COMPARISON OF MODE SHAPE VECTORS IN OPERATIONAL MODAL ANALYSIS DEALING WITH CLOSELY SPACED MODES.

Size: px
Start display at page:

Download "COMPARISON OF MODE SHAPE VECTORS IN OPERATIONAL MODAL ANALYSIS DEALING WITH CLOSELY SPACED MODES."

Transcription

1 IOMAC'5 6 th International Operational Modal Analysis Conference 5 May-4 Gijón - Spain COMPARISON OF MODE SHAPE VECTORS IN OPERATIONAL MODAL ANALYSIS DEALING WITH CLOSELY SPACED MODES. Olsen P., and Brincker R. Ph.D. student, Aarhus University, pto@eng.au.dk. Professor, Aarhus University, rub@eng.au.dk. ABSTRACT When dealing with operational modal analysis (OMA) the most difficult scenario to encounter is closely spaced modes. In the case of repeated roots the mode shapes often becomes inseparable because the two coupled modes rotate in the plane they span. When evaluating the correlation of mode shape vectors compared to e.g. analysis mode shape vectors the modal assurance criterion (MAC) is often used. The MAC value can be a crude measure when dealing with closely spaced modes. In this paper it is suggested to evaluate the coupled mode shape vectors as a pair and consider the subspace they span as the basis to compare. The angle between the two subspaces spanned by the two set of coupled mode shape vectors can be used as a measure for the correlation between the two set of mode shape vectors. The use of the different measures of correlation between mode shape vectors are evaluated through a numerical case study using simulated time data on systems with closely spaced modes. In the case study the OMA time domain technique Eigen Realization Algorithm (ERA) has been used to estimate the modal parameters. Keywords: Operational, Modal, Analysis, Subspace angle, Model validation. INTRODUCTION Dealing with estimation of modal parameters for systems with closely spaced modes represents a great challenge when estimating the mode shape vectors using OMA. Closely spaced modes are found in a lot of structures. The most general case is axi-symmetric structures where the modes appear in pairs of two. An example could be a cantilever beam where the bending modes will appear in sets one for each axis. It needs not to be axi-symmetric structures it can also be that two modes a bending mode and a torsion mode that are closely spaced. When estimating the modal parameters from experimental test the identification of a set of closely spaced modes results in estimates where the mode shape vectors are rotated relative to the mode shape vectors of e.g. analysis modes which makes the mode shape vectors difficult to separate.[] It shows that an estimated mode shape vector can be expressed as a combination of several analysis mode shape vectors.[] Instead of combining several analysis modes it is possible to use the subspace two closely spaced mode shape vectors span and

2 compare this to the subspace of two corresponding analysis mode shape vectors. When comparing mode shapes vectors the most common used measure has been the MAC value. The MAC value indicates how well two mode shape vectors correlate but the MAC does not handle the challenge of closely spaced modes very well.[3] The MAC-value often shows the two closely spaced modes to be correlated as a linear combination of the two analysis mode shapes. Therefore when dealing with closely spaced modes it is suggested to consider the subspace that the two modes shape vectors span and compare this to the subspace that two corresponding analysis mode shape vectors span. The angle between the two subspaces will provide information of correlation between the two set of mode shape vectors.. THEORY.. Correlation between mode shapes The modal assurance criterion (MAC) has been used for decades as a measure for the correlation between two set of mode shape vectors.[4] The MAC-value is unity for full correlation and zero for uncorrelated vectors. The definition of MAC is given in () where a i and b j are mode shape vectors. MAC(a i, b j ) = a i H b j a i H a i b j H b j The MAC value is a good indicator of the correlation between mode shape vectors. MAC-values above.8-.9 indicates that the mode shapes are correlated and below as uncorrelated. But the MAC-value is a coarse measure when considering the deviation between to mode shapes vectors especially considering high MAC values. Considering the angle α ij between two mode shapes compared to the MAC value increase the resolution of the deviation. An expression for the angle between two mode shape vectors is given in () α ij = cos ( MAC(a i, b j )) () The angle between the two mode shapes vectors α ij provides a measure for the deviation as long as the modes are well separated. When dealing with closely spaced modes considering the angle between two mode shape vectors by the use of () can results in large deviations caused by the mode shapes vectors rotate in the subspace spanned by the two coupled modes. In the case of closely spaced modes it is suggested that the modes are considered in coupled pairs. Instead of considering the angle between two mode shape vectors it is suggested to consider the angle between two subspaces spanned by the coupled set of mode shape vectors. Considering the angle between two subspaces it is important to distinguish between two angles one angle θ describing the rotation between the two set of vectors in the plane and one φ describing the deviation between the subspaces spanned by the two set of mode shape vectors see Figure. An expression for the rotation angle has been proposed for moderately closely spaced modes and for repeated roots. The expression uses perturbation theory based on the local correspondence principle. For moderately closely spaced modes an approximate solution is found. For repeated roots an eigenvalue problem is set up where the eigenvectors are transformation matrices describing the rotation angle.[] When considering the deviation between the two set of mode shape vectors the rotation angle θ is not of interest in this case it is the subspace angle φ that holds information. ()

3 a a b θ b b θ b φ a a Figure. The subspace angle φ between two subspaces spanned by two set of mode shape vectors can be used as a measure for the deviation of two set of closely spaced mode shapes. It is important to distinguish between the rotation angle θ and the subspace angle φ. The rotation angle can be used to align the mode shape vectors. The subspace angle φ is determined by establishing the orthonormal bases of the two subspaces and from these determine the subspace angle. The orthonormal bases are established by QR factorizations of the mode shapes matrices A and B. A = Q A R A B = Q B R B (3) Applying singular value decomposition to Q A and Q B results in. Y T Q A T Q B Z = diag(cos(φ k )) (4) Where Q A Y and Q B Z are the orthogonal matrices containing the principal vectors and φ k are the principal angles between the two subspaces spanned by respectively A and B. The dimension of the subspaces A and B must be the same and there are as many principal angles as the common dimension of the subspaces. For the deviation and more information see [5]. In OMA the measurement data is obtained in operational conditions from the response measurements the correlation functions are estimated. Physical information of the modes is extracted by interpreting the correlation functions as free decays. The basic idea in time domain techniques is to fit a model of the system to the correlation functions and solving this as a regression problem.[6] The difference in the time domain techniques is in the approach of solving this. In this paper the time domain identification technique ERA has been applied to estimate the modal parameters. The ERA technique was proposed by Pappa et.al.[7] and based on a state space formulation where an eigenvalue problem is formulated by building a Hankel matrix from the estimated correlation functions. The system matrix is estimated by singular value decomposition. An eigenvalue decomposition of the system matrix is done to extract the modal parameters. 3. NUMERICAL SIMULATION AND RESULTS The numerical simulations were performed as a study of a system with three degrees of freedom (DOF). In the study the frequencies for two of the modes were held constant at. Hz and 3. Hz whereas the frequency for the last mode was varied from.8 Hz to 3. Hz all three modes had a damping ratio of %. New mode shapes for all three modes was generated for each shift in frequency of the varying mode. Mode shapes vectors were created geometrically orthogonal and with random shape. To estimate the modal parameters the time domain technique ERA was used. The numerical

4 simulations were conducted by simulating responses by the use of the system modal parameters. The excitation of the system were white noise loading. The time series was added artificial noise as white noise at and of the rms value of the simulated signal. To reduce the effect of noise the first five points in the time window of the correlation function was removed and the time window was cut off at % of the maximum amplitude of the correlation function hereby reducing the noise tail. The time step for the simulated responses was set to s and the length of the time series was s. For each set of modal parameters the simulations were repeated times. The mean μ and the standard deviation σ of the absolute percentage error of the estimated frequencies are given in table for noise level, and. Table. The percentage error of the estimated frequencies from the numerical simulations. Where the mean and the standard deviation of the error is given. Mode The relative error of the estimated frequencies System Estimated ERA No noise Noise. Noise μ σ μ σ μ σ [%] [%] [%] [%] [%] [%] [.8 3.] The correlation between the estimated mode shape vectors and the mode shapes vectors of the system were determined as the angle α ij given in () hereby building a matrix containing all combinations of the modes. In figure the angles are illustrated in a typical MAC-plot having the estimated modes in one axis and the analysis modes in the other axis plotting all values in the angle matrix in a bar plot. The values of the angle α ij are indicated by colors where α ij = indicates full correlation and α ij = π indicates no correlation between the mode shape vectors. In figure three cases are illustrated the case with well separated modes, closely spaced modes and repeated roots. 3 Mode : : 3: Mode : : 3: Mode : : 3: Well separated modes Closely spaced modes Repeated roots Figure. The angle between two mode shapes vectors α ij is plotted where the colors indicate the size of the angle. Dark blue (full correlation) α ij = and dark red (uncorrelated) α ij = π. In the three plots the estimated modes are on the y-axis and the system modes are in the x-axis. The values of α ij in the diagonals of the plots indicate the correlation between the mode shape vectors. Figure illustrates three set of modal parameters to illustrate the whole frequency range of the varying mode the diagonal of the matrix holds information of the correlation of the mode shape vectors. These are shown in figure 3 as three curves each representing the correlation of the mode shape vectors for the different modes. In figure 4 the angle φ between the subspace spanned by the mode shape vectors of mode (. Hz) and mode (varying frequency) has been plotted for three noise levels. In figure 5 the subspace angle between the subspaces spanned by the mode shape vectors of mode (varying frequency) and mode 3 (3. Hz) are shown.

5 Mode : (Constant) f =. Hz Mode 3: (Constant) f 3 = 3. Hz.6.6 α [rad].5 α 33 [rad].5 α [rad] Mode : (Varying) =.5 to 3.5Hz Figure 3. The diagonal terms of the matrix containing the mode shape angle α ii between two mode shapes vectors is plotted for all values of the second mode. Where the three graphs shows each entry in the diagonal corresponding to each mode.. Mode (Red),. Mode (Blue) and 3. Mode (green)..9.8 Noise.9.8 Noise..9.8 Noise Figure 4. The maximum subspace angle φ between the subspaces spanned by the mode shape vectors of mode (. Hz) and (varying frequency) of the estimated modes and the system modes..9.8 Noise.9.8 Noise..9.8 Noise Figure 5. The maximum subspace angle φ between the subspaces spanned by the mode shape vectors of mode (varying frequency) and mode 3 (3. Hz) of the estimated modes and the system modes.

6 4. DISCUSSION In this paper a numerical case study has been made to illustrate how subspace angles can be used as a measure of the correlation between mode shape vectors. The case study illustrates that when modes are closely spaced or have repeated roots the angle α between two mode shape vectors is not a useable measure of the correlation between the mode shape vectors. This can be seen from figure where the mode shape vectors of the system and the estimated modes in the case with well separated modes show good correlation. The systems with closely spaced modes or repeated roots shows the estimated mode shape vectors couples in pairs of the two modes resulting in a low correlation between the mode shape vectors. In figure 3 it can be seen that the angle between the mode shape vectors increase when the varying mode approaches the other two modes at. Hz and at 3. Hz but in the regions where modes are well separated the angle is close to. This increase in the angle is caused by the mode shape vectors rotate in the plane of the two closely spaced mode shape vectors. The rotation can be described by the rotation angle θ but this angle holds no information about the correlation of the two set of mode shape vectors. To describe the correlation between the mode shape vectors of the closely spaced modes it is suggested to consider the subspace spanned by the two closely spaced mode shape vectors. Considering the angle φ between the subspace spanned by the estimated mode shape vectors and the subspace of the mode shape vectors of the system gives a measure for the correlation between the two set of mode shape vectors. In figure 4 the subspace spanned by the mode shape vectors of mode (. Hz) and mode (varying frequency) has been consider and the angle φ between the subspace of the estimated modes and the subspace of the system modes has been plotted. The plots show that when the two modes are closely spaced the subspace angle is close to indicating that the set of modes are correlated. When mode (varying) and mode 3 (3. Hz) are closely spaced using the subspace of mode and mode results in a large angle between the subspaces indicating that the mode shape vector of mode has been rotated in the plane of mode and mode 3. The same behavior as in figure 4 is confirmed by figure 5 where the subspace angle between the subspaces of mode and mode 3 of the estimated mode shape vectors and the system mode shape vectors are shown. To conclude using the subspace angle between two subspaces spanned by two sets of corresponding mode shape vectors is a good indicator of the correlation between the mode shape vectors when dealing with systems that have closely spaced modes or repeated roots. But the measure should only be used in the region of the mode shape vectors that span the subspace. REFERENCES [] Brincker, R.,& Lopez-Aenelle, M. (5). Mode shape sensitivity of two closely spaced eigenvalues. Journal of Sound and Vibration, 334, p [] Walther H., et.al. (4) Model Correlation with Closely Spaced Modes. Procedings of the nd International Modal Analysis Conference, Dearborn, Michigan [3] D Ambrogio, W.,& Fregolent, A. (3). Higher-order MAC for the correlation of close and multiple modes. Mechanical Systems and Signal Processing, 7(3), p [4] Allemang, R. J.,& Brown, D.L. (98). A Correlation Coefficient for Modal Vector Analysis. Procedings of the st International Modal Analysis Conference, (pp.-6), Orlando, Florida [5] Golub G.,& Van Loan C.(996) Matrix Computations 3 rd edition., Section.4, John Hopkins University Press [6] Brincker R.,& Ventura C. (5) Introduction to Operational Modal Analysis., Wiley. [7] Juang J.N.,& Pappa R.S. (985) An eigen system realization algorithm for modal parameter identification and modal reduction. J. Guidance, V. 8, No. 5, p

An example of correlation matrix based mode shape expansion in OMA

An example of correlation matrix based mode shape expansion in OMA An example of correlation matrix based mode shape expansion in OMA Rune Brincker 1 Edilson Alexandre Camargo 2 Anders Skafte 1 1 : Department of Engineering, Aarhus University, Aarhus, Denmark 2 : Institute

More information

IOMAC'15 6 th International Operational Modal Analysis Conference

IOMAC'15 6 th International Operational Modal Analysis Conference IOMAC'15 6 th International Operational Modal Analysis Conference 2015 May12-14 Gijón - Spain COMPARISON OF DIFFERENT TECHNIQUES TO SCALE MODE SHAPES IN OPERATIONAL MODAL ANALYSIS. Luis Borja Peral Mtnez

More information

Identification of modal parameters from ambient vibration data using eigensystem realization algorithm with correlation technique

Identification of modal parameters from ambient vibration data using eigensystem realization algorithm with correlation technique Journal of Mechanical Science and Technology 4 (1) (010) 377~38 www.springerlink.com/content/1738-494x DOI 107/s106-010-1005-0 Identification of modal parameters from ambient vibration data using eigensystem

More information

Automated Modal Parameter Estimation For Operational Modal Analysis of Large Systems

Automated Modal Parameter Estimation For Operational Modal Analysis of Large Systems Automated Modal Parameter Estimation For Operational Modal Analysis of Large Systems Palle Andersen Structural Vibration Solutions A/S Niels Jernes Vej 10, DK-9220 Aalborg East, Denmark, pa@svibs.com Rune

More information

Modal identification of output-only systems using frequency domain decomposition

Modal identification of output-only systems using frequency domain decomposition INSTITUTE OF PHYSICS PUBLISHING SMART MATERIALS AND STRUCTURES Smart Mater. Struct. 10 (2001) 441 445 www.iop.org/journals/sm PII: S0964-1726(01)22812-2 Modal identification of output-only systems using

More information

IN-FLIGHT MODAL IDENTIFICATION OF AN AIRCRAFT USING OPERATIONAL MODAL ANALYSIS ABSTRACT

IN-FLIGHT MODAL IDENTIFICATION OF AN AIRCRAFT USING OPERATIONAL MODAL ANALYSIS ABSTRACT 9 th ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC-2017-056 20-22 September 2017 - METU, Ankara TURKEY IN-FLIGHT MODAL IDENTIFICATION OF AN AIRCRAFT USING OPERATIONAL MODAL ANALYSIS Çağrı KOÇAN 1 and

More information

Optimal sensor placement for detection of non-linear structural behavior

Optimal sensor placement for detection of non-linear structural behavior Optimal sensor placement for detection of non-linear structural behavior R. Castro-Triguero, M.I. Friswell 2, R. Gallego Sevilla 3 Department of Mechanics, University of Cordoba, Campus de Rabanales, 07

More information

The Complex Mode Indicator Function (CMIF) as a Parameter Estimation Method. Randall J. Allemang, PhD Professor

The Complex Mode Indicator Function (CMIF) as a Parameter Estimation Method. Randall J. Allemang, PhD Professor The (CMIF) as a Parameter Estimation Method Allyn W. Phillips, PhD Research Assistant Professor Randall J. Allemang, PhD Professor William A. Fladung Research Assistant Structural Dynamics Research Laboratory

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

ABSTRACT Modal parameters obtained from modal testing (such as modal vectors, natural frequencies, and damping ratios) have been used extensively in s

ABSTRACT Modal parameters obtained from modal testing (such as modal vectors, natural frequencies, and damping ratios) have been used extensively in s ABSTRACT Modal parameters obtained from modal testing (such as modal vectors, natural frequencies, and damping ratios) have been used extensively in system identification, finite element model updating,

More information

Operational modal analysis using forced excitation and input-output autoregressive coefficients

Operational modal analysis using forced excitation and input-output autoregressive coefficients Operational modal analysis using forced excitation and input-output autoregressive coefficients *Kyeong-Taek Park 1) and Marco Torbol 2) 1), 2) School of Urban and Environment Engineering, UNIST, Ulsan,

More information

VARIANCE COMPUTATION OF MODAL PARAMETER ES- TIMATES FROM UPC SUBSPACE IDENTIFICATION

VARIANCE COMPUTATION OF MODAL PARAMETER ES- TIMATES FROM UPC SUBSPACE IDENTIFICATION VARIANCE COMPUTATION OF MODAL PARAMETER ES- TIMATES FROM UPC SUBSPACE IDENTIFICATION Michael Döhler 1, Palle Andersen 2, Laurent Mevel 1 1 Inria/IFSTTAR, I4S, Rennes, France, {michaeldoehler, laurentmevel}@inriafr

More information

Operational Modal Analysis of Rotating Machinery

Operational Modal Analysis of Rotating Machinery Operational Modal Analysis of Rotating Machinery S. Gres 2, P. Andersen 1, and L. Damkilde 2 1 Structural Vibration Solutions A/S, NOVI Science Park, Niels Jernes Vej 10, Aalborg, DK 9220, 2 Department

More information

Modal Based Fatigue Monitoring of Steel Structures

Modal Based Fatigue Monitoring of Steel Structures Modal Based Fatigue Monitoring of Steel Structures Jesper Graugaard-Jensen Structural Vibration Solutions A/S, Denmark Rune Brincker Department of Building Technology and Structural Engineering Aalborg

More information

Smooth Orthogonal Decomposition for Modal Analysis of Randomly Excited Systems

Smooth Orthogonal Decomposition for Modal Analysis of Randomly Excited Systems Smooth Orthogonal Decomposition for Modal Analysis of Randomly Excited Systems U. Farooq and B. F. Feeny Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824 Abstract

More information

ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010 PROBLEM 1: You are given the lumped parameter dynamic differential equations of motion for a two degree-offreedom model of an automobile suspension system for small

More information

Modal parameter identification from output data only

Modal parameter identification from output data only MATEC Web of Conferences 2, 2 (215) DOI: 1.151/matecconf/21522 c Owned by the authors, published by EDP Sciences, 215 Modal parameter identification from output data only Joseph Lardiès a Institut FEMTO-ST,

More information

Estimation of Rotational Degrees of Freedom by EMA and FEM Mode Shapes

Estimation of Rotational Degrees of Freedom by EMA and FEM Mode Shapes Estimation of Rotational Degrees of Freedom by EMA and FEM Mode Shapes A. Sestieri, W. D Ambrogio, R. Brincker, A. Skafte, A. Culla Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma

More information

Damping Estimation Using Free Decays and Ambient Vibration Tests Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro

Damping Estimation Using Free Decays and Ambient Vibration Tests Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro Aalborg Universitet Damping Estimation Using Free Decays and Ambient Vibration Tests Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro Published in: Proceedings of the 2nd International Operational Modal

More information

1330. Comparative study of model updating methods using frequency response function data

1330. Comparative study of model updating methods using frequency response function data 1330. Comparative study of model updating methods using frequency response function data Dong Jiang 1, Peng Zhang 2, Qingguo Fei 3, Shaoqing Wu 4 Jiangsu Key Laboratory of Engineering Mechanics, Nanjing,

More information

2671. Detection and removal of harmonic components in operational modal analysis

2671. Detection and removal of harmonic components in operational modal analysis 2671. Detection and removal of harmonic components in operational modal analysis Zunping Xia 1, Tong Wang 2, Lingmi Zhang 3 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing

More information

Damage Localization under Ambient Vibration Using Changes in Flexibility

Damage Localization under Ambient Vibration Using Changes in Flexibility Damage Localization under Ambient Vibration Using Changes in Flexibility Yong Gao and B.F. Spencer, Jr. Ph.D. student, Department of Civil Engineering & Geological Science, University of Notre Dame, Notre

More information

Improvement of Frequency Domain Output-Only Modal Identification from the Application of the Random Decrement Technique

Improvement of Frequency Domain Output-Only Modal Identification from the Application of the Random Decrement Technique Improvement of Frequency Domain Output-Only Modal Identification from the Application of the Random Decrement Technique Jorge Rodrigues LNEC - National Laboratory for Civil Engineering, Structures Department

More information

IDENTIFICATION OF THE MODAL MASSES OF AN UAV STRUCTURE IN OPERATIONAL ENVIRONMENT

IDENTIFICATION OF THE MODAL MASSES OF AN UAV STRUCTURE IN OPERATIONAL ENVIRONMENT IDENTIFICATION OF THE MODAL MASSES OF AN UAV STRUCTURE IN OPERATIONAL ENVIRONMENT M.S. Cardinale 1, M. Arras 2, G. Coppotelli 3 1 Graduated Student, University of Rome La Sapienza, mariosalvatore.cardinale@gmail.com.

More information

MODAL IDENTIFICATION AND DAMAGE DETECTION ON A CONCRETE HIGHWAY BRIDGE BY FREQUENCY DOMAIN DECOMPOSITION

MODAL IDENTIFICATION AND DAMAGE DETECTION ON A CONCRETE HIGHWAY BRIDGE BY FREQUENCY DOMAIN DECOMPOSITION T1-1-a-4 SEWC2002, Yokohama, Japan MODAL IDENTIFICATION AND DAMAGE DETECTION ON A CONCRETE HIGHWAY BRIDGE BY FREQUENCY DOMAIN DECOMPOSITION Rune BRINCKER 1, Palle ANDERSEN 2, Lingmi ZHANG 3 1 Dept. of

More information

IOMAC'15 6 th International Operational Modal Analysis Conference

IOMAC'15 6 th International Operational Modal Analysis Conference IOMAC'15 6 th International Operational Modal Analysis Conference 2015 May12-14 Gijón - Spain PARAMETER ESTIMATION ALGORITMS IN OPERATIONAL MODAL ANALYSIS: A REVIEW Shashan Chauhan 1 1 Bruel & Kjær Sound

More information

Performance of various mode indicator functions

Performance of various mode indicator functions Shock and Vibration 17 (2010) 473 482 473 DOI 10.3233/SAV-2010-0541 IOS Press Performance of various mode indicator functions M. Radeş Universitatea Politehnica Bucureşti, Splaiul Independenţei 313, Bucureşti,

More information

Structural Dynamic Modification Studies Using Updated Finite Element Model

Structural Dynamic Modification Studies Using Updated Finite Element Model Structural Dynamic Modification Studies Using Updated Finite Element Model Gupta A. K., Nakra B. C. 1 and Kundra T. K. 2 IRDE Dehradun 1 NSIT New Delhi 2 Deptt. of Mechanical Engg. IIT New Delhi ABSTRACT.

More information

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One

Advanced Vibrations. Elements of Analytical Dynamics. By: H. Ahmadian Lecture One Advanced Vibrations Lecture One Elements of Analytical Dynamics By: H. Ahmadian ahmadian@iust.ac.ir Elements of Analytical Dynamics Newton's laws were formulated for a single particle Can be extended to

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

System Theory- Based Iden2fica2on of Dynamical Models and Applica2ons

System Theory- Based Iden2fica2on of Dynamical Models and Applica2ons System Theory- Based Iden2fica2on of Dynamical Models and Applica2ons K. C. Park Center for Aerospace Structures Department of Aerospace Engineering Sciences University of Colorado at Boulder, CO, USA

More information

Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures

Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures Efficient Reduced Order Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures Yung-Chang Tan Graduate Student Research Assistant Matthew P. Castanier Assistant Research Scientist

More information

Eliminating the Influence of Harmonic Components in Operational Modal Analysis

Eliminating the Influence of Harmonic Components in Operational Modal Analysis Eliminating the Influence of Harmonic Components in Operational Modal Analysis Niels-Jørgen Jacobsen Brüel & Kjær Sound & Vibration Measurement A/S Skodsborgvej 307, DK-2850 Nærum, Denmark Palle Andersen

More information

OBSERVER/KALMAN AND SUBSPACE IDENTIFICATION OF THE UBC BENCHMARK STRUCTURAL MODEL

OBSERVER/KALMAN AND SUBSPACE IDENTIFICATION OF THE UBC BENCHMARK STRUCTURAL MODEL OBSERVER/KALMAN AND SUBSPACE IDENTIFICATION OF THE UBC BENCHMARK STRUCTURAL MODEL Dionisio Bernal, Burcu Gunes Associate Proessor, Graduate Student Department o Civil and Environmental Engineering, 7 Snell

More information

Identification Techniques for Operational Modal Analysis An Overview and Practical Experiences

Identification Techniques for Operational Modal Analysis An Overview and Practical Experiences Identification Techniques for Operational Modal Analysis An Overview and Practical Experiences Henrik Herlufsen, Svend Gade, Nis Møller Brüel & Kjær Sound and Vibration Measurements A/S, Skodsborgvej 307,

More information

IDENTIFICATION OF MODAL PARAMETERS FROM TRANSMISSIBILITY MEASUREMENTS

IDENTIFICATION OF MODAL PARAMETERS FROM TRANSMISSIBILITY MEASUREMENTS IDENTIFICATION OF MODAL PARAMETERS FROM TRANSMISSIBILITY MEASUREMENTS Patrick Guillaume, Christof Devriendt, and Gert De Sitter Vrije Universiteit Brussel Department of Mechanical Engineering Acoustics

More information

Automated Estimation of an Aircraft s Center of Gravity Using Static and Dynamic Measurements

Automated Estimation of an Aircraft s Center of Gravity Using Static and Dynamic Measurements Proceedings of the IMAC-XXVII February 9-, 009 Orlando, Florida USA 009 Society for Experimental Mechanics Inc. Automated Estimation of an Aircraft s Center of Gravity Using Static and Dynamic Measurements

More information

Experimental Study about the Applicability of Traffic-induced Vibration for Bridge Monitoring

Experimental Study about the Applicability of Traffic-induced Vibration for Bridge Monitoring Experimental Study about the Applicability of Traffic-induced Vibration for Bridge Monitoring Kyosuke Yamamoto, Riku Miyamoto, Yuta Takahashi and Yukihiko Okada Abstract Traffic-induced vibration is bridge

More information

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION

CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION CONTRIBUTION TO THE IDENTIFICATION OF THE DYNAMIC BEHAVIOUR OF FLOATING HARBOUR SYSTEMS USING FREQUENCY DOMAIN DECOMPOSITION S. Uhlenbrock, University of Rostock, Germany G. Schlottmann, University of

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Structural Dynamics A Graduate Course in Aerospace Engineering

Structural Dynamics A Graduate Course in Aerospace Engineering Structural Dynamics A Graduate Course in Aerospace Engineering By: H. Ahmadian ahmadian@iust.ac.ir The Science and Art of Structural Dynamics What do all the followings have in common? > A sport-utility

More information

IOMAC' May Guimarães - Portugal RELATIONSHIP BETWEEN DAMAGE AND CHANGE IN DYNAMIC CHARACTERISTICS OF AN EXISTING BRIDGE

IOMAC' May Guimarães - Portugal RELATIONSHIP BETWEEN DAMAGE AND CHANGE IN DYNAMIC CHARACTERISTICS OF AN EXISTING BRIDGE IOMAC'13 5 th International Operational Modal Analysis Conference 2013 May 13-15 Guimarães - Portugal RELATIONSHIP BETWEEN DAMAGE AND CHANGE IN DYNAMIC CHARACTERISTICS OF AN EXISTING BRIDGE Takeshi Miyashita

More information

Regularized Discriminant Analysis and Reduced-Rank LDA

Regularized Discriminant Analysis and Reduced-Rank LDA Regularized Discriminant Analysis and Reduced-Rank LDA Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Regularized Discriminant Analysis A compromise between LDA and

More information

IOMAC' May Guimarães - Portugal IMPACT-SYNCHRONOUS MODAL ANALYSIS (ISMA) AN ATTEMPT TO FIND AN ALTERNATIVE

IOMAC' May Guimarães - Portugal IMPACT-SYNCHRONOUS MODAL ANALYSIS (ISMA) AN ATTEMPT TO FIND AN ALTERNATIVE IOMAC'13 5 th International Operational Modal Analysis Conference 2013 May 13-15 Guimarães - Portugal IMPACT-SYNCHRONOUS MODAL ANALYSIS (ISMA) AN ATTEMPT TO FIND AN ALTERNATIVE Abdul Ghaffar Abdul Rahman

More information

IN SITU EXPERIMENT AND MODELLING OF RC-STRUCTURE USING AMBIENT VIBRATION AND TIMOSHENKO BEAM

IN SITU EXPERIMENT AND MODELLING OF RC-STRUCTURE USING AMBIENT VIBRATION AND TIMOSHENKO BEAM First European Conference on Earthquake Engineering and Seismology (a joint event of the 13 th ECEE & 30 th General Assembly of the ESC) Geneva, Switzerland, 3-8 September 006 Paper Number: 146 IN SITU

More information

OPERATIONAL MODAL ANALYSIS IN PRESENCE OF UNKNOWN VARYING HARMONIC FORCES. Patrick Guillaume, Christof Devriendt, Steve Vanlanduit

OPERATIONAL MODAL ANALYSIS IN PRESENCE OF UNKNOWN VARYING HARMONIC FORCES. Patrick Guillaume, Christof Devriendt, Steve Vanlanduit ICSV14 Cairns Australia 9-12 July, 27 Abstract OPERATIONAL MODAL ANALYSIS IN PRESENCE OF UNKNOWN VARYING HARMONIC FORCES Patrick Guillaume, Christof Devriendt, Steve Vanlanduit Vrije Universiteit Brussel

More information

A comparison between modal damping ratios identified by NExT-ERA and frequency domain impact test

A comparison between modal damping ratios identified by NExT-ERA and frequency domain impact test A comparison between modal damping ratios identified by NEx-ERA and frequency domain impact test Ali Nouri a, * and Sajjad Hajirezayi b a Department of Aerospace Engineering, Shahid Sattari Aeronautical

More information

SUPPLEMENTAL NOTES FOR ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION WITH APPLICATION TO MORTALITY DATA

SUPPLEMENTAL NOTES FOR ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION WITH APPLICATION TO MORTALITY DATA SUPPLEMENTAL NOTES FOR ROBUST REGULARIZED SINGULAR VALUE DECOMPOSITION WITH APPLICATION TO MORTALITY DATA By Lingsong Zhang, Haipeng Shen and Jianhua Z. Huang Purdue University, University of North Carolina,

More information

BLIND SOURCE SEPARATION TECHNIQUES ANOTHER WAY OF DOING OPERATIONAL MODAL ANALYSIS

BLIND SOURCE SEPARATION TECHNIQUES ANOTHER WAY OF DOING OPERATIONAL MODAL ANALYSIS BLIND SOURCE SEPARATION TECHNIQUES ANOTHER WAY OF DOING OPERATIONAL MODAL ANALYSIS F. Poncelet, Aerospace and Mech. Eng. Dept., University of Liege, Belgium G. Kerschen, Aerospace and Mech. Eng. Dept.,

More information

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES

DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES OF TRANSMISSION CASING STRUCTURES Proceedings of DETC98: 1998 ASME Design Engineering Technical Conference September 13-16, 1998, Atlanta, GA DETC98/PTG-5788 VIBRO-ACOUSTIC STUDIES O TRANSMISSION CASING STRUCTURES D. Crimaldi Graduate

More information

DOA Estimation using MUSIC and Root MUSIC Methods

DOA Estimation using MUSIC and Root MUSIC Methods DOA Estimation using MUSIC and Root MUSIC Methods EE602 Statistical signal Processing 4/13/2009 Presented By: Chhavipreet Singh(Y515) Siddharth Sahoo(Y5827447) 2 Table of Contents 1 Introduction... 3 2

More information

A vector to a system output vector is required for many

A vector to a system output vector is required for many VOL. 9, NO. 4 J. GUIDANCE JUL-AUGUST 986 Identifying Approximate Linear Models for Simple Nonlinear Systems Lucas G. Horta* and Jer-Nan Juangt NASA Langley Research Center, Hampton, Virginia This paper

More information

ESTIMATION OF MODAL DAMPINGS FOR UNMEASURED MODES

ESTIMATION OF MODAL DAMPINGS FOR UNMEASURED MODES Vol. XX, 2012, No. 4, 17 27 F. PÁPAI, S. ADHIKARI, B. WANG ESTIMATION OF MODAL DAMPINGS FOR UNMEASURED MODES ABSTRACT Ferenc PÁPAI email: papai_f@freemail.hu Research field: experimental modal analysis,

More information

Sampling considerations for modal analysis with damping

Sampling considerations for modal analysis with damping Sampling considerations for modal analysis with damping Jae Young Park, a Michael B Wakin, b and Anna C Gilbert c a University of Michigan, 3 Beal Ave, Ann Arbor, MI 489 USA b Colorado School of Mines,

More information

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and 7.2 - Quadratic Forms quadratic form on is a function defined on whose value at a vector in can be computed by an expression of the form, where is an symmetric matrix. The matrix R n Q R n x R n Q(x) =

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

Principal Input and Output Directions and Hankel Singular Values

Principal Input and Output Directions and Hankel Singular Values Principal Input and Output Directions and Hankel Singular Values CEE 629 System Identification Duke University, Fall 2017 1 Continuous-time systems in the frequency domain In the frequency domain, the

More information

3. Mathematical Properties of MDOF Systems

3. Mathematical Properties of MDOF Systems 3. Mathematical Properties of MDOF Systems 3.1 The Generalized Eigenvalue Problem Recall that the natural frequencies ω and modes a are found from [ - ω 2 M + K ] a = 0 or K a = ω 2 M a Where M and K are

More information

Full-Field Dynamic Stress/Strain from Limited Sets of Measured Data

Full-Field Dynamic Stress/Strain from Limited Sets of Measured Data Full-Field Dynamic Stress/Strain from Limited Sets of Measured Data Pawan Pingle and Peter Avitabile, University of Massachusetts Lowell, Lowell, Massachusetts Often times, occasional events may cause

More information

Reduction in number of dofs

Reduction in number of dofs Reduction in number of dofs Reduction in the number of dof to represent a structure reduces the size of matrices and, hence, computational cost. Because a subset of the original dof represent the whole

More information

OPERATIONAL MODAL ANALYSIS BY USING TRANSMISSIBILITY MEASUREMENTS WITH CHANGING DISTRIBUTED LOADS.

OPERATIONAL MODAL ANALYSIS BY USING TRANSMISSIBILITY MEASUREMENTS WITH CHANGING DISTRIBUTED LOADS. ICSV4 Cairns Australia 9- July, 7 OPERATIONAL MODAL ANALYSIS BY USING TRANSMISSIBILITY MEASUREMENTS WITH CHANGING DISTRIBUTED LOADS. Abstract Devriendt Christof, Patrick Guillaume, De Sitter Gert, Vanlanduit

More information

Vibration Transmission in Complex Vehicle Structures

Vibration Transmission in Complex Vehicle Structures Vibration Transmission in Complex Vehicle Structures Christophe Pierre Professor Matthew P. Castanier Assistant Research Scientist Yung-Chang Tan Dongying Jiang Graduate Student Research Assistants Vibrations

More information

Solution of Linear Equations

Solution of Linear Equations Solution of Linear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass

More information

Investigation of Operational Modal Analysis Damping Estimates MASTER OF SCIENCE

Investigation of Operational Modal Analysis Damping Estimates MASTER OF SCIENCE Investigation of Operational Modal Analysis Damping Estimates A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements

More information

AN INVESTIGATION INTO THE LINEARITY OF THE SYDNEY OLYMPIC STADIUM. David Hanson, Graham Brown, Ross Emslie and Gary Caldarola

AN INVESTIGATION INTO THE LINEARITY OF THE SYDNEY OLYMPIC STADIUM. David Hanson, Graham Brown, Ross Emslie and Gary Caldarola ICSV14 Cairns Australia 9-12 July, 2007 AN INVESTIGATION INTO THE LINEARITY OF THE SYDNEY OLYMPIC STADIUM David Hanson, Graham Brown, Ross Emslie and Gary Caldarola Structural Dynamics Group, Sinclair

More information

14 Singular Value Decomposition

14 Singular Value Decomposition 14 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories chool of Mechanical Engineering 5-21-2013 The Application of ingular Value Decomposition to Determine the ources of Far Field

More information

The Receptance Approach to Complex Operational Mode Normalization

The Receptance Approach to Complex Operational Mode Normalization he Receptance Approach to Complex Operational Mode Normalization Dionisio Bernal Northeastern University, Civil and Environmental Engineering Department, Center for Digital Signal Processing, Boston, MA

More information

Exercise Set 7.2. Skills

Exercise Set 7.2. Skills Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

Mathematical Properties of Stiffness Matrices

Mathematical Properties of Stiffness Matrices Mathematical Properties of Stiffness Matrices CEE 4L. Matrix Structural Analysis Department of Civil and Environmental Engineering Duke University Henri P. Gavin Fall, 0 These notes describe some of the

More information

FORMULATION OF HANKEL SINGULAR VALUES AND SINGULAR VECTORS IN TIME DOMAIN. An-Pan Cherng

FORMULATION OF HANKEL SINGULAR VALUES AND SINGULAR VECTORS IN TIME DOMAIN. An-Pan Cherng FORMULATION OF HANKEL SINGULAR VALUES AND SINGULAR VECTORS IN TIME DOMAIN An-Pan Cherng Associate Professor, Dept. of Agricultural Machinery Engineering Nationaii-Lan Institute of Agriculture and Technology

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Virtual distortions applied to structural modelling and sensitivity analysis. Damage identification testing example

Virtual distortions applied to structural modelling and sensitivity analysis. Damage identification testing example AMAS Workshop on Smart Materials and Structures SMART 03 (pp.313 324) Jadwisin, September 2-5, 2003 Virtual distortions applied to structural modelling and sensitivity analysis. Damage identification testing

More information

MASS, STIFFNESS AND DAMPING IDENTIFICATION OF A TWO-STORY BUILDING MODEL

MASS, STIFFNESS AND DAMPING IDENTIFICATION OF A TWO-STORY BUILDING MODEL COMPDYN 2 3 rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25-28 May 2 MASS,

More information

Aalborg Universitet. Modal Indicators for Operational Modal Identification Zhang, L.; Brincker, Rune; Andersen, P.

Aalborg Universitet. Modal Indicators for Operational Modal Identification Zhang, L.; Brincker, Rune; Andersen, P. Aalborg Universitet Modal Indicators for Operational Modal Identification Zhang, L.; Brincker, Rune; Andersen, P. Published in: Proceedings of IMAC 19 Publication date: 2001 Document Version Publisher's

More information

Identification of Time-Variant Systems Using Wavelet Analysis of Force and Acceleration Response Signals

Identification of Time-Variant Systems Using Wavelet Analysis of Force and Acceleration Response Signals LOGO IOMAC'11 4th International Operational Modal Analysis Conference Identification of Time-Variant Systems Using Wavelet Analysis of Force and Acceleration Response Signals X. Xu 1,, W. J. Staszewski

More information

Advanced Vibrations. Distributed-Parameter Systems: Approximate Methods Lecture 20. By: H. Ahmadian

Advanced Vibrations. Distributed-Parameter Systems: Approximate Methods Lecture 20. By: H. Ahmadian Advanced Vibrations Distributed-Parameter Systems: Approximate Methods Lecture 20 By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Approximate Methods Rayleigh's Principle The Rayleigh-Ritz

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Modal Decomposition and the Time-Domain Response of Linear Systems 1

Modal Decomposition and the Time-Domain Response of Linear Systems 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING.151 Advanced System Dynamics and Control Modal Decomposition and the Time-Domain Response of Linear Systems 1 In a previous handout

More information

1 A factor can be considered to be an underlying latent variable: (a) on which people differ. (b) that is explained by unknown variables

1 A factor can be considered to be an underlying latent variable: (a) on which people differ. (b) that is explained by unknown variables 1 A factor can be considered to be an underlying latent variable: (a) on which people differ (b) that is explained by unknown variables (c) that cannot be defined (d) that is influenced by observed variables

More information

Simple Modification of Proper Orthogonal Coordinate Histories for Forced Response Simulation

Simple Modification of Proper Orthogonal Coordinate Histories for Forced Response Simulation Simple Modification of Proper Orthogonal Coordinate Histories for Forced Response Simulation Timothy C. Allison, A. Keith Miller and Daniel J. Inman I. Review of Computation of the POD The POD can be computed

More information

SINGLE DEGREE OF FREEDOM SYSTEM IDENTIFICATION USING LEAST SQUARES, SUBSPACE AND ERA-OKID IDENTIFICATION ALGORITHMS

SINGLE DEGREE OF FREEDOM SYSTEM IDENTIFICATION USING LEAST SQUARES, SUBSPACE AND ERA-OKID IDENTIFICATION ALGORITHMS 3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 278 SINGLE DEGREE OF FREEDOM SYSTEM IDENTIFICATION USING LEAST SQUARES, SUBSPACE AND ERA-OKID IDENTIFICATION

More information

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION

EIGENVALUES AND SINGULAR VALUE DECOMPOSITION APPENDIX B EIGENVALUES AND SINGULAR VALUE DECOMPOSITION B.1 LINEAR EQUATIONS AND INVERSES Problems of linear estimation can be written in terms of a linear matrix equation whose solution provides the required

More information

MODAL IDENTIFICATION OF STRUCTURES USING ARMAV MODEL FOR AMBIENT VIBRATION MEASUREMENT

MODAL IDENTIFICATION OF STRUCTURES USING ARMAV MODEL FOR AMBIENT VIBRATION MEASUREMENT MODAL IDENTIFICATION OF STRUCTURES USING MODEL FOR AMBIENT VIBRATION MEASUREMENT 72 C S HUANG SUMMARY A procedure is presented for evaluating the dynamic characteristics of structures from ambient vibration

More information

Estimation of Unsteady Loading for Sting Mounted Wind Tunnel Models

Estimation of Unsteady Loading for Sting Mounted Wind Tunnel Models 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th 4-7 April 2011, Denver, Colorado AIAA 2011-1941 Estimation of Unsteady Loading for Sting Mounted Wind Tunnel

More information

Wind tunnel sectional tests for the identification of flutter derivatives and vortex shedding in long span bridges

Wind tunnel sectional tests for the identification of flutter derivatives and vortex shedding in long span bridges Fluid Structure Interaction VII 51 Wind tunnel sectional tests for the identification of flutter derivatives and vortex shedding in long span bridges J. Á. Jurado, R. Sánchez & S. Hernández School of Civil

More information

A STUDY OF THE ACCURACY OF GROUND VIBRATION TEST DATA USING A REPLICA OF THE GARTEUR SM-AG19 TESTBED STRUCTURE

A STUDY OF THE ACCURACY OF GROUND VIBRATION TEST DATA USING A REPLICA OF THE GARTEUR SM-AG19 TESTBED STRUCTURE A STUDY OF THE ACCURACY OF GROUND VIBRATION TEST DATA USING A REPLICA OF THE GARTEUR SM-AG19 TESTBED STRUCTURE Pär Gustafsson*, Andreas Linderholt** *SAAB Aeronautics, ** Linnaeus University Keywords:

More information

OMA Research of Sky Tower in Wrocław, Poland

OMA Research of Sky Tower in Wrocław, Poland OMA Research of Sky Tower in Wrocław, Poland Zbigniew Wójcicki 1,*, Jacek Grosel 1, Alexander Belostotsky 2,3,, Pavel Akimov 2,3,4, Vladimir Sidorov 5,6, 1 Civil Engineering Faculty, Wrocław University

More information

Transactions on Modelling and Simulation vol 16, 1997 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 16, 1997 WIT Press,   ISSN X Dynamic testing of a prestressed concrete bridge and numerical verification M.M. Abdel Wahab and G. De Roeck Department of Civil Engineering, Katholieke Universiteit te Leuven, Belgium Abstract In this

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Harmonic scaling of mode shapes for operational modal analysis

Harmonic scaling of mode shapes for operational modal analysis Harmonic scaling of mode shapes for operational modal analysis A. Brandt 1, M. Berardengo 2, S. Manzoni 3, A. Cigada 3 1 University of Southern Denmark, Department of Technology and Innovation Campusvej

More information

Operational mode-shape normalisation with a structural modification for small and light structures

Operational mode-shape normalisation with a structural modification for small and light structures Operational mode-shape normalisation with a structural modification for small and light structures Domen Rovšček a, Janko Slavič a, Miha Boltežar a a Laboratory for Dynamics of Machines and Structures,

More information

Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results

Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results Assessment of the Frequency Domain Decomposition Method: Comparison of Operational and Classical Modal Analysis Results Ales KUYUMCUOGLU Arceli A. S., Research & Development Center, Istanbul, Turey Prof.

More information

An Indicator for Separation of Structural and Harmonic Modes in Output-Only Modal Testing Brincker, Rune; Andersen, P.; Møller, N.

An Indicator for Separation of Structural and Harmonic Modes in Output-Only Modal Testing Brincker, Rune; Andersen, P.; Møller, N. Aalborg Universitet An Indicator for Separation of Structural and Harmonic Modes in Output-Only Modal Testing Brincker, Rune; Andersen, P.; Møller, N. Published in: Proceedings of the European COST F3

More information

Section 6.4. The Gram Schmidt Process

Section 6.4. The Gram Schmidt Process Section 6.4 The Gram Schmidt Process Motivation The procedures in 6 start with an orthogonal basis {u, u,..., u m}. Find the B-coordinates of a vector x using dot products: x = m i= x u i u i u i u i Find

More information