Vectors

Physics Tutorial V1 2D Vectors Physics Tutoial V1 2D Vectos 1 Resolving Vectos & Addition of Vectos A vecto quantity has both magnitude and diection. Thee ae two ways commonly used to mathematically descibe a vecto. y (a) The pola fom:,

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapte 7-8 Review Math 1316 Name SHORT ANSWER. Wite the wod o phase that best completes each statement o answes the question. Solve the tiangle. 1) B = 34.4 C = 114.2 b = 29.0 1) Solve the poblem. 2) Two

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

PHYS Summer Professor Caillault Homework Solutions

PHYS Summer Professor Caillault Homework Solutions PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 3 13. Pictue the Poblem: The whale dives along a staight line tilted 20.0 below hoizontal fo 150 m as shown in the figue. Stategy: Resolve

More information

When two numbers are written as the product of their prime factors, they are in factored form.

When two numbers are written as the product of their prime factors, they are in factored form. 10 1 Study Guide Pages 420 425 Factos Because 3 4 12, we say that 3 and 4 ae factos of 12. In othe wods, factos ae the numbes you multiply to get a poduct. Since 2 6 12, 2 and 6 ae also factos of 12. The

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS 4 Equilibium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. of Rigid Bodies Lectue Notes: J. Walt Ole Texas Tech Univesity Contents Intoduction Fee-Body Diagam

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Section 26 The Laws of Rotational Motion

Section 26 The Laws of Rotational Motion Physics 24A Class Notes Section 26 The Laws of otational Motion What do objects do and why do they do it? They otate and we have established the quantities needed to descibe this motion. We now need to

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate. MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

Vectors Serway and Jewett Chapter 3

Vectors Serway and Jewett Chapter 3 Vectos Sewa and Jewett Chapte 3 Scalas and Vectos Vecto Components and Aithmetic Vectos in 3 Dimensions Unit vectos i, j, k Pactice Poblems: Chapte 3, poblems 9, 19, 31, 45, 55, 61 Phsical quantities ae

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9 SPH4 nit 6.3 Gavitational Potential negy Page of Notes Physics ool box he gavitational potential enegy of a syste of two (spheical) asses is diectly popotional to the poduct of thei asses, and invesely

More information

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room.

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room. Multiple choice questions [00 points] Answe all of the following questions. Read each question caefully. Fill the coect ule on you scanton sheet. Each coect answe is woth 4 points. Each question has exactly

More information

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j.

Phys 201A. Homework 6 Solutions. F A and F r. B. According to Newton s second law, ( ) ( )2. j = ( 6.0 m / s 2 )ˆ i ( 10.4m / s 2 )ˆ j. 7. We denote the two foces F A + F B = ma,sof B = ma F A. (a) In unit vecto notation F A = ( 20.0 N)ˆ i and Theefoe, Phys 201A Homewok 6 Solutions F A and F B. Accoding to Newton s second law, a = [ (

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 9 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 9 Solutions Math 451: Euclidean and Non-Euclidean Geomety MWF 3pm, Gasson 04 Homewok 9 Solutions Execises fom Chapte 3: 3.3, 3.8, 3.15, 3.19, 3.0, 5.11, 5.1, 5.13 Execise 3.3. Suppose that C and C ae two cicles with

More information

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687 Chapte 4 Newton s Laws of Motion 1 Newton s Law of Motion Si Isaac Newton (1642 1727) published in 1687 2 1 Kinematics vs. Dynamics So fa, we discussed kinematics (chaptes 2 and 3) The discussion, was

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

Trigonometry Standard Position and Radians

Trigonometry Standard Position and Radians MHF 4UI Unit 6 Day 1 Tigonomety Standad Position and Radians A. Standad Position of an Angle teminal am initial am Angle is in standad position when the initial am is the positive x-axis and the vetex

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

PHYS Summer Professor Caillault Homework Solutions. Chapter 9 PHYS - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 9 3. Pictue the Poblem The owne walks slowly towad the notheast while the cat uns eastwad and the dog uns nothwad. Stategy Sum the momenta

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Motion in One Dimension

Motion in One Dimension Motion in One Dimension Intoduction: In this lab, you will investigate the motion of a olling cat as it tavels in a staight line. Although this setup may seem ovesimplified, you will soon see that a detailed

More information

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving. Chapte 5 Fiction When an object is in motion it is usually in contact with a viscous mateial (wate o ai) o some othe suface. So fa, we have assumed that moving objects don t inteact with thei suoundings

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Current Balance Warm Up

Current Balance Warm Up PHYSICS EXPERIMENTS 133 Cuent Balance-1 Cuent Balance Wam Up 1. Foce between cuent-caying wies Wie 1 has a length L (whee L is "long") and caies a cuent I 0. What is the magnitude of the magnetic field

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

KEPLER S LAWS AND PLANETARY ORBITS

KEPLER S LAWS AND PLANETARY ORBITS KEPE S AWS AND PANETAY OBITS 1. Selected popeties of pola coodinates and ellipses Pola coodinates: I take a some what extended view of pola coodinates in that I allow fo a z diection (cylindical coodinates

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

4. Two and Three Dimensional Motion

4. Two and Three Dimensional Motion 4. Two and Thee Dimensional Motion 1 Descibe motion using position, displacement, elocity, and acceleation ectos Position ecto: ecto fom oigin to location of the object. = x i ˆ + y ˆ j + z k ˆ Displacement:

More information

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving Physics 11 Chapte 4: Foces and Newton s Laws of Motion Thee is nothing eithe good o bad, but thinking makes it so. William Shakespeae It s not what happens to you that detemines how fa you will go in life;

More information

PHYSICS 1050 Mid-term Test 1 University of Wyoming 8 February 2007

PHYSICS 1050 Mid-term Test 1 University of Wyoming 8 February 2007 Name: PHYSICS 1050 Mid-tem Test 1 Univesity of Wyoming 8 Febuay 2007 This test is open-note and open-book. This means that any efeence mateial is pemitted duing the test. Calculatos also ae pemitted. Howeve,

More information

PHYSICS 151 Notes for Online Lecture #20

PHYSICS 151 Notes for Online Lecture #20 PHYSICS 151 Notes fo Online Lectue #20 Toque: The whole eason that we want to woy about centes of mass is that we ae limited to looking at point masses unless we know how to deal with otations. Let s evisit

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws. AP-C WEP 1. Wok a. Calculate the wok done by a specified constant foce on an object that undegoes a specified displacement. b. Relate the wok done by a foce to the aea unde a gaph of foce as a function

More information

PHYS Summer Professor Caillault Homework Solutions

PHYS Summer Professor Caillault Homework Solutions PHYS 1111 - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 4 3. Pictue the Poblem: The ca moves up the 5.5 incline with constant acceleation, changing both its hoizontal and vetical displacement

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle?

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle? 9. Tigonometic Functions of An Angle Essential Question How can ou use the unit cicle to define the tigonometic functions of an angle? Let be an angle in standad position with, ) a point on the teminal

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapte 1 Intoduction 1.1 The Natue of Phsics Phsics has developed out of the effots of men and women to eplain ou phsical envionment. Phsics encompasses a emakable vaiet of phenomena: planeta obits adio

More information

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b,

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b, SAMPLE QUIZ 3 - PHYSICS 1301.1 his is a closed book, closed notes quiz. Calculatos ae pemitted. he ONLY fomulas that may be used ae those given below. Define all symbols and justify all mathematical expessions

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

Chapter 5: Trigonometric Functions of Angles

Chapter 5: Trigonometric Functions of Angles Chapte 5: Tigonometic Functions of Angles In the pevious chaptes we have exploed a vaiety of functions which could be combined to fom a vaiety of shapes. In this discussion, one common shape has been missing:

More information

Chapter 8. Accelerated Circular Motion

Chapter 8. Accelerated Circular Motion Chapte 8 Acceleated Cicula Motion 8.1 Rotational Motion and Angula Displacement A new unit, adians, is eally useful fo angles. Radian measue θ(adians) = s = θ s (ac length) (adius) (s in same units as

More information

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II

ENGR 1990 Engineering Mathematics Application of Trigonometric Functions in Mechanical Engineering: Part II ENGR 990 Engineeing Mathematics pplication of Tigonometic Functions in Mechanical Engineeing: Pat II Poblem: Find the coodinates of the end-point of a two-link plana obot am Given: The lengths of the links

More information

Solution to HW 3, Ma 1a Fall 2016

Solution to HW 3, Ma 1a Fall 2016 Solution to HW 3, Ma a Fall 206 Section 2. Execise 2: Let C be a subset of the eal numbes consisting of those eal numbes x having the popety that evey digit in the decimal expansion of x is, 3, 5, o 7.

More information

Chapter 4: The laws of motion. Newton s first law

Chapter 4: The laws of motion. Newton s first law Chapte 4: The laws of motion gavitational Electic magnetic Newton s fist law If the net foce exeted on an object is zeo, the object continues in its oiginal state of motion: - an object at est, emains

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

V V The circumflex (^) tells us this is a unit vector

V V The circumflex (^) tells us this is a unit vector Vecto Vecto have Diection and Magnitude Mike ailey mjb@c.oegontate.edu Magnitude: V V V V x y z vecto.pptx Vecto Can lo e Defined a the oitional Diffeence etween Two oint 3 Unit Vecto have a Magnitude

More information

Chapter 1: Introduction to Polar Coordinates

Chapter 1: Introduction to Polar Coordinates Habeman MTH Section III: ola Coodinates and Comple Numbes Chapte : Intoduction to ola Coodinates We ae all comfotable using ectangula (i.e., Catesian coodinates to descibe points on the plane. Fo eample,

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving Chapte 4 Homewok Solutions Easy P4. Since the ca is moving with constant speed and in a staight line, the zeo esultant foce on it must be egadless of whethe it is moving (a) towad the ight o the left.

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points PHYSICS 1210 Exam 2 Univesity of Wyoming 14 Mach ( Day!) 2013 150 points This test is open-note and closed-book. Calculatos ae pemitted but computes ae not. No collaboation, consultation, o communication

More information

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3. Appendix A Vecto Algeba As is natual, ou Aeospace Stuctues will be descibed in a Euclidean thee-dimensional space R 3. A.1 Vectos A vecto is used to epesent quantities that have both magnitude and diection.

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx SUPPLEMENTARY MATERIAL 613 7.6.3 CHAPTER 7 ( px + q) a x + bx + c dx. We choose constants A and B such that d px + q A ( ax + bx + c) + B dx A(ax + b) + B Compaing the coefficients of x and the constant

More information

Tutorial Exercises: Central Forces

Tutorial Exercises: Central Forces Tutoial Execises: Cental Foces. Tuning Points fo the Keple potential (a) Wite down the two fist integals fo cental motion in the Keple potential V () = µm/ using J fo the angula momentum and E fo the total

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path.

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path. PROJECTILE MOTION A pojectile is any object that has been thown though the ai. A foce must necessaily set the object in motion initially but, while it is moing though the ai, no foce othe than gaity acts

More information

Centripetal Force. Lecture 11. Chapter 8. Course website:

Centripetal Force. Lecture 11. Chapter 8. Course website: Lectue 11 Chapte 8 Centipetal Foce Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi PHYS.1410 Lectue 11 Danylov Depatment of Physics and Applied Physics Today we ae going to discuss:

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force SOLUTIONS TO PROBLEMS The Laws of Motion Section 4.3 Mass P4. Since the ca is moving with constant speed and in a staight line, the esultant foce on it must be zeo egadless of whethe it is moving (a) towad

More information

Physics 2112 Unit 14

Physics 2112 Unit 14 Physics 2112 Unit 14 Today s Concept: What Causes Magnetic Fields d 0I ds ˆ 2 4 Unit 14, Slide 1 You Comments Can you give a summay fo eveything we use the ight hand ule fo? Wasn't too clea on this topic.

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Spring 2001 Physics 2048 Test 3 solutions

Spring 2001 Physics 2048 Test 3 solutions Sping 001 Physics 048 Test 3 solutions Poblem 1. (Shot Answe: 15 points) a. 1 b. 3 c. 4* d. 9 e. 8 f. 9 *emembe that since KE = ½ mv, KE must be positive Poblem (Estimation Poblem: 15 points) Use momentum-impulse

More information

Waves and Polarization in General

Waves and Polarization in General Waves and Polaization in Geneal Wave means a distubance in a medium that tavels. Fo light, the medium is the electomagnetic field, which can exist in vacuum. The tavel pat defines a diection. The distubance

More information

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or

Kinetic energy, work, and potential energy. Work, the transfer of energy: force acting through distance: or or ENERGETICS So fa we have been studying electic foces and fields acting on chages. This is the dynamics of electicity. But now we will tun to the enegetics of electicity, gaining new insights and new methods

More information

Phys 1215, First Test. September 20, minutes Name:

Phys 1215, First Test. September 20, minutes Name: Phys 115, Fist Test. Septembe 0, 011 50 minutes Name: Show all wok fo maximum cedit. Each poblem is woth 10 points. k =.0 x 10 N m / C ε 0 = 8.85 x 10-1 C / N m e = 1.60 x 10-1 C ρ = 1.68 x 10-8 Ω m fo

More information

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6 MOTION IN A PLANE 1. Scala Quantities Physical quantities that have only magnitude and no diection ae called scala quantities o scalas. e.g. Mass, time, speed etc. 2. Vecto Quantities Physical quantities

More information

Physics 312 Introduction to Astrophysics Lecture 7

Physics 312 Introduction to Astrophysics Lecture 7 Physics 312 Intoduction to Astophysics Lectue 7 James Buckley buckley@wuphys.wustl.edu Lectue 7 Eath/Moon System Tidal Foces Tides M= mass of moon o sun F 1 = GMm 2 F 2 = GMm ( + ) 2 Diffeence in gavitational

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information