Chapter 5. The multivariate normal distribution. Probability Theory. Linear transformations. The mean vector and the covariance matrix

Size: px
Start display at page:

Download "Chapter 5. The multivariate normal distribution. Probability Theory. Linear transformations. The mean vector and the covariance matrix"

Transcription

1 Probability Theory Linear transformations A transformation is said to be linear if every single function in the transformation is a linear combination. Chapter 5 The multivariate normal distribution When dealing with linear transformations it is convenient to use matrix notation. A linear transformation can then be written as Y=BX+b where 1 2 The mean vector and the covariance matrix Definition 2.1. Let X be a random n-vector whose components have finite variance. The mean vector of X is μ=e(x), and the covariance matrix of X is Λ=E(X-μ)(X-μ). The mean vector and the covariance matrix For the covariance matrix of X, it follows that When dealing with random vectors and matrices expectations are taken componentwise, which means that That is, the elements of the mean vector are the means of the components of X

2 Expectations for linear transformations Expectations for linear transformations Proof (the covariance matrix) Theorem 2.2. Let X be a random n-vector with mean vector μ and covariance matrix Λ. Further, let B be an m n matrix, let b be a constant m-vector, and set Y=BX+b. Then and Proof (the covariance matrix). Because of the fact that multiplicative constant matrices can be moved outside of the expectation it follows that 5 6 The multivariate normal distribution Definition I Exercise Definition I. The random n-vector X is normal iff, for every n-vector a, the linear combination a X is (univariate) normal. Notation. The notation X N(µ,Λ) is used to denote that X has a multivariate normal distribution with mean vector μ and covariance matrix Λ. Let X = (X 1,X 2 ) be a normal random vector distributed as What is the joint distribution of Y 1 =X 1 +X 2 and Y 2 =2X 1-3X 2? Since Theorem 3.1. Let X N(µ,Λ) and set Y=BX+b. Then Y N(Bµ+b, BΛB ) Proof. The correctness of the mean vector and the covariance matrix follows directly from Theorem 2.2. Next we prove that every linear combination of Y is normal by showing that a linear combination of Y is another linear combination of X. it follows from Theorem 3.1 that 7 8 2

3 The multivariate normal distribution Definition II: Transforms The moment generating function of a random vector X is given by Proof of Theorem 4.2. Definition I implies Definition II Let X be N(µ,Λ) by Definition I. The mgf of X is given by Definition II. The random vector X is normal, N(µ,Λ), iff its moment generating function is on the form and since Y = t X is a linear combination of X, it follows from Definition I that Y is (univariate) normal and therefore has a moment generating function. Furthermore, it follows from Theorem 2.2 that E(Y)=t μ and Var(Y)=t Λt. Theorem 4.2. Definition I and Definition II are equivalent. The meaning. If every linear combination of X is univariate normal then the moment generating function of X is on the form given above. If, on the other hand, the moment generating function of X is on the form given above, then every linear combination of X is univariate normal. Hence and the first part of the proof is established Properties of symmetric matrices Properties of non-negative definite symmetric matrices Definition. A symmetric matrix A is said to be positive-definite if for all x 0 the quadratic form x Ax is positive. If for all x the quadratic form is non-negative then A is said to be nonnegative-definite (or positive-semidefinite). Theorem 2.1. Every covariance matrix Λ is nonnegativedefinite. Proof. Let X be a random vector whose covariance matrix is Λ, and now study the linear combination y X. By Theorem 2.2 Orthogonal matrices. A symmetric matrix C is an orthogonal matrix if C C=I, where I is the identity matrix. It follows that the rows (and columns) of an orthogonal matrix is orthonormal, that is, they all have unit length and they are all pairwise orthogonal. Diagonal matrices. A symmetric matrix D is a diagonal matrix if the diagonal elements are the only non-zero elements of D. Diagonalization. Let A be a symmetric matrix. Then there exists an orthogonal matrix C and a diagonal matrix D such that A=CDC. Furthermore, the diagonal elements of D are the eigenvalues of A. and the theorem is proved. The square root. Let A be a symmetric matrix. The square root of A is a matrix (usually denoted) A 1/2 where A 1/2 A 1/2 = A. It follows from the diagonalization of A that A 1/2 = CD 1/2 C

4 Proof of Theorem 4.2. Definition II implies Definition I Let Y 1,,Y n be independent N(0,1), that is, Y = (Y 1,,Y n ) are N(0,I) by Definition I. The moment generating function of Y is given by Proof of Theorem 4.2. Definition II implies Definition I The moment generating function of X is given by Next we let X = Λ 1/2 Y + µ and since this is a linear transformation of Y it follows from Theorem 2.2 that which is the mgf given in Definition II. Since it is clear that any linear combination of X is another linear combination of Y, which means that X is normal, N(µ,Λ), according to Definition I Problem (part 1) Let X₁,X₂, and X₃ have joint moment generating function as follows: Problem (part 1) Find the joint distribution of Y 1 =X 1 +X 3 and Y 2 =X 1 +X 2, that is, the distribution of the linear transformation Y=BX where Since By Definition II it follows that X₁,X₂, and X₃ are jointly normal it follows from Theorem 3.1 that

5 Important properties of determinants 1. A square matrix A is invertible iff det A Fortheidentity matrix I we have that det I = For the transpose of A we have that det A = det A. 4. Let A and B be square matrices. Then det AB = det A det B. 5. Results 2. and 4. now imply that det A -1 = (det A) Let C be an orthogonal matrix. Results 2., 3., and 4. now imply that det C = ±1. 7. Since a symmetric matrix A can be diagonalized as A=CDC it follows by results 4. and 6. that det A = det D = λ 1 λ 2 λ n, where λ 1,λ 2,,λ n are the eigenvalues of A. 17 The multivariate normal distribution Definition III: The density function Definition III. The random vector X is normal, N(µ,Λ), (where det Λ > 0) iff its density function is on the form Theorem 5.2. Definitions I, II, and III are equivalent (in the nonsingular case). Idea for the proof. First we find a normal random vector Y whose density function is easy to derive. Then a suitably defined linear transformation X = BY will be N(µ,Λ). Finally the transformation theorem (Theorem 1.2.1) will give us the density function of X. 18 Proof of Theorem 5.2 Step 1. Find a normal random vector Y whose density function is easy to derive Let Y 1,,Y n be independent N(0,1). Then, by Definition I, Y = (Y 1,,Y n ) is N(0,I). The density function of Y is given by Proof of Theorem 5.2 Step 2. We know from before that X = Λ 1/2 Y + µ is N(µ,Λ). Step 3. Find the density function of X. Recall Theorem Step 3.1. Inversion yields that Y = Λ -1/2 (X - µ). Step 3.2. Since it is a linear transformation, the Jacobian becomes Step 3.3. Finally, it follows from Theorem that

6 Problem (part 2) In the first part of the problem we found that Since det Λ = = 36 and Conditional distributions General situation. Let X be N(µ,Λ) with det Λ > 0. Furthermore, let X 1 and X 2 be subvectors of X where the components of X 1 and X 2 are assumed to be different. By definition iti it follows from Definition III that the density of Y is given by Can anything be said about the distribution of X 2 2 X 1=x 1? Answer. YES! Conditional distributions of multivariate normal distributions are normal Problem (part 3) Independence Find the conditional density of Y 1 given that Y 2 =1, that is, find f Y1 Y 2 =1(y 1 ). Natural question 1. Is there an easy way to determine whether the components of a normal random vector are independent? Theorem 7.1. Let X be a normal random vector. The components of X are independent iff they are uncorrelated. Proof. Show that uncorrelated components imply independence. Since it follows that which means that Hence, the conditional distribution of Y 1 given that Y 2 =1 is N(4/5, 18/5)

7 Problem Suppose that the moment generating function of (X,Y) is Problem Since (U,V) is a linear transformation of (X,Y) it is clear that (U,V) is also bivariate normal. The covariance matrix of (U,V) is given by Determine a so that U=X+2Y and V=2X-Y become independent. Since It is, however, by Theorem 7.1, enough to determine an off-diagonal element. it follows from Definition II that and it is thus clear that only for a=4/3 will U and V be independent Independence and linear transformations Natural question 2. A linear transformation of a normal random vector is itself normal. Is it always possible to find a linear transformation that will have uncorrelated, and hence, independent components? Theorem 8.1. Let X be N(µ,Λ). Furthermore, let C be the orthogonal matrix that diagonalizes Λ, that is, C ΛC = D, where the diagonal elements of D are the eigenvalues of Λ. Then Y = C X is N(C μ, D). Theorem 8.2. Let X be N(µ,σ 2 I). Furthermore, let C be an arbitrary orthogonal matrix. Then Y = C X is N(C μ, σ 2 I). Problem b Let X and Y be independent N(0,σ 2 ). Show that X+Y and X-Y are independent normal random variables. Since X and Y are independent we have that (X,Y) is bivariate normal, N(0,σ 2 I). Furthermore and because of the fact that Conclusion. For the general N(µ,Λ) it always exists one orthogonal transformation that will yield a normal random vector with independent components. For the special case N(µ,σ 2 I) any orthogonal transformation will produce a normal random vector with independent components. 27 it follows from Exercise 8.2 that the components of (X+Y,X-Y) are independent normal random variables. 28 7

8 Problem Problem Let Since det Λ = 1-ρ² and where ρ is the correlation coefficient. Determine the probability distribution of it follows that the joint density function of X and Y is given by The moment generating function of W is defined by and in order to find it we first have to find the joint density of X and Y. It follows by the density of (X,Y) that the main part of the expression for the moment generating function of W is given by Q where Problem Problem It follows that the moment generating function of W is given by Since Q is the main part of a multivariate normal density function where and and it is clear that W is χ 2 (2)

9 The multivariate normal distribution and the Chi-square distribution Theorem 9.1. Let X be N(µ,Λ) with det Λ > 0. Then where n is the dimension of X. Proof. Set Y = Λ -1/2 (X - µ). Then Y is N(0,I) and it follows that and since where Y 1,Y 2,,Y n are i.i.d. N(0,1) it is clear that Y Y is χ 2 (n). 33 9

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Random Vectors and Multivariate Normal Distributions

Random Vectors and Multivariate Normal Distributions Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random 75 variables. For instance, X = X 1 X 2., where each

More information

7. The Multivariate Normal Distribution

7. The Multivariate Normal Distribution of 5 7/6/2009 5:56 AM Virtual Laboratories > 5. Special Distributions > 2 3 4 5 6 7 8 9 0 2 3 4 5 7. The Multivariate Normal Distribution The Bivariate Normal Distribution Definition Suppose that U and

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

ANOVA: Analysis of Variance - Part I

ANOVA: Analysis of Variance - Part I ANOVA: Analysis of Variance - Part I The purpose of these notes is to discuss the theory behind the analysis of variance. It is a summary of the definitions and results presented in class with a few exercises.

More information

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where:

VAR Model. (k-variate) VAR(p) model (in the Reduced Form): Y t-2. Y t-1 = A + B 1. Y t + B 2. Y t-p. + ε t. + + B p. where: VAR Model (k-variate VAR(p model (in the Reduced Form: where: Y t = A + B 1 Y t-1 + B 2 Y t-2 + + B p Y t-p + ε t Y t = (y 1t, y 2t,, y kt : a (k x 1 vector of time series variables A: a (k x 1 vector

More information

Statistics 351 Probability I Fall 2006 (200630) Final Exam Solutions. θ α β Γ(α)Γ(β) (uv)α 1 (v uv) β 1 exp v }

Statistics 351 Probability I Fall 2006 (200630) Final Exam Solutions. θ α β Γ(α)Γ(β) (uv)α 1 (v uv) β 1 exp v } Statistics 35 Probability I Fall 6 (63 Final Exam Solutions Instructor: Michael Kozdron (a Solving for X and Y gives X UV and Y V UV, so that the Jacobian of this transformation is x x u v J y y v u v

More information

Lecture 14: Multivariate mgf s and chf s

Lecture 14: Multivariate mgf s and chf s Lecture 14: Multivariate mgf s and chf s Multivariate mgf and chf For an n-dimensional random vector X, its mgf is defined as M X (t) = E(e t X ), t R n and its chf is defined as φ X (t) = E(e ıt X ),

More information

The Multivariate Gaussian Distribution

The Multivariate Gaussian Distribution The Multivariate Gaussian Distribution Chuong B. Do October, 8 A vector-valued random variable X = T X X n is said to have a multivariate normal or Gaussian) distribution with mean µ R n and covariance

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

A Probability Review

A Probability Review A Probability Review Outline: A probability review Shorthand notation: RV stands for random variable EE 527, Detection and Estimation Theory, # 0b 1 A Probability Review Reading: Go over handouts 2 5 in

More information

Lecture 22: A Review of Linear Algebra and an Introduction to The Multivariate Normal Distribution

Lecture 22: A Review of Linear Algebra and an Introduction to The Multivariate Normal Distribution Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 22: A Review of Linear Algebra and an Introduction to The Multivariate Normal Distribution Relevant

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

MAS223 Statistical Inference and Modelling Exercises

MAS223 Statistical Inference and Modelling Exercises MAS223 Statistical Inference and Modelling Exercises The exercises are grouped into sections, corresponding to chapters of the lecture notes Within each section exercises are divided into warm-up questions,

More information

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors

5. Random Vectors. probabilities. characteristic function. cross correlation, cross covariance. Gaussian random vectors. functions of random vectors EE401 (Semester 1) 5. Random Vectors Jitkomut Songsiri probabilities characteristic function cross correlation, cross covariance Gaussian random vectors functions of random vectors 5-1 Random vectors we

More information

2. Matrix Algebra and Random Vectors

2. Matrix Algebra and Random Vectors 2. Matrix Algebra and Random Vectors 2.1 Introduction Multivariate data can be conveniently display as array of numbers. In general, a rectangular array of numbers with, for instance, n rows and p columns

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

Vectors and Matrices Statistics with Vectors and Matrices

Vectors and Matrices Statistics with Vectors and Matrices Vectors and Matrices Statistics with Vectors and Matrices Lecture 3 September 7, 005 Analysis Lecture #3-9/7/005 Slide 1 of 55 Today s Lecture Vectors and Matrices (Supplement A - augmented with SAS proc

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

Multivariate Gaussian Distribution. Auxiliary notes for Time Series Analysis SF2943. Spring 2013

Multivariate Gaussian Distribution. Auxiliary notes for Time Series Analysis SF2943. Spring 2013 Multivariate Gaussian Distribution Auxiliary notes for Time Series Analysis SF2943 Spring 203 Timo Koski Department of Mathematics KTH Royal Institute of Technology, Stockholm 2 Chapter Gaussian Vectors.

More information

Lecture 15: Multivariate normal distributions

Lecture 15: Multivariate normal distributions Lecture 15: Multivariate normal distributions Normal distributions with singular covariance matrices Consider an n-dimensional X N(µ,Σ) with a positive definite Σ and a fixed k n matrix A that is not of

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and 7.2 - Quadratic Forms quadratic form on is a function defined on whose value at a vector in can be computed by an expression of the form, where is an symmetric matrix. The matrix R n Q R n x R n Q(x) =

More information

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84

BIOS 2083 Linear Models Abdus S. Wahed. Chapter 2 84 Chapter 2 84 Chapter 3 Random Vectors and Multivariate Normal Distributions 3.1 Random vectors Definition 3.1.1. Random vector. Random vectors are vectors of random variables. For instance, X = X 1 X 2.

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms De La Fuente notes that, if an n n matrix has n distinct eigenvalues, it can be diagonalized. In this supplement, we will provide

More information

Elements of Probability Theory

Elements of Probability Theory Short Guides to Microeconometrics Fall 2016 Kurt Schmidheiny Unversität Basel Elements of Probability Theory Contents 1 Random Variables and Distributions 2 1.1 Univariate Random Variables and Distributions......

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information

16.584: Random Vectors

16.584: Random Vectors 1 16.584: Random Vectors Define X : (X 1, X 2,..X n ) T : n-dimensional Random Vector X 1 : X(t 1 ): May correspond to samples/measurements Generalize definition of PDF: F X (x) = P[X 1 x 1, X 2 x 2,...X

More information

Chap 3. Linear Algebra

Chap 3. Linear Algebra Chap 3. Linear Algebra Outlines 1. Introduction 2. Basis, Representation, and Orthonormalization 3. Linear Algebraic Equations 4. Similarity Transformation 5. Diagonal Form and Jordan Form 6. Functions

More information

The Multivariate Normal Distribution. In this case according to our theorem

The Multivariate Normal Distribution. In this case according to our theorem The Multivariate Normal Distribution Defn: Z R 1 N(0, 1) iff f Z (z) = 1 2π e z2 /2. Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) T with the Z i independent and each Z i N(0, 1). In this

More information

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38

Preliminaries. Copyright c 2018 Dan Nettleton (Iowa State University) Statistics / 38 Preliminaries Copyright c 2018 Dan Nettleton (Iowa State University) Statistics 510 1 / 38 Notation for Scalars, Vectors, and Matrices Lowercase letters = scalars: x, c, σ. Boldface, lowercase letters

More information

18 Bivariate normal distribution I

18 Bivariate normal distribution I 8 Bivariate normal distribution I 8 Example Imagine firing arrows at a target Hopefully they will fall close to the target centre As we fire more arrows we find a high density near the centre and fewer

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Elliptically Contoured Distributions

Elliptically Contoured Distributions Elliptically Contoured Distributions Recall: if X N p µ, Σ), then { 1 f X x) = exp 1 } det πσ x µ) Σ 1 x µ) So f X x) depends on x only through x µ) Σ 1 x µ), and is therefore constant on the ellipsoidal

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30 Random Vectors 1 STA442/2101 Fall 2017 1 See last slide for copyright information. 1 / 30 Background Reading: Renscher and Schaalje s Linear models in statistics Chapter 3 on Random Vectors and Matrices

More information

Repeated Eigenvalues and Symmetric Matrices

Repeated Eigenvalues and Symmetric Matrices Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Basic Concepts in Matrix Algebra

Basic Concepts in Matrix Algebra Basic Concepts in Matrix Algebra An column array of p elements is called a vector of dimension p and is written as x p 1 = x 1 x 2. x p. The transpose of the column vector x p 1 is row vector x = [x 1

More information

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution Moment Generating Function STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution T. Linder Queen s University Winter 07 Definition Let X (X,...,X n ) T be a random vector and

More information

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition

Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition Orthonormal Bases; Gram-Schmidt Process; QR-Decomposition MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 205 Motivation When working with an inner product space, the most

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

[y i α βx i ] 2 (2) Q = i=1

[y i α βx i ] 2 (2) Q = i=1 Least squares fits This section has no probability in it. There are no random variables. We are given n points (x i, y i ) and want to find the equation of the line that best fits them. We take the equation

More information

III - MULTIVARIATE RANDOM VARIABLES

III - MULTIVARIATE RANDOM VARIABLES Computational Methods and advanced Statistics Tools III - MULTIVARIATE RANDOM VARIABLES A random vector, or multivariate random variable, is a vector of n scalar random variables. The random vector is

More information

Probability Lecture III (August, 2006)

Probability Lecture III (August, 2006) robability Lecture III (August, 2006) 1 Some roperties of Random Vectors and Matrices We generalize univariate notions in this section. Definition 1 Let U = U ij k l, a matrix of random variables. Suppose

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2 Short Guides to Microeconometrics Fall 2018 Kurt Schmidheiny Unversität Basel Elements of Probability Theory 2 1 Random Variables and Distributions Contents Elements of Probability Theory matrix-free 1

More information

Large Sample Properties of Estimators in the Classical Linear Regression Model

Large Sample Properties of Estimators in the Classical Linear Regression Model Large Sample Properties of Estimators in the Classical Linear Regression Model 7 October 004 A. Statement of the classical linear regression model The classical linear regression model can be written in

More information

TAMS39 Lecture 2 Multivariate normal distribution

TAMS39 Lecture 2 Multivariate normal distribution TAMS39 Lecture 2 Multivariate normal distribution Martin Singull Department of Mathematics Mathematical Statistics Linköping University, Sweden Content Lecture Random vectors Multivariate normal distribution

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Multivariate Gaussians. Sargur Srihari

Multivariate Gaussians. Sargur Srihari Multivariate Gaussians Sargur srihari@cedar.buffalo.edu 1 Topics 1. Multivariate Gaussian: Basic Parameterization 2. Covariance and Information Form 3. Operations on Gaussians 4. Independencies in Gaussians

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA

Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis (PCA) Relationship Between a Linear Combination of Variables and Axes Rotation for PCA Principle Components Analysis: Uses one group of variables (we will call this X) In

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as Reading [SB], Ch. 16.1-16.3, p. 375-393 1 Quadratic Forms A quadratic function f : R R has the form f(x) = a x. Generalization of this notion to two variables is the quadratic form Q(x 1, x ) = a 11 x

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information

Multivariate Distributions (Hogg Chapter Two)

Multivariate Distributions (Hogg Chapter Two) Multivariate Distributions (Hogg Chapter Two) STAT 45-1: Mathematical Statistics I Fall Semester 15 Contents 1 Multivariate Distributions 1 11 Random Vectors 111 Two Discrete Random Variables 11 Two Continuous

More information

1 Inner Product and Orthogonality

1 Inner Product and Orthogonality CSCI 4/Fall 6/Vora/GWU/Orthogonality and Norms Inner Product and Orthogonality Definition : The inner product of two vectors x and y, x x x =.., y =. x n y y... y n is denoted x, y : Note that n x, y =

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18)

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) MichaelR.Roberts Department of Economics and Department of Statistics University of California

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 26. Estimation: Regression and Least Squares

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 26. Estimation: Regression and Least Squares CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 26 Estimation: Regression and Least Squares This note explains how to use observations to estimate unobserved random variables.

More information

The Multivariate Gaussian Distribution [DRAFT]

The Multivariate Gaussian Distribution [DRAFT] The Multivariate Gaussian Distribution DRAFT David S. Rosenberg Abstract This is a collection of a few key and standard results about multivariate Gaussian distributions. I have not included many proofs,

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

Introduction to Probability Theory

Introduction to Probability Theory Introduction to Probability Theory Ping Yu Department of Economics University of Hong Kong Ping Yu (HKU) Probability 1 / 39 Foundations 1 Foundations 2 Random Variables 3 Expectation 4 Multivariate Random

More information

Exam 2. Jeremy Morris. March 23, 2006

Exam 2. Jeremy Morris. March 23, 2006 Exam Jeremy Morris March 3, 006 4. Consider a bivariate normal population with µ 0, µ, σ, σ and ρ.5. a Write out the bivariate normal density. The multivariate normal density is defined by the following

More information

Math 308 Practice Final Exam Page and vector y =

Math 308 Practice Final Exam Page and vector y = Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent the inormation contained in the joint p.d. o two r.vs.

More information

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2,

Week Quadratic forms. Principal axes theorem. Text reference: this material corresponds to parts of sections 5.5, 8.2, Math 051 W008 Margo Kondratieva Week 10-11 Quadratic forms Principal axes theorem Text reference: this material corresponds to parts of sections 55, 8, 83 89 Section 41 Motivation and introduction Consider

More information

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices

22m:033 Notes: 7.1 Diagonalization of Symmetric Matrices m:33 Notes: 7. Diagonalization of Symmetric Matrices Dennis Roseman University of Iowa Iowa City, IA http://www.math.uiowa.edu/ roseman May 3, Symmetric matrices Definition. A symmetric matrix is a matrix

More information

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. Determinants Ex... Let A = 0 4 4 2 0 and B = 0 3 0. (a) Compute 0 0 0 0 A. (b) Compute det(2a 2 B), det(4a + B), det(2(a 3 B 2 )). 0 t Ex..2. For

More information

Lecture Note 1: Probability Theory and Statistics

Lecture Note 1: Probability Theory and Statistics Univ. of Michigan - NAME 568/EECS 568/ROB 530 Winter 2018 Lecture Note 1: Probability Theory and Statistics Lecturer: Maani Ghaffari Jadidi Date: April 6, 2018 For this and all future notes, if you would

More information

Chapter 5,6 Multiple RandomVariables

Chapter 5,6 Multiple RandomVariables Chapter 5,6 Multiple RandomVariables ENCS66 - Probabilityand Stochastic Processes Concordia University Vector RandomVariables A vector r.v. is a function where is the sample space of a random experiment.

More information

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................

More information

Regression #5: Confidence Intervals and Hypothesis Testing (Part 1)

Regression #5: Confidence Intervals and Hypothesis Testing (Part 1) Regression #5: Confidence Intervals and Hypothesis Testing (Part 1) Econ 671 Purdue University Justin L. Tobias (Purdue) Regression #5 1 / 24 Introduction What is a confidence interval? To fix ideas, suppose

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality.

5.1 Consistency of least squares estimates. We begin with a few consistency results that stand on their own and do not depend on normality. 88 Chapter 5 Distribution Theory In this chapter, we summarize the distributions related to the normal distribution that occur in linear models. Before turning to this general problem that assumes normal

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

Recall the convention that, for us, all vectors are column vectors.

Recall the convention that, for us, all vectors are column vectors. Some linear algebra Recall the convention that, for us, all vectors are column vectors. 1. Symmetric matrices Let A be a real matrix. Recall that a complex number λ is an eigenvalue of A if there exists

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

MTH 2032 SemesterII

MTH 2032 SemesterII MTH 202 SemesterII 2010-11 Linear Algebra Worked Examples Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2011 ii Contents Table of Contents

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix:

Joint Distributions. (a) Scalar multiplication: k = c d. (b) Product of two matrices: c d. (c) The transpose of a matrix: Joint Distributions Joint Distributions A bivariate normal distribution generalizes the concept of normal distribution to bivariate random variables It requires a matrix formulation of quadratic forms,

More information

This appendix provides a very basic introduction to linear algebra concepts.

This appendix provides a very basic introduction to linear algebra concepts. APPENDIX Basic Linear Algebra Concepts This appendix provides a very basic introduction to linear algebra concepts. Some of these concepts are intentionally presented here in a somewhat simplified (not

More information

This property turns out to be a general property of eigenvectors of a symmetric A that correspond to distinct eigenvalues as we shall see later.

This property turns out to be a general property of eigenvectors of a symmetric A that correspond to distinct eigenvalues as we shall see later. 34 To obtain an eigenvector x 2 0 2 for l 2 = 0, define: B 2 A - l 2 I 2 = È 1, 1, 1 Î 1-0 È 1, 0, 0 Î 1 = È 1, 1, 1 Î 1. To transform B 2 into an upper triangular matrix, subtract the first row of B 2

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information