7.2 - Exponential Growth and Decay

Size: px
Start display at page:

Download "7.2 - Exponential Growth and Decay"

Transcription

1 Lecture_07_02.nb Exponential Growth and Decay Introduction Population growth, compound interest, radioactive decay, and heating and cooling can be described by differential equations. The Law of Exponential Change Suppose that a quantity grows or decays at a rate that is proportional to the amount present and that the initial amount is yh0l = y 0. Then the differential equation that models this situation is dy ÅÅÅÅÅ dt = y, yh0l = y 0 To solve this differential equation, first note that it is separable. So we can write Now we can integrate both sides. dy ÅÅÅÅÅ y = dt Solve for y. Ÿ 1 ÅÅÅÅ y y = Ÿ t ln» y» ã t + C» y» ã t+ C = t C = C 1 t where C 1 = C Recall that» y» ã y if y 0 and» y» =-y if y < 0. Thus we have or y ã C 1 t where C 1 = C y ã C 1 t where C 1 = - C In either case, C 1 will be determined by the initial condition. Recall that yh0l = y 0. y 0 = yh0l ã C 1 0 = C 1 0 = C 1 H1L = C 1

2 Lecture_07_02.nb 2 Thus y = y 0 t If > 0 then we have exponential growth, and if < 0 we have exponential decay. The Law of Exponential Change y = y 0 t Growth: > 0 Decay: < 0 The number is the rate constant of the equation. We can use this model to describe population growth or radioactive decay. Unlimited Population Growth According to United Nations data, the world population in 1998 was approximately 5.9 billion and growing at a rate of about 1.33% per year. Assuming an exponential growth model, estimate the world population at the beginning of the year 2004.

3 Lecture_07_02.nb 3 Short term, the exponential growth model does a good job modeling the population growth. Long term, the model is inadequate. The graph of the growth function is given by For this model, growth is unbounded, which is unrealistic. Real life places limits on the amount of resources available (food, clothing, shelter, water, and land). At some point the environment cannot sustain the population any more. We will discuss a better model in Section 9.5. Continuously Compounded Interest If you invest P dollars at R percent (where r is the rate as a decimal) compounded times per year for t years, then the future value (interest and principle) is given by A = PH1 + r ÅÅÅÅ Lt We can thin of A as a function of time and the principle as the initial condition, that is A 0 = P. Thus, we can write A HtL = A 0 H1 + r ÅÅÅÅ Lt If $1000 is deposited at 10%, how much will you have after 1 year if interest is compounded: (a) annually, (b) quarterly, (c) monthly, (d) daily, (e) hourly, (f) every minute, and (g) every second.

4 Lecture_07_02.nb 4 AH1L This function has a limit as Ø. lim Ø AHtL = lim Ø A 0 H1 + r ÅÅÅÅ Lt = A 0 lim Ø H1 + r ÅÅÅÅ = A 0 lim Ø A H1 + r ÅÅÅÅ As Ø, ÅÅÅÅ r Ø 0. Let x = ÅÅÅÅ r, then ÅÅÅÅ 1 L ÅÅÅÅ r ÿrt L ÅÅÅÅ r E rt = ÅÅÅÅ x r ÅÅÅÅ lim Ø AHtL = A 0 lim xø0 AH1 + xl 1 rt x E = A 0 rt and we have Thus, if we deposit A 0 dollars into an account that pays r percent compounded continuously for t years, the future value is AHtL = A 0 rt If $2500 is deposited at 8%, how much will you have after 5 years if interest is compounded continuously.

5 Lecture_07_02.nb 5 Radioactivity Atoms can emit radiation through a process of radioactive decay. In some cases, the atom will cahnge from one element to another. We can use the law of exponential change to model radioacitve decay. Radon-222 is a radioactive gas with a half-life of 3.83 days. This gas is a health hazard because it tends to get trapped in the basements of houses, and many health officials suggest that homeowners seal their basements to prevent entry of the gas. Assume that 5.0 µ 10 7 radon atoms are trapped in a basement at the time it is sealed, how long will it tae for 90% of the original quantity of gas to decay?

6 Lecture_07_02.nb 6 Heat Transfer: Newton's Law of Cooling Newton's law of cooling states that the rate at which an object's temperature is changing at any given time is proportional to the difference between its temperature and the temperature of the surrounding medium. Let H be the temperature of an object at time t, H S the constant surrounding temperature. Then the differential equation is dh ÅÅÅÅÅÅÅÅ d t = -HH - H S L, HH0L = H 0 Find a formula for the solution to the differential equation dh ÅÅÅÅÅÅÅÅ d t = -HH - H S L, HH0L = H 0 Your cup of coffee is 185 and you decide to let it cool. After two minutes you chec the coffee and it has a temperature of 155. If the temperature of the classroom is a constant 65, how much longer will you have to wait for the coffee to cool to 105?

7.5. Exponential Growth and Decay. 502 Chapter 7: Transcendental Functions. The Law of Exponential Change

7.5. Exponential Growth and Decay. 502 Chapter 7: Transcendental Functions. The Law of Exponential Change 502 Chapter 7: Transcendental Functions 7.5 Exponential Growth and Decay Exponential functions increase or decrease very rapidly with changes in the independent variable. They describe growth or decay

More information

Exponential Growth (Doubling Time)

Exponential Growth (Doubling Time) Exponential Growth (Doubling Time) 4 Exponential Growth (Doubling Time) Suppose we start with a single bacterium, which divides every hour. After one hour we have 2 bacteria, after two hours we have 2

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.8 Exponential Growth and Decay In this section, we will: Use differentiation to solve real-life problems involving exponentially growing quantities. EXPONENTIAL

More information

First Order Differential Equations

First Order Differential Equations First Order Differential Equations CHAPTER 7 7.1 7.2 SEPARABLE DIFFERENTIAL 7.3 DIRECTION FIELDS AND EULER S METHOD 7.4 SYSTEMS OF FIRST ORDER DIFFERENTIAL Slide 1 Exponential Growth The table indicates

More information

6.5 Separable Differential Equations and Exponential Growth

6.5 Separable Differential Equations and Exponential Growth 6.5 2 6.5 Separable Differential Equations and Exponential Growth The Law of Exponential Change It is well known that when modeling certain quantities, the quantity increases or decreases at a rate proportional

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Classroom Voting Questions: Precalculus

Classroom Voting Questions: Precalculus Classroom Voting Questions: Precalculus Exponential Functions 1. The graph of a function is either concave up or concave down. (a) True, and I am very confident (b) True, but I am not very confident (c)

More information

Sec. 4.2 Logarithmic Functions

Sec. 4.2 Logarithmic Functions Sec. 4.2 Logarithmic Functions The Logarithmic Function with Base a has domain all positive real numbers and is defined by Where and is the inverse function of So and Logarithms are inverses of Exponential

More information

MAC Module 9 Exponential and Logarithmic Functions II. Rev.S08

MAC Module 9 Exponential and Logarithmic Functions II. Rev.S08 MAC 1105 Module 9 Exponential and Logarithmic Functions II Learning Objective Upon completing this module, you should be able to: 1. Learn and apply the basic properties of logarithms. 2. Use the change

More information

MATH 1101 Exam 3 Review - Gentry. Spring 2018

MATH 1101 Exam 3 Review - Gentry. Spring 2018 MATH 1101 Exam 3 Review - Gentry Spring 2018 Topics Covered Section 5.3 Fitting Exponential Functions to Data Section 5.4 Logarithmic Functions Section 5.5 Modeling with Logarithmic Functions What s in

More information

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved.

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved. 5 Logarithmic, Exponential, and Other Transcendental Functions Copyright Cengage Learning. All rights reserved. 5.5 Bases Other Than e and Applications Copyright Cengage Learning. All rights reserved.

More information

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals By the end of this chapter, you should be able to Graph exponential growth functions. (8.1) Graph exponential

More information

C. HECKMAN TEST 1A SOLUTIONS 170

C. HECKMAN TEST 1A SOLUTIONS 170 C. HECKMAN TEST 1A SOLUTIONS 170 1) Thornley s Bank of Atlanta offers savings accounts which earn 4.5% per year. You have $00, which you want to invest. a) [10 points] If the bank compounds the interest

More information

Solve Exponential and Logarithmic Equations. You studied exponential and logarithmic functions. You will solve exponential and logarithmic equations.

Solve Exponential and Logarithmic Equations. You studied exponential and logarithmic functions. You will solve exponential and logarithmic equations. TEKS 7.6 Solve Exponential and Logarithmic Equations 2A..A, 2A..C, 2A..D, 2A..F Before Now You studied exponential and logarithmic functions. You will solve exponential and logarithmic equations. Why?

More information

2. (10 points) Find an equation for the line tangent to the graph of y = e 2x 3 at the point (3/2, 1). Solution: y = 2(e 2x 3 so m = 2e 2 3

2. (10 points) Find an equation for the line tangent to the graph of y = e 2x 3 at the point (3/2, 1). Solution: y = 2(e 2x 3 so m = 2e 2 3 November 24, 2009 Name The total number of points available is 145 work Throughout this test, show your 1 (10 points) Find an equation for the line tangent to the graph of y = ln(x 2 +1) at the point (1,

More information

9.1 Solving Differential Equations

9.1 Solving Differential Equations 9.1 Solving Differential Equations What is a differential equation? Real-world examples: The order of a differential equation is the order of the that occurs in the equation. A differential equation is

More information

Precalculus Lesson 5.7: Financial Models Mrs. Snow, Instructor

Precalculus Lesson 5.7: Financial Models Mrs. Snow, Instructor Precalculus Lesson 5.7: Financial Models Mrs. Snow, Instructor Interest is the money paid for the use of money. Money borrowed is called principal. When you borrow money there is a rate of interest, expressed

More information

Lesson 26: Problem Set Sample Solutions

Lesson 26: Problem Set Sample Solutions Problem Set Sample Solutions Problems and 2 provide students with more practice converting arithmetic and geometric sequences between explicit and recursive forms. Fluency with geometric sequences is required

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas Math 80 Chapter 4 Lecture Notes Professor Miguel Ornelas M. Ornelas Math 80 Lecture Notes Section 4. Section 4. Inverse Functions Definition of One-to-One Function A function f with domain D and range

More information

PRECAL REVIEW DAY 11/14/17

PRECAL REVIEW DAY 11/14/17 PRECAL REVIEW DAY 11/14/17 COPY THE FOLLOWING INTO JOURNAL 1 of 3 Transformations of logs Vertical Transformation Horizontal Transformation g x = log b x + c g x = log b x c g x = log b (x + c) g x = log

More information

Section 2.3: Logarithmic Functions Lecture 3 MTH 124

Section 2.3: Logarithmic Functions Lecture 3 MTH 124 Procedural Skills Learning Objectives 1. Build an exponential function using the correct compounding identifiers (annually, monthly, continuously etc...) 2. Manipulate exponents algebraically. e.g. Solving

More information

33. The gas law for an ideal gas at absolute temperature T (in. 34. In a fish farm, a population of fish is introduced into a pond

33. The gas law for an ideal gas at absolute temperature T (in. 34. In a fish farm, a population of fish is introduced into a pond SECTION 3.8 EXPONENTIAL GROWTH AND DECAY 2 3 3 29. The cost, in dollars, of producing x yards of a certain fabric is Cx 1200 12x 0.1x 2 0.0005x 3 (a) Find the marginal cost function. (b) Find C200 and

More information

Algebra 2 Honors. Logs Test Review

Algebra 2 Honors. Logs Test Review Algebra 2 Honors Logs Test Review Name Date Let ( ) = ( ) = ( ) =. Perform the indicated operation and state the domain when necessary. 1. ( (6)) 2. ( ( 3)) 3. ( (6)) 4. ( ( )) 5. ( ( )) 6. ( ( )) 7. (

More information

MATH165 Homework 7. Solutions

MATH165 Homework 7. Solutions MATH165 Homework 7. Solutions March 23. 2010 Problem 1. 3.7.9 The stone is thrown with speed of 10m/s, and height is given by h = 10t 0.83t 2. (a) To find the velocity after 3 seconds, we first need to

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

Math M111: Lecture Notes For Chapter 10

Math M111: Lecture Notes For Chapter 10 Math M: Lecture Notes For Chapter 0 Sections 0.: Inverse Function Inverse function (interchange and y): Find the equation of the inverses for: y = + 5 ; y = + 4 3 Function (from section 3.5): (Vertical

More information

Exponential Functions

Exponential Functions Exponential Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and evaluate exponential functions with base a,

More information

MATH 1101 Chapter 5 Review

MATH 1101 Chapter 5 Review MATH 1101 Chapter 5 Review Section 5.1 Exponential Growth Functions Section 5.2 Exponential Decay Functions Topics Covered Section 5.3 Fitting Exponential Functions to Data Section 5.4 Logarithmic Functions

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

, identify what the letters P, r, n and t stand for.

, identify what the letters P, r, n and t stand for. 1.In the formula At p 1 r n nt, identify what the letters P, r, n and t stand for. 2. Find the exponential function whose graph is given f(x) = a x 3. State the domain and range of the function (Enter

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

2. (12 points) Find an equation for the line tangent to the graph of f(x) =

2. (12 points) Find an equation for the line tangent to the graph of f(x) = November 23, 2010 Name The total number of points available is 153 Throughout this test, show your work Throughout this test, you are expected to use calculus to solve problems Graphing calculator solutions

More information

MATH 1101 Exam 3 Review. Spring 2018

MATH 1101 Exam 3 Review. Spring 2018 MATH 1101 Exam 3 Review Spring 2018 Topics Covered Section 5.3 Fitting Exponential Functions to Data Section 5.4 Logarithmic Functions Section 5.5 Modeling with Logarithmic Functions Section 4.1 Systems

More information

Section Exponential Functions

Section Exponential Functions 121 Section 4.1 - Exponential Functions Exponential functions are extremely important in both economics and science. It allows us to discuss the growth of money in a money market account as well as the

More information

The units on the average rate of change in this situation are. change, and we would expect the graph to be. ab where a 0 and b 0.

The units on the average rate of change in this situation are. change, and we would expect the graph to be. ab where a 0 and b 0. Lesson 9: Exponential Functions Outline Objectives: I can analyze and interpret the behavior of exponential functions. I can solve exponential equations analytically and graphically. I can determine the

More information

Today: 5.4 General log and exp functions (continued) Warm up:

Today: 5.4 General log and exp functions (continued) Warm up: Today: 5.4 General log and exp functions (continued) Warm up: log a (x) =ln(x)/ ln(a) d dx log a(x) = 1 ln(a)x 1. Evaluate the following functions. log 5 (25) log 7 p 7 log4 8 log 4 2 2. Di erentiate the

More information

Part 4: Exponential and Logarithmic Functions

Part 4: Exponential and Logarithmic Functions Part 4: Exponential and Logarithmic Functions Chapter 5 I. Exponential Functions (5.1) II. The Natural Exponential Function (5.2) III. Logarithmic Functions (5.3) IV. Properties of Logarithms (5.4) V.

More information

Solving differential equations (Sect. 7.4) Review: Overview of differential equations.

Solving differential equations (Sect. 7.4) Review: Overview of differential equations. Solving differential equations (Sect. 7.4 Previous class: Overview of differential equations. Exponential growth. Separable differential equations. Review: Overview of differential equations. Definition

More information

Unit 5: Exponential and Logarithmic Functions

Unit 5: Exponential and Logarithmic Functions 71 Rational eponents Unit 5: Eponential and Logarithmic Functions If b is a real number and n and m are positive and have no common factors, then n m m b = b ( b ) m n n Laws of eponents a) b) c) d) e)

More information

Logarithmic and Exponential Equations and Inequalities College Costs

Logarithmic and Exponential Equations and Inequalities College Costs Logarithmic and Exponential Equations and Inequalities ACTIVITY 2.6 SUGGESTED LEARNING STRATEGIES: Summarize/ Paraphrase/Retell, Create Representations Wesley is researching college costs. He is considering

More information

MAC 1105 Chapter 6 (6.5 to 6.8) --Sullivan 8th Ed Name: Practice for the Exam Kincade

MAC 1105 Chapter 6 (6.5 to 6.8) --Sullivan 8th Ed Name: Practice for the Exam Kincade MAC 05 Chapter 6 (6.5 to 6.8) --Sullivan 8th Ed Name: Practice for the Eam Date: Kincade MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use the properties

More information

Fundamentals of Mathematics (MATH 1510)

Fundamentals of Mathematics (MATH 1510) Fundamentals of Mathematics () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University February 3-5, 2016 Outline 1 growth (doubling time) Suppose a single bacterium

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2a 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

MCF3M1 Exam Review. 1. Which relation is not a function? a. c. b. d. 2. What is the range of the function?

MCF3M1 Exam Review. 1. Which relation is not a function? a. c. b. d. 2. What is the range of the function? MCF3M1 Exam Review 1. Which relation is not a function? 2. What is the range of the function? a. R = {1, 5, 4, 7} c. R = {1, 2, 3, 4, 5, 6, 7} b. R = {1, 2, 3, 6} d. R = {2, 5, 4, 7} 3. Which function

More information

for every x in the gomain of g

for every x in the gomain of g Section.7 Definition of Inverse Function Let f and g be two functions such that f(g(x)) = x for every x in the gomain of g and g(f(x)) = x for every x in the gomain of f Under these conditions, the function

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

notes.notebook April 08, 2014

notes.notebook April 08, 2014 Chapter 7: Exponential Functions graphs solving equations word problems Graphs (Section 7.1 & 7.2): c is the common ratio (can not be 0,1 or a negative) if c > 1, growth curve (graph will be increasing)

More information

4 Exponential and Logarithmic Functions

4 Exponential and Logarithmic Functions 4 Exponential and Logarithmic Functions 4.1 Exponential Functions Definition 4.1 If a > 0 and a 1, then the exponential function with base a is given by fx) = a x. Examples: fx) = x, gx) = 10 x, hx) =

More information

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24)

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24) Math 5 Trigonometry Sec 9.: Exponential Functions Properties of Exponents a = b > 0, b the following statements are true: b x is a unique real number for all real numbers x f(x) = b x is a function with

More information

Solutions to the 2005 AP Calculus AB Exam Free Response Questions

Solutions to the 2005 AP Calculus AB Exam Free Response Questions Solutions to the 00 AP Calculus AB Exam Free Response Questions Louis A. Talman Department of Mathematical & Computer Sciences Metropolitan State College of Denver Problem. FindRootA ÅÅÅÅ 4 + Sin@p xd

More information

8.1 Apply Exponent Properties Involving Products. Learning Outcome To use properties of exponents involving products

8.1 Apply Exponent Properties Involving Products. Learning Outcome To use properties of exponents involving products 8.1 Apply Exponent Properties Involving Products Learning Outcome To use properties of exponents involving products Product of Powers Property Let a be a real number, and let m and n be positive integers.

More information

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7

Materials: Hw #9-6 answers handout; Do Now and answers overhead; Special note-taking template; Pair Work and answers overhead; hw #9-7 Pre-AP Algebra 2 Unit 9 - Lesson 7 Compound Interest and the Number e Objectives: Students will be able to calculate compounded and continuously compounded interest. Students know that e is an irrational

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

MA Lesson 14 Notes Summer 2016 Exponential Functions

MA Lesson 14 Notes Summer 2016 Exponential Functions Solving Eponential Equations: There are two strategies used for solving an eponential equation. The first strategy, if possible, is to write each side of the equation using the same base. 3 E : Solve:

More information

Logarithms. Professor Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University

Logarithms. Professor Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University Logarithms Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math211 1. Definition of Logarithm For a > 0, a 1,

More information

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions.

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 2. Use powers to model real life problems. Multiplication Properties of Exponents

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 11 Definition (Exponential Function) An exponential function with base a is a function of the form

More information

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1

Math Want to have fun with chapter 4? Find the derivative. 1) y = 5x2e3x. 2) y = 2xex - 2ex. 3) y = (x2-2x + 3) ex. 9ex 4) y = 2ex + 1 Math 160 - Want to have fun with chapter 4? Name Find the derivative. 1) y = 52e3 2) y = 2e - 2e 3) y = (2-2 + 3) e 9e 4) y = 2e + 1 5) y = e - + 1 e e 6) y = 32 + 7 7) y = e3-1 5 Use calculus to find

More information

3-1: Exponential Functions

3-1: Exponential Functions 3-1: Exponeial Functions Precalculus Mr. Gallo Exponeial Function Types: Exponeial Growth as x increases, y increases Exponeial Decay as x increases, y decreases approaching zero Asymptote Line the graph

More information

Write each expression as a sum or difference of logarithms. All variables are positive. 4) log ( ) 843 6) Solve for x: 8 2x+3 = 467

Write each expression as a sum or difference of logarithms. All variables are positive. 4) log ( ) 843 6) Solve for x: 8 2x+3 = 467 Write each expression as a single logarithm: 10 Name Period 1) 2 log 6 - ½ log 9 + log 5 2) 4 ln 2 - ¾ ln 16 Write each expression as a sum or difference of logarithms. All variables are positive. 3) ln

More information

#2 Points possible: 1. Total attempts: 2 An exponential function passes through the points (0, 3) and (3, 375). What are the

#2 Points possible: 1. Total attempts: 2 An exponential function passes through the points (0, 3) and (3, 375). What are the Week 9 Problems Name: Neal Nelson Show Scored View #1 Points possible: 1. Total attempts: 2 For each table below, could the table represent a function that is linear, exponential, or neither? f(x) 90 81

More information

Notes for exponential functions The week of March 6. Math 140

Notes for exponential functions The week of March 6. Math 140 Notes for exponential functions The week of March 6 Math 140 Exponential functions: formulas An exponential function has the formula f (t) = ab t, where b is a positive constant; a is the initial value

More information

Section 6.3. x m+1 x m = i n x m, (6.3.1)

Section 6.3. x m+1 x m = i n x m, (6.3.1) Difference Equations to Differential Equations Section 6.3 Models of Growth and Decay In this section we will look at several applications of the exponential and logarithm functions to problems involving

More information

Exponential and Logarithmic Functions. Exponential Functions. Example. Example

Exponential and Logarithmic Functions. Exponential Functions. Example. Example Eponential and Logarithmic Functions Math 1404 Precalculus Eponential and 1 Eample Eample Suppose you are a salaried employee, that is, you are paid a fied sum each pay period no matter how many hours

More information

Algebra 2 - Classwork April 25, Review

Algebra 2 - Classwork April 25, Review Name: ID: A Algebra 2 - Classwork April 25, 204 - Review Graph the exponential function.. y 4 x 2. Find the annual percent increase or decrease that y 0.5(2.) x models. a. 20% increase c. 5% decrease b.

More information

Review of Exponential Relations

Review of Exponential Relations Review of Exponential Relations Integrated Math 2 1 Concepts to Know From Video Notes/ HW & Lesson Notes Zero and Integer Exponents Exponent Laws Scientific Notation Analyzing Data Sets (M&M Lab & HW/video

More information

Physical Science: Find the following function which represents the map, as shown in figure cos sin

Physical Science: Find the following function which represents the map, as shown in figure cos sin 24 www.mathbunch.com FUNCTIONS FORMING USING THE GRAPHS OF DIFFERENT FUNCTIONS: The graphs of many different functions are given. To form a design using some graphs a function can be formed combining these

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 40 Exponential and Logarithmic Functions Exponential Functions The functions of the form f(x) = b x, for constant b, are important in mathematics, business, economics,

More information

MA 223 PRACTICE QUESTIONS FOR THE FINAL 3/97 A. B. C. D. E.

MA 223 PRACTICE QUESTIONS FOR THE FINAL 3/97 A. B. C. D. E. MA 223 PRACTICE QUESTIONS FOR THE FINAL 3/97 1. Which of the lines shown has slope 1/3? 2. Suppose 280 tons of corn were harvested in 5 days and 940 tons in 20 days. If the relationship between tons T

More information

Section 4.5. Using Exponential Functions to Model Data

Section 4.5. Using Exponential Functions to Model Data Section 4.5 Using Exponential Functions to Model Data Exponential Model, Exponential Related, Approximately Exponentially Related Using Base Multiplier Property to Find a Model Definition An exponential

More information

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x)

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x) M60 (Precalculus) ch5 practice test Evaluate the expression using the values given in the table. 1) (f g)(6) 1) x 1 4 8 1 f(x) -4 8 0 15 x -5-4 1 6 g(x) 1-5 4 8 For the given functions f and g, find the

More information

MATH 1040 CP 11 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 1040 CP 11 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 1040 CP 11 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Write the equation in its equivalent exponential form. 1) log 5 125 = 3 1) 2) log 2 16

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Decide if the function is an exponential function. If it is, state the initial value and

More information

Chapter 6: Exponential and Logarithmic Functions

Chapter 6: Exponential and Logarithmic Functions Section 6.1: Algebra and Composition of Functions #1-9: Let f(x) = 2x + 3 and g(x) = 3 x. Find each function. 1) (f + g)(x) 2) (g f)(x) 3) (f/g)(x) 4) ( )( ) 5) ( g/f)(x) 6) ( )( ) 7) ( )( ) 8) (g+f)(x)

More information

Another enormous super-family of functions are exponential functions.

Another enormous super-family of functions are exponential functions. Hartfield College Algebra (Version 2018 - Thomas Hartfield) Unit FIVE Page - 1 - of 39 Topic 37: Exponential Functions In previous topics we ve discussed power functions, n functions of the form f x x,

More information

Concept Category 2. Exponential and Log Functions

Concept Category 2. Exponential and Log Functions Concept Category 2 Exponential and Log Functions Concept Category 2 Check List *Find the inverse and composition of functions *Identify an exponential from a table, graph and equation *Identify the difference

More information

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper)

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper) Algebra 2/Trig Unit 6 Notes Packet Name: Period: # Exponential and Logarithmic Functions 1. Worksheet 2. Worksheet 3. Pg 483-484 #17-57 column; 61-73 column and 76-77 (need graph paper) 4. Pg 483-484 #20-60

More information

2.5 Powerful Tens. Table Puzzles. A Practice Understanding Task. 1. Use the tables to find the missing values of x:

2.5 Powerful Tens. Table Puzzles. A Practice Understanding Task. 1. Use the tables to find the missing values of x: 2.5 Powerful Tens A Practice Understanding Task Table Puzzles 1. Use the tables to find the missing values of x: CC BY Eli Christman https://flic.kr/p/avcdhc a. b. x! = #$ % 1-2 100 1 10 50 100 3 1000

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

p351 Section 5.5: Bases Other than e and Applications

p351 Section 5.5: Bases Other than e and Applications p351 Section 5.5: Bases Other than e and Applications Definition of Exponential Function to Base a If a is a positive real number (a 1) and x is any real number, then the exponential function to the base

More information

Homework 3. (33-40) The graph of an exponential function is given. Match each graph to one of the following functions.

Homework 3. (33-40) The graph of an exponential function is given. Match each graph to one of the following functions. Homework Section 4. (-40) The graph of an exponential function is given. Match each graph to one of the following functions. (a)y = x (b)y = x (c)y = x (d)y = x (e)y = x (f)y = x (g)y = x (h)y = x (46,

More information

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x Inverse Functions Definition 1. The exponential function f with base a is denoted by f(x) = a x where a > 0, a 1, and x is any real number. Example 1. In the same coordinate plane, sketch the graph of

More information

Objectives. Use the number e to write and graph exponential functions representing realworld

Objectives. Use the number e to write and graph exponential functions representing realworld Objectives Use the number e to write and graph exponential functions representing realworld situations. Solve equations and problems involving e or natural logarithms. natural logarithm Vocabulary natural

More information

Pre-Calculus Final Exam Review Units 1-3

Pre-Calculus Final Exam Review Units 1-3 Pre-Calculus Final Exam Review Units 1-3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the value for the function. Find f(x - 1) when f(x) = 3x

More information

Section 5.6. Applications and Models: Growth and Decay; Compound

Section 5.6. Applications and Models: Growth and Decay; Compound Section 5.6 Applications and Models: Growth and Decay; Compound Interest Exponential Growth A quantity that experiences exponential growth will increase according to the equation P(t) = P 0 e kt t is the

More information

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Date: Objectives: SWBAT (Graph Exponential Functions) Main Ideas: Mother Function Exponential Assignment: Parent Function: f(x) = b

More information

Math 1120, Section 6 Calculus Test 3

Math 1120, Section 6 Calculus Test 3 November 15, 2012 Name The total number of points available is 158 Throughout this test, show your work Using a calculator to circumvent ideas discussed in class will generally result in no credit In general

More information

Limited Growth (Logistic Equation)

Limited Growth (Logistic Equation) Chapter 2, Part 2 2.4. Applications Orthogonal trajectories Exponential Growth/Decay Newton s Law of Cooling/Heating Limited Growth (Logistic Equation) Miscellaneous Models 1 2.4.1. Orthogonal Trajectories

More information

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains?

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains? Topic 33: One-to-One Functions Definition: A function f is said to be one-to-one if for every value f(x) in the range of f there is exactly one corresponding x-value in the domain of f. Ex. Are the following

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 4.6 Modeling With Exponential And Logarithmic Functions Copyright Cengage Learning. All rights reserved. Objectives

More information

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules

Sec 3.1. lim and lim e 0. Exponential Functions. f x 9, write the equation of the graph that results from: A. Limit Rules Sec 3. Eponential Functions A. Limit Rules. r lim a a r. I a, then lim a and lim a 0 3. I 0 a, then lim a 0 and lim a 4. lim e 0 5. e lim and lim e 0 Eamples:. Starting with the graph o a.) Shiting 9 units

More information

Chapter 2 Exponentials and Logarithms

Chapter 2 Exponentials and Logarithms Chapter Eponentials and Logarithms The eponential function is one of the most important functions in the field of mathematics. It is widely used in a variety of applications such as compounded interest,

More information

Applications of Exponential Equations and Logarithms

Applications of Exponential Equations and Logarithms Name: Date: Block: Applications of Exponential Equations and Logarithms DIRECTIONS: Write problem information. Show equations used for solving. Round final answers according to the situation. Label your

More information

Section 4.6 Exercises

Section 4.6 Exercises Section 4.6 Exponential and Logarithmic Models 283 Section 4.6 Exercises 1. You go to the doctor and he injects you with 13 milligrams of radioactive dye. After 12 minutes, 4.75 milligrams of dye remain

More information

Unit 1 Study Guide Answers. 1a. Domain: 2, -3 Range: -3, 4, -4, 0 Inverse: {(-3,2), (4, -3), (-4, 2), (0, -3)}

Unit 1 Study Guide Answers. 1a. Domain: 2, -3 Range: -3, 4, -4, 0 Inverse: {(-3,2), (4, -3), (-4, 2), (0, -3)} Unit 1 Study Guide Answers 1a. Domain: 2, -3 Range: -3, 4, -4, 0 Inverse: {(-3,2), (4, -3), (-4, 2), (0, -3)} 1b. x 2-3 2-3 y -3 4-4 0 1c. no 2a. y = x 2b. y = mx+ b 2c. 2e. 2d. all real numbers 2f. yes

More information

1.3 Exponential Functions

1.3 Exponential Functions 22 Chapter 1 Prerequisites for Calculus 1.3 Exponential Functions What you will learn about... Exponential Growth Exponential Decay Applications The Number e and why... Exponential functions model many

More information

OBJECTIVE 4 EXPONENTIAL FORM SHAPE OF 5/19/2016. An exponential function is a function of the form. where b > 0 and b 1. Exponential & Log Functions

OBJECTIVE 4 EXPONENTIAL FORM SHAPE OF 5/19/2016. An exponential function is a function of the form. where b > 0 and b 1. Exponential & Log Functions OBJECTIVE 4 Eponential & Log Functions EXPONENTIAL FORM An eponential function is a function of the form where > 0 and. f ( ) SHAPE OF > increasing 0 < < decreasing PROPERTIES OF THE BASIC EXPONENTIAL

More information

7-6 Growth and Decay. Let t = 7 in the salary equation above. So, Ms. Acosta will earn about $37, in 7 years.

7-6 Growth and Decay. Let t = 7 in the salary equation above. So, Ms. Acosta will earn about $37, in 7 years. 1. SALARY Ms. Acosta received a job as a teacher with a starting salary of $34,000. According to her contract, she will receive a 1.5% increase in her salary every year. How much will Ms. Acosta earn in

More information

Unit 9 Exponential and Logarithmic Functions - Classwork

Unit 9 Exponential and Logarithmic Functions - Classwork Unit 9 Exponential and Logarithmic Functions - Classwork In our study of Precalculus, we have examined polynomial expressions, rational expressions, and trigonometric expressions. What we have not examined

More information