Laser Lab Finding Young s Modulus

Size: px
Start display at page:

Download "Laser Lab Finding Young s Modulus"

Transcription

1 Laser Lab Finding Young s Modulus The Setup Liang Pei ( 裴亮 ) Phys. H McLaughlin Due Date: Tuesday, November 13, 2001 The purpose of the lab was to find the Young s Modulus for a length of steel piano wire. The wire was set up in a device shown below. A collar was attached to the wire. The wire goes through an adjustable platform with a hole in it. The platform was adjusted so that when the wire was not under stress, the top of the collar would horizontally align with the top of the platform. To calculate l for Young s Modulus, we could find the distance the collar moved below the top of the platform, when stress is applied to the wire. Since this distance was too small to measure, it must be found indirectly. We used an optical lever arm (a laser) to increase the scale of the distance so a more accurate measurement could be made. A mirror, with a perpendicular base was rested upon the platform and the collar by 3 pointed tips. Two tips rested in a groove on the platform while the 3 rd rested on a track on the collar. When the platform and the collar were on different levels (the wire under stress), the base, and thus the mirror, would be tipped. A laser was pointed at the mirror, so it would bounce off and the black board at the other end of the setup. Different amounts of stress were applied to the piano wire by hanging masses at the bottom. For each stress level, the point that was reflected onto the board was marked. The Setup: Rests on collar groove Rests on front groove Chalk Board Laser Desk Piano Mass MIRROR BOTTOM Adjustable Platform Front Groove Platform Vise Mass Groove Platform FRONT TOP SIDE - Page 1 -

2 The Calculation We measured the following lengths: Description Value Board to front groove on platform / 16 ±½ Base of mirror 2.45 cm. ±0.1 cm. Diameter of wire ± Length of wire 63.7 cm. ±0.1 cm. Heights of each mark from first mark Value Mark 1 (0kg) 0 cm. Mark 2 (1kg ±3g) 6.4 cm. ±0.6 cm. Mark 3 (2kg ±3g) 13.8 cm. ±0.6 cm. Mark 4 (3kg ±3g) 20.8 cm. ±0.6 cm. Mark 5 (4kg ±3g) 28.5 cm. ±0.6 cm. Mark 6 (5kg ±3g) 35.4 cm. ±0.6 cm. Mark 7 (6kg ±3g) 42.8 cm. ±0.6 cm. In order to calculate the Young s Modulus, we must find each element of the formula: F stress A lf Y = = =. We measured l (initial length of wire) directly. We measured the strain l A l l diameter of the wire with a micrometer so that we could find A (cross-sectional area) with the area of a circle formula: A=πr 2 ; r= d /2; A=π( d /2) 2. We can calculate F (force applied to wire) easily by multiplying the mass we hooked on to the wire by gravitational acceleration (F=ma). To calculate l, we can use the relationships between triangles. Since at first, the collar and platform are on the same level, the mirror is perpendicular to both. The laser should reflect off the mirror and bounce directly back at the laser head. We had adjusted the overhead angle of the mirror so that the laser beam would go past the laser emitter itself and hit the black board instead. The distance between the board and the mirror is represented as D in the diagram below. Overhead View H Laser Laser Side View l D In the diagram, H is the distance between the first marked value on the board (initial stress=0) and another marked point that represents greater stress applied. Lets call this amount of stress S. When S is applied to the wire, the collar moves downward. Thus, the collar and platform are at different levels. Since the base of the mirror rests on these 2 surfaces, the mirror tips slightly backwards. When the laser M b - Page 2 -

3 beam strikes the mirror, it now reflects and strikes the board at a higher level. According to the law of reflection, the incidence ray (from the source), reflection ray (after reflection), and normal of the mirror (line perpendicular to the mirror face) form 2 equal angles. The incidence ray and the normal form the incidence angle. The reflection ray and the normal form the reflection angle. One of these angles (alpha) is equal to the angle formed by the base of the tilted mirror and the initial base of the mirror. This triangle, represented in blue (thick lines) in the figure at right, is an isosceles triangle (the base remains the same length). We want the vertical distance between the far ends of the two bases. We can extend the figure into a right triangle for easier calculation. Although it is not totally accurate, the error is minimal since angle alpha is so small. This would give a slightly longer length than the actual length. However, since the mirror rests in grooves and the base length remains constant, the wire is pulled slightly towards the laser as the collar moves down. This would move the collar slightly upwards (compared to the actual l). The upward motion of the collar and the overestimation of l should result in an extremely small error. The longer leg of this right triangle is the base of the mirror (Mb) and the shorter leg is the estimated l. The angle between the hypotenuse and the longer leg is alpha. We can find alpha from the right triangle formed by H, D and a third segment joining the two. Since 1 H tan H D we measured both H and D, we can find alpha: tan(2 ) = =. After finding D 2 l alpha, we can find l in the other triangle: tan( ) = l = tan( ) M b. M b Since our literature value is in N/m 2, we will be working in the mks system. The length of the wire is m. The cross-sectional area of the wire is x 10-7 m 2. The force and l values are as follows: Force (N) Angle alpha [] Elongation [ l] (m) The calculated Young s Modulus values are as follows: F (N) l (m) A (m 2 ) l (m) Young s Modulus (N/m 2 ) E-7 0 Undefined E E E E E E E E E E E E+11 M b - Page 3 -

4 The Error Based on Accuracy The literature value for young s modulus of steel (the piano wire is steel), according to problem set #19 is 1.92 x We can calculate the percent error accuracy based on this actual literature value: % error = 100%. The results are as follows: literature Force (N) Calculated Y Actual Y % Error E E % E E % E E % E E % E E % E E % It makes sense that as force increases the error decreases. This is because as force increases, alpha and l increase also. As l increases, the optical lever arm becomes more effective and accurate. However, we do not know whether 1.92E11 is really the literature value for the piano wire since there are many different types of steel. Proportionally, l is probably the most error-saturated value among the 4 variables of Young s Modulus. The Error Based on GPE The GPE of each measured value are as follows: Description Value Board to front groove on platform ± m. Base of mirror ± m. Diameter of wire ± 5.08E-6 m. Length of wire ± m. Heights of each mark from first mark ± m. Mass ± kg. lf Our equation for Young s Modulus is: Y =. We must find the percent error of A l each of the 4 variables and add them for the total percent error of Young s Modulus. The GPE percent error of l is simply: % error = 100% % error = 100% = 0.002%. Force is value calculated by F=mg. Since g is a constant, we can just calculate the % error of the mass for the total % error of F. The formula for A is A=πr 2! A=π(d/2) 2! A=π(d 2 )/4. π and 4 are both constants and do not contribute error. Our measured length of d is squared. This means we 5. 08E 6 must multiply the percent error by 2 (power rule). % error = 2 100% = 1.778%. To 5.715E 4 tan 1 H D calculate l, we must first find : =. We know that l = tan( ) M b. By simple 2 - Page 4 -

5 1 H tan D substitution, we can derive: l = tan M b. All operations are multiplication, 2 division or tan/arc tan. Tangents do not alter error (there is no rule for tangents). We only have to add the percent errors of H, D and Mb. The percent errors for l and Young s Modulus are as follows: % Error of H % Error of D % Error of M b % Error of delta l 9.375% 0.170% 4.082% 13.63% 4.348% 0.170% 4.082% 8.599% 2.885% 0.170% 4.082% 7.136% 2.105% 0.170% 4.082% 6.356% 1.695% 0.170% 4.082% 5.946% 1.402% 0.170% 4.082% 5.653% % Error of F % Error of l % Error of A %Error of l Total % Error 0.30% 0.157% 1.778% 13.63% 15.86% 0.15% 0.157% 1.778% 8.599% 10.68% 0.10% 0.157% 1.778% 7.136% 9.171% 0.08% 0.157% 1.778% 6.356% 8.366% 0.06% 0.157% 1.778% 5.946% 7.941% 0.05% 0.157% 1.778% 5.653% 7.638% Here is a comparison of GPE and accuracy % errors: GPE % Error Actual % Error 15.86% 21.24% 10.68% 12.46% 9.171% 11.93% 8.366% 8.939% 7.941% 9.653% 7.638% 8.861% As you can see, the actual % errors do not fall within the GPE % errors. This means that there are some errors contributed that do not come from the measurements. One area of error is when we approximated l by assuming a right triangle. Another error is caused by the bending of the wire by the mirror base as the collar moves downward (show Platform in figure at right). Further more, error is also generated when the collar moves down and the mirror tips. The distance between the mirror and the board grows. We only final measured from the board to the front groove on the platform. We never consider the minute distance between the groove and the mirror that grows gradually. Overall, the results of the lab were relatively accurate, especially considering the fact that the literature value might not be the right type of steel. Accuracy was within 16%. In the future, for more accurate results, we might try using another way of finding l that does not require estimation. initial - Page 5 -

6 Young s Modulus vs. Hooke s Law Young s Modulus is very similar to Hooke s Law. We can put Young s Modulus in the form of Hooke s Law: Fl A Y = Fl = YA l F = Y l A l l Hooke s Law is F=kx. We can use the same variables in Young s Modulus. Force (F) is the same in both equations. In Hooke s Law, x was the elongation of the object. In Young s Modulus, the elongation is represented by l. In Hooke s Law, k was the spring constant, which depended upon the geometry and composition of the object. The Young s Modulus only depends on the type of material (composition). Thus, Y represents this. The last part of the equation, l A, the cross-sectional area over the length of the object, represents the geometry of the object. Each part of Young s Modulus has been matched with the parts of Hooke s Law. Thus, it can be concluded that Young s Modulus is simply a more expanded form of Hooke s Law. It divides the spring constant, k, into the object s geometry and material. This way, there would be a unique Young s Modulus for each type of material, while there could be numerous spring constants for different geometries of the same composition. However, these two formulas cannot be equated. The spring constant in Hooke s law also depends on temperature, which Young s Modulus does not incorporate. Therefore, Young s Modulus must be calculated at a constant temperature. At the atomic level, the two concepts work similarly. Both measure the Force required for the expansion of the atoms of the object in relation to its composition and geometry. The composition of the object is important because, the denser the material, the tighter the bonds. Therefore, it would be harder to pull it apart. The types of bonds also affect the object s elasticity. Both equations do not however consider the limit of elasticity for the object. If a graph were created with F and l as the axes, l would increase forever with F. This is unrealistic. The plasticity of the material would reach an end at some point, and the object would break. F x or l F - Page 6 -

Which expression gives the elastic energy stored in the stretched wire?

Which expression gives the elastic energy stored in the stretched wire? 1 wire of length L and cross-sectional area is stretched a distance e by a tensile force. The Young modulus of the material of the wire is E. Which expression gives the elastic energy stored in the stretched

More information

Page 2. What is the main purpose of the steel core? To force more current into the outer sheath.

Page 2. What is the main purpose of the steel core? To force more current into the outer sheath. Q1.The overhead cables used to transmit electrical power by the National Grid usually consist of a central core of steel cables surrounded by a sheath of cables of low resistivity material, such as aluminium.

More information

Static Equilibrium; Elasticity & Fracture

Static Equilibrium; Elasticity & Fracture Static Equilibrium; Elasticity & Fracture The Conditions for Equilibrium Statics is concerned with the calculation of the forces acting on and within structures that are in equilibrium. An object with

More information

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2]

1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress. strain. Fig. 7.1 [2] 1 (a) On the axes of Fig. 7.1, sketch a stress against strain graph for a typical ductile material. stress strain Fig. 7.1 [2] (b) Circle from the list below a material that is ductile. jelly c amic gl

More information

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study

Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus. Case study Stress Strain Elasticity Modulus Young s Modulus Shear Modulus Bulk Modulus Case study 2 In field of Physics, it explains how an object deforms under an applied force Real rigid bodies are elastic we can

More information

(Refer Slide Time: 1: 19)

(Refer Slide Time: 1: 19) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 4 Lecture - 46 Force Measurement So this will be lecture

More information

Chapter 26 Elastic Properties of Materials

Chapter 26 Elastic Properties of Materials Chapter 26 Elastic Properties of Materials 26.1 Introduction... 1 26.2 Stress and Strain in Tension and Compression... 2 26.3 Shear Stress and Strain... 4 Example 26.1: Stretched wire... 5 26.4 Elastic

More information

Thomas Whitham Sixth Form Mechanics in Mathematics

Thomas Whitham Sixth Form Mechanics in Mathematics Thomas Whitham Sixth Form Mechanics in Mathematics 6/0/00 Unit M Rectilinear motion with constant acceleration Vertical motion under gravity Particle Dynamics Statics . Rectilinear motion with constant

More information

The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics.

The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics. 1 (a) The Young modulus is defined as the ratio of tensile stress to tensile strain. Explain what is meant by each of the terms in italics. tensile stress tensile strain (b) A long wire is suspended vertically

More information

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5.

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5. Phys101 Lectures 19,20 Statics Key points: The Conditions for static equilibrium Solving statics problems Stress and strain Ref: 9-1,2,3,4,5. Page 1 The Conditions for Static Equilibrium An object in static

More information

Find the value of λ. (Total 9 marks)

Find the value of λ. (Total 9 marks) 1. A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 0.9 m and modulus of elasticity λ newtons. The other end of the spring is attached to a fixed point O 3 on

More information

Elasticity: Term Paper. Danielle Harper. University of Central Florida

Elasticity: Term Paper. Danielle Harper. University of Central Florida Elasticity: Term Paper Danielle Harper University of Central Florida I. Abstract This research was conducted in order to experimentally test certain components of the theory of elasticity. The theory was

More information

Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures

Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures Title of Lesson: Can All Things Stretch? RET Project Connection: Failure Modes of Lightweight Sandwich Structures RET Teacher: Michael Wall School: Andover High School Town/District: Andover Public Schools

More information

FORCE TABLE INTRODUCTION

FORCE TABLE INTRODUCTION FORCE TABLE INTRODUCTION All measurable quantities can be classified as either a scalar 1 or a vector 2. A scalar has only magnitude while a vector has both magnitude and direction. Examples of scalar

More information

Physics 3 Summer 1989 Lab 7 - Elasticity

Physics 3 Summer 1989 Lab 7 - Elasticity Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and

More information

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then

Linear Elasticity ( ) Objectives. Equipment. Introduction. ε is then Linear Elasticity Objectives In this lab you will measure the Young s Modulus of a steel wire. In the process, you will gain an understanding of the concepts of stress and strain. Equipment Young s Modulus

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Physics *P43118A0128* Pearson Edexcel GCE P43118A. Advanced Subsidiary Unit 1: Physics on the Go. Tuesday 20 May 2014 Morning Time: 1 hour 30 minutes

Physics *P43118A0128* Pearson Edexcel GCE P43118A. Advanced Subsidiary Unit 1: Physics on the Go. Tuesday 20 May 2014 Morning Time: 1 hour 30 minutes Write your name here Surname Other names Pearson Edexcel GCE Physics Advanced Subsidiary Unit 1: Physics on the Go Centre Number Candidate Number Tuesday 20 May 2014 Morning Time: 1 hour 30 minutes You

More information

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE

UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE UNIVERSITY OF MALTA G.F. ABELA JUNIOR COLLEGE FIRST YEAR END-OF-YEAR EXAMINATION SUBJECT: PHYSICS DATE: JUNE 2010 LEVEL: INTERMEDIATE TIME: 09.00h to 12.00h Show ALL working Write units where appropriate

More information

ELASTIC STRINGS & SPRINGS

ELASTIC STRINGS & SPRINGS ELASTIC STRINGS & SPRINGS Question 1 (**) A particle of mass m is attached to one end of a light elastic string of natural length l and modulus of elasticity 25 8 mg. The other end of the string is attached

More information

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly accelerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

<This Sheet Intentionally Left Blank For Double-Sided Printing>

<This Sheet Intentionally Left Blank For Double-Sided Printing> 21 22 Transformation Of Mechanical Energy Introduction and Theory One of the most powerful laws in physics is the Law of Conservation of

More information

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions

REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,

More information

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus

22 Which of the following correctly defines the terms stress, strain and Young modulus? stress strain Young modulus PhysicsndMathsTutor.com Which of the following correctly defines the terms stress, strain and Young modulus? 97/1/M/J/ stress strain Young modulus () x (area) (extension) x (original length) (stress) /

More information

Weight and contact forces: Young's modulus, Hooke's law and material properties

Weight and contact forces: Young's modulus, Hooke's law and material properties Weight and contact forces: Young's modulus, Hooke's law and material properties Many objects deform according to Hooke's law; many materials behave elastically and have a Young's modulus. In this section,

More information

Static Equilibrium and Torque

Static Equilibrium and Torque 10.3 Static Equilibrium and Torque SECTION OUTCOMES Use vector analysis in two dimensions for systems involving static equilibrium and torques. Apply static torques to structures such as seesaws and bridges.

More information

Magnetic Force and Current Balance

Magnetic Force and Current Balance Pre-Lab Quiz / PHYS 224 Magnetic Force and Current Balance Name Lab Section 1. What do you investigate in this lab? 2. Consider two parallel straight wires carrying electric current in opposite directions

More information

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY As previously defined, an object is in equilibrium when it is at rest or moving with constant velocity, i.e., with no net force acting on it. The following

More information

PHYA2. (JUN13PHYA201) WMP/Jun13/PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA2. (JUN13PHYA201) WMP/Jun13/PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: l a pencil and a ruler l a calculator l a Data

More information

ASSESSMENT UNIT PH1: WAVES, LIGHT AND BASICS. P.M. THURSDAY, 21 May hours

ASSESSMENT UNIT PH1: WAVES, LIGHT AND BASICS. P.M. THURSDAY, 21 May hours Candidate Name Centre Number Candidate Number GCE AS/A level 541/01 PHYSICS ASSESSMENT UNIT PH1: WAVES, LIGHT AND BASICS P.M. THURSDAY, 21 May 2009 1 1 2 hours ADDITIONAL MATERIALS In addition to this

More information

Elastic Properties of Solids (One or two weights)

Elastic Properties of Solids (One or two weights) Elastic properties of solids Page 1 of 8 Elastic Properties of Solids (One or two weights) This is a rare experiment where you will get points for breaking a sample! The recommended textbooks and other

More information

A F/4 B F/8 C 2F D 4F E 8F. Answer: Because F M A. /r 2 or eight times what it was 8F. Answer:

A F/4 B F/8 C 2F D 4F E 8F. Answer: Because F M A. /r 2 or eight times what it was 8F. Answer: Test 7 Section A 2 Core short answer questions: 50 marks Section B 2 Detailed studies short answer questions: 120 marks Suggested time: 90 2100 minutes Section A: Core short answer questions Specific instructions

More information

Experiment #4: Optical Spectrometer and the Prism Deviation

Experiment #4: Optical Spectrometer and the Prism Deviation Experiment #4: Optical Spectrometer and the Prism Deviation Carl Adams October 2, 2011 1 Purpose In the first part of this lab you will set up and become familiar with an optical spectrometer. In the second

More information

MECHANICAL PROPERTIES OF SOLIDS

MECHANICAL PROPERTIES OF SOLIDS Chapter Nine MECHANICAL PROPERTIES OF SOLIDS MCQ I 9.1 Modulus of rigidity of ideal liquids is (a) infinity. (b) zero. (c) unity. (d) some finite small non-zero constant value. 9. The maximum load a wire

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.

Quiz No. 1: Tuesday Jan. 31. Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3. Quiz No. 1: Tuesday Jan. 31 Assignment No. 2, due Thursday Feb 2: Problems 8.4, 8.13, 3.10, 3.28 Conceptual questions: 8.1, 3.6, 3.12, 3.20 Chapter 3 Vectors and Two-Dimensional Kinematics Properties of

More information

Lab 4: Equilibrium & Lami s Theorem

Lab 4: Equilibrium & Lami s Theorem Dr. W. Pezzaglia Physics 1A Lab, Fall 2017 Page 1 Lab 4: Equilibrium & Lami s Theorem Preparation for Lab Read Young & Freeman section 5.1, and portions of chapter 4. ==================================================================

More information

AQA Forces Review Can you? Scalar and vector quantities Contact and non-contact forces Resolving forces acting parallel to one another

AQA Forces Review Can you? Scalar and vector quantities   Contact and non-contact forces    Resolving forces acting parallel to one another Can you? Scalar and vector quantities Describe the difference between scalar and vector quantities and give examples. Scalar quantities have magnitude only. Vector quantities have magnitude and an associated

More information

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,

More information

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread.

Inclined plane with protractor and pulley, roller, weight box, spring balance, spirit level, pan and thread. To find the downward force, along an inclined plane, acting on a roller due to gravity and study its relationship with the angle of inclination by plotting graph between force and sin θ. Inclined plane

More information

At the end of this project we hope to have designed a quality bungee experience for an egg.

At the end of this project we hope to have designed a quality bungee experience for an egg. 1 Bungee Lab 1 11/6/2014 Section 6 Is Hooke s Law an Appropriate Model for a Bungee Cord? Introduction At the end of this project we hope to have designed a quality bungee experience for an egg. To get

More information

Work and Energy. W F s)

Work and Energy. W F s) Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Laboratory 7 Measurement on Strain & Force. Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170

Laboratory 7 Measurement on Strain & Force. Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Laboratory 7 Measurement on Strain & Force Department of Mechanical and Aerospace Engineering University of California, San Diego MAE170 Megan Ong Diana Wu Wong B01 Tuesday 11am May 17 th, 2015 Abstract:

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 15 20% Modules

More information

PHY 111L Activity 2 Introduction to Kinematics

PHY 111L Activity 2 Introduction to Kinematics PHY 111L Activity 2 Introduction to Kinematics Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the relationship between position, velocity, and acceleration 2. Investigate

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at January 2016

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at   January 2016 Save My Exams! The Home of Revision January 2016 Paper 1P (Higher Tier) Model Answers Level Edexcel Subject Physics Exam Board IGCSE Year January 2016 Paper Paper 1P (Double Award) Tier Higher Tier Booklet

More information

Exam 1 Solutions. Kinematics and Newton s laws of motion

Exam 1 Solutions. Kinematics and Newton s laws of motion Exam 1 Solutions Kinematics and Newton s laws of motion No. of Students 80 70 60 50 40 30 20 10 0 PHY231 Spring 2012 Midterm Exam 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Raw Score 1. In which

More information

M-3: Statics & M-10 Elasticity

M-3: Statics & M-10 Elasticity Group member names This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences and explain your reasoning

More information

Chapter 5. Forces in Two Dimensions

Chapter 5. Forces in Two Dimensions Chapter 5 Forces in Two Dimensions Chapter 5 Forces in Two Dimensions In this chapter you will: Represent vector quantities both graphically and algebraically. Use Newton s laws to analyze motion when

More information

Equilibrium. the linear momentum,, of the center of mass is constant

Equilibrium. the linear momentum,, of the center of mass is constant Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is

More information

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY

UNIVERSITY PHYSICS I. Professor Meade Brooks, Collin College. Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY UNIVERSITY PHYSICS I Professor Meade Brooks, Collin College Chapter 12: STATIC EQUILIBRIUM AND ELASTICITY Two stilt walkers in standing position. All forces acting on each stilt walker balance out; neither

More information

Exam 2--PHYS 101--Fall 2014

Exam 2--PHYS 101--Fall 2014 Class: Date: Exam 2--PHYS 101--Fall 2014 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider these vectors. What is A-B? a. a c. c b. b d. d 2. Consider

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

Equilibrium & Elasticity

Equilibrium & Elasticity PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

More information

Physics *P44923A0128* Pearson Edexcel P44923A. Advanced Subsidiary Unit 1: Physics on the Go. International Advanced Level

Physics *P44923A0128* Pearson Edexcel P44923A. Advanced Subsidiary Unit 1: Physics on the Go. International Advanced Level Write your name here Surname Other names Pearson Edexcel International Advanced Level Physics Advanced Subsidiary Unit 1: Physics on the Go Centre Number Candidate Number Tuesday 19 May 2015 Morning Time:

More information

How to work out really complicated motion. Iteration and Problem Solving Strategies. Let s go. Vertical spring-mass.

How to work out really complicated motion. Iteration and Problem Solving Strategies. Let s go. Vertical spring-mass. Iteration and Problem Solving Strategies How to solve anything! How to work out really complicated motion Break it up into little tiny steps. Use an approximate method for each step. Add them all up. Vertical

More information

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1 Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

00 Elasticity Mechanical Properties of olids tress and train. When a weight of 0kg is suspended fro a copper wire of length 3 and diaeter 0.4. Its length increases by.4c. If the diaeter of the wire is

More information

Physics 8 Wednesday, November 20, 2013

Physics 8 Wednesday, November 20, 2013 Physics 8 Wednesday, November 20, 2013 I plan next time to use Statics & Strength of Materials for Architecture & Building Construction by Onouye & Kane for these few weeks supplemental topics. Used copies

More information

MHS. Physics. Sample Questions. Exam to go from grade 10 to grade 11

MHS. Physics. Sample Questions. Exam to go from grade 10 to grade 11 MHS Physics Exam to go from grade 10 to grade 11 Sample Questions 1. non-luminous source of light is one which: 1. emits light by itself 2. carries light inside 3. reflects light coming from other objects

More information

Hooke s Law PHYS& 221

Hooke s Law PHYS& 221 Hooke s Law PHYS& 221 Amezola, Miguel Tran, Hai D. Lai, Marco February 25, 2015 Date Performed: 17 February 2015 Instructor: Dr. David Phillips This work is licensed under a Creative Commons Attribution-ShareAlike

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2.

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2. Force and Motion Team In previous labs, you used a motion sensor to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that caused the object

More information

Physics 202 Homework 1

Physics 202 Homework 1 Physics 202 Homework Apr 3, 203. A person who weighs 670 newtons steps onto a spring scale in the bathroom, (a) 85 kn/m (b) 290 newtons and the spring compresses by 0.79 cm. (a) What is the spring constant?

More information

TOPIC D: ROTATION EXAMPLES SPRING 2018

TOPIC D: ROTATION EXAMPLES SPRING 2018 TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University

More information

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner:

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner: Please Circle Your Lab day: M T W T F Name: Lab Partner: Lab Partner: Project #1: Kinesthetic experiences with force vectors and torque. Project #2: How does torque depend on the lever arm? Project #1:

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

MEMS Report for Lab #3. Use of Strain Gages to Determine the Strain in Cantilever Beams

MEMS Report for Lab #3. Use of Strain Gages to Determine the Strain in Cantilever Beams MEMS 1041 Report for Lab #3 Use of Strain Gages to Determine the Strain in Cantilever Beams Date: February 9, 2016 Lab Instructor: Robert Carey Submitted by: Derek Nichols Objective: The objective of this

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 3: USING STRAIN GAUGES TO FIND POISSON S RATIO AND YOUNG S MODULUS 1 Introduction... 3 2 Objective... 3 3 Supplies... 3 4 Theory...

More information

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer

King Fahd University of Petroleum and Minerals Department of Physics. Final Exam 041. Answer key - First choice is the correct answer King Fahd University of Petroleum and Minerals Department of Physics MSK Final Exam 041 Answer key - First choice is the correct answer Q1 A 20 kg uniform ladder is leaning against a frictionless wall

More information

Unit 6: Friction and Spring Force Review Section 1: Know the definitions and/or concepts of the following: 1) Static friction force:

Unit 6: Friction and Spring Force Review Section 1: Know the definitions and/or concepts of the following: 1) Static friction force: Name Date Period Unit 6: Friction and Spring Force Review Section 1: Know the definitions and/or concepts of the following: 1) Static friction force: 5) Hooke s Law: 2) Kinetic friction force: 6) Spring

More information

[5] Stress and Strain

[5] Stress and Strain [5] Stress and Strain Page 1 of 34 [5] Stress and Strain [5.1] Internal Stress of Solids [5.2] Design of Simple Connections (will not be covered in class) [5.3] Deformation and Strain [5.4] Hooke s Law

More information

PMT. GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 2: Approved specimen question paper. Version 1.

PMT. GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 2: Approved specimen question paper. Version 1. GCE AS and A Level Physics A AS exams 2009 onwards A2 exams 2010 onwards Unit 2: Approved specimen question paper Version 1.1 Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature

More information

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins. Lab: Vectors Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name Partners Pre-Lab You are required to finish this section before coming to the lab. It will be checked by one of the

More information

1. For which of the following motions of an object must the acceleration always be zero?

1. For which of the following motions of an object must the acceleration always be zero? 1. For which of the following motions of an object must the acceleration always be zero? I. Any motion in a straight line II. Simple harmonic motion III. Any motion in a circle I only II only III that

More information

SOLUTION a. Since the applied force is equal to the person s weight, the spring constant is 670 N m ( )( )

SOLUTION a. Since the applied force is equal to the person s weight, the spring constant is 670 N m ( )( ) 5. ssm A person who weighs 670 N steps onto a spring scale in the bathroom, and the spring compresses by 0.79 cm. (a) What is the spring constant? (b) What is the weight of another person who compresses

More information

Mathematical review trigonometry vectors Motion in one dimension

Mathematical review trigonometry vectors Motion in one dimension Mathematical review trigonometry vectors Motion in one dimension Used to describe the position of a point in space Coordinate system (frame) consists of a fixed reference point called the origin specific

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions SECTION.1 Linear and Quadratic Functions Chapter Polynomial and Rational Functions Section.1: Linear and Quadratic Functions Linear Functions Quadratic Functions Linear Functions Definition of a Linear

More information

Inclined Plane Dynamics Set

Inclined Plane Dynamics Set Instruction Manual 012-10874A *012-10874* Inclined Plane Dynamics Set ME-6966 Table of Contents Included Equipment..................................................... 3 Related Equipment.....................................................

More information

Back and Forth Motion

Back and Forth Motion Back and Forth Motion LabQuest 2 Lots of objects go back and forth; that is, they move along a line first in one direction, then move back the other way. An oscillating pendulum or a ball tossed vertically

More information

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X

X has a higher value of the Young modulus. Y has a lower maximum tensile stress than X Bulk Properties of Solids Old Exam Questions Q1. The diagram shows how the stress varies with strain for metal specimens X and Y which are different. Both specimens were stretched until they broke. Which

More information

PHYSICS 221 SPRING 2014

PHYSICS 221 SPRING 2014 PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

More information

Lab 5: Projectile Motion

Lab 5: Projectile Motion Lab 5 Projectile Motion 47 Name Date Partners Lab 5: Projectile Motion OVERVIEW We learn in our study of kinematics that two-dimensional motion is a straightforward application of onedimensional motion.

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Lever Lab: First Class Lever

Lever Lab: First Class Lever Lever Lab 2 Name: Lever Lab: First Class Lever Objective: To investigate the use of a lever as a simple machine. Materials: Workshop Stand, Lever, Bolt, Hooked Masses Background: A lever is one of the

More information

PHYA2. (JUN15PHYA201) WMP/Jun15/PHYA2/E4. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA2. (JUN15PHYA201) WMP/Jun15/PHYA2/E4. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Subsidiary Examination June 2015 Question 1 2 Mark

More information

9 MECHANICAL PROPERTIES OF SOLIDS

9 MECHANICAL PROPERTIES OF SOLIDS 9 MECHANICAL PROPERTIES OF SOLIDS Deforming force Deforming force is the force which changes the shape or size of a body. Restoring force Restoring force is the internal force developed inside the body

More information

Physics 1A, Week 2 Quiz Solutions

Physics 1A, Week 2 Quiz Solutions Vector _ A points north and vector _ B points east. If _ C = _ B _ A, then vector _C points: a. north of east. b. south of east. c. north of west. d. south of west. Find the resultant of the following

More information

Figure3.11 Two objects linked together Figure 3.12

Figure3.11 Two objects linked together Figure 3.12 Figure3. Two objects linked together Another common situation involves two or more objects connected together by a cable or rope, such as a van pulling a rope connected to a wagon that is pulling a rope

More information

4.2. The Normal Force, Apparent Weight and Hooke s Law

4.2. The Normal Force, Apparent Weight and Hooke s Law 4.2. The Normal Force, Apparent Weight and Hooke s Law Weight The weight of an object on the Earth s surface is the gravitational force exerted on it by the Earth. When you weigh yourself, the scale gives

More information

Lab 4: Gauss Gun Conservation of Energy

Lab 4: Gauss Gun Conservation of Energy Lab 4: Gauss Gun Conservation of Energy Before coming to Lab Read the lab handout Complete the pre-lab assignment and hand in at the beginning of your lab section. The pre-lab is written into this weeks

More information

Equilibrium in Two Dimensions

Equilibrium in Two Dimensions C h a p t e r 6 Equilibrium in Two Dimensions In this chapter, you will learn the following to World Class standards: 1. The Ladder Against the Wall 2. The Street Light 3. The Floor Beam 6-1 The Ladder

More information

Calculus with Analytic Geometry I Exam 10, Take Home Friday, November 8, 2013 Solutions.

Calculus with Analytic Geometry I Exam 10, Take Home Friday, November 8, 2013 Solutions. All exercises are from Section 4.7 of the textbook. 1. Calculus with Analytic Geometry I Exam 10, Take Home Friday, November 8, 2013 Solutions. 2. Solution. The picture suggests using the angle θ as variable;

More information

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III 1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)

More information

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then

α f k θ y N m mg Figure 1 Solution 1: (a) From Newton s 2 nd law: From (1), (2), and (3) Free-body diagram (b) 0 tan 0 then Question [ Work ]: A constant force, F, is applied to a block of mass m on an inclined plane as shown in Figure. The block is moved with a constant velocity by a distance s. The coefficient of kinetic

More information

Physics 201 Midterm Exam 3

Physics 201 Midterm Exam 3 Name: Date: _ Physics 201 Midterm Exam 3 Information and Instructions Student ID Number: Section Number: TA Name: Please fill in all the information above Please write and bubble your Name and Student

More information

Coulomb s Law and Coulomb s Constant

Coulomb s Law and Coulomb s Constant Pre-Lab Quiz / PHYS 224 Coulomb s Law and Coulomb s Constant Your Name: Lab Section: 1. What will you investigate in this lab? 2. Consider a capacitor created when two identical conducting plates are placed

More information

Chapter 12 Static Equilibrium; Elasticity and Fracture

Chapter 12 Static Equilibrium; Elasticity and Fracture 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination

More information