ECE580 Solution to Problem Set 6

Size: px
Start display at page:

Download "ECE580 Solution to Problem Set 6"

Transcription

1 ECE580 Fall 2015 Solution to Problem Set 6 December ECE580 Solution to Problem Set 6 These problems are from the textbook by Chong and Zak 4th edition which is the textbook for the ECE580 Fall 2015 semester. As such many of the problem statements are taken verbatim from the text; however others have been reworded for reasons of efficiency or instruction. Solutions are mine. Any errors are mine and should be reported to me skoskie@iupui.edu rather than to the textbook authors Given two mixtures of metal: A contains 30% Au 40% Ag and 30% Pt; B contains 10best amounts to achieve as close as possible to 5 oz. Au 3 oz. Ag and 4 oz. Pt. Solution: We formulate this as a least squares problem as follows. Let [ A =.4.2 b = 3 xa x =. x B Because A is m n with m n and ρ(a) = n the optimal choice for x will be (per Matlab) [ x = (A T A) 1 A T b =.9606 The ratio is thus 11 A to 1 B. Notice that this best choice is far from achieving the desired mixture. Ax = meaning that we have oz. of Au oz. of Ag and oz. of Pt as compared to the 5 of Au 3 of Ac and 4 of Pt that we wanted Consider the discrete-time linear system x k+1 = ax k + bu k. Suppose we apply u k = 1 for all k 0 and observe x 0 = 0 x 1 = 1 x 2 = 2 and x 3 = 8. Find the least squares approximation of a and b. Solution: We have the following matrices: A = 1 1 b = 2 x = [ a b.

2 ECE580 Fall 2015 Solution to Problem Set 6 December Again A is 3 2 with ρ(a) = 2 so x = (A T A) 1 A T b = [ 1 [ = = [ 1/2 1/2 1/2 5/6 [ 7/2 1/6 1 [ i.e. the best approximation is that a = 7/2 and b = 1/ Find the local minimizer for subject to x x 2 2 x x 1 x 2 + x 2 2 = 1 x 2 1 x 2 0 Solution: First we put the system in standard form f(x) = x x 2 2 h(x) = x x 1 x 2 + x = 0 f(x) = x 2 1 x 2 0. The gradients and Hessians are [ 2x1 f(x) = 2x 2 [ 2x1 + 2x h(x) = 2 2x 1 + 2x 2 [ 2x1 g(x) = 1 F (x) = [ [ 2 2 H(x) = 2 2. [ The SOSC requires the following conditions for a minimizer. 1. µ 0 2. Df(x ) + λ Dh(x ) + µ Dg(x ) = 0 3. µ g(x ) = 0 4. For all y T (x µ ) y 0 y T L(x λ µ )y > 0.

3 ECE580 Fall 2015 Solution to Problem Set 6 December We start with the constraint µ g(x ) = 0. We have which requires either µ ( x 2 1 x 2 ) 0 µ = 0 or x 12 = x 2. If µ = 0 then the gradient constraint becomes [ 2x 1 2x [ 2 + λ 2x 1 + 2x 2 2x 1 + 2x 2 = 0 i.e. x 1 + λ x 1 + λ x 2 = 0 x 2 + λ x 1 + λ x 2 = 0 which requires x 1 = x 2. Next we check to see whether h(x) = 0 is satisfied. We have h(x ) = x x 1x 2 + x 22 1 = 0 which after substituting x 1 for x 2 is 4x 1 2 = 1 so x 1 = ± 1 2 = x 2. We must have g(x ) = 0 so we see that only one of these two options work and ( 1 (x 1 x 2) = 2 1 ). 2 The corresponding value of λ can be found from (1) to be 1/2. To check the remaining condition we must find (a) the Hessian of the Lagrangian which is [ 2(1 + λ + µ) 2λ L(x λ µ) = F (x) + λh(x) + µg(x) = 2λ 2(1 + λ) and (b) a subspace T (x ) to be defined below. This subspace is the tangent space to the surface defined by the active constraints having positive µ i. To express this conveniently we need an index set J(x µ ) := {i : g i (x ) = 0 µ i > 0}. Then the subspace can be expressed as the intersection of several sets: T (x ) = {y : Dh(x )y = 0} {y : Dg i (x ) = 0} i J(x µ )

4 ECE580 Fall 2015 Solution to Problem Set 6 December In this case J(x µ ) is empty so T (x µ ) is just the ordinary tangent space T (x ). Thus T (x ) = {y : [ 2x 1 + 2x 2 2x 1 + 2x 2 = {y : y 2 = y 1 } y = 0} and we find k 2 [ 1 1 [ 2(1 + λ + µ) 2λ 2λ 2(1 + λ) [ 1 1 = 2(1 + µ) + 2 = 4 + 2µ = 4 > 0. so L(x λ µ) is positive definite on the tangent space at x. Thus x is a minimizer. A positive definite (F (x) > 0) quadratic function has a unique minimizer so we need not consider the other alternative Consider the problem of optimizing subject to f(x) = (x 1 2) 2 + (x 2 1) 2 g 1 (x) = x 2 x g 2 (x) = 2 x 1 x 2 0 g 3 (x) = x 1 0. The point x = 0 satisfies the KKT conditions. (a) Does x satisfy the FONC for minimization or maximization? Solution: yes. The KKT conditions are the FONC. What are the KKT multipliers? Solution: With x = 0 the condition that requires that µ g(x ) = 0 µ 1(x 2 x 12 ) = 0 µ 2(2 x 1 x 2) = 0 µ 3x 1 = 0. The second of these requires that µ 2 = 0. The condition Df(x ) + λ Dh(x ) + µ T Dg(x ) = 0

5 ECE580 Fall 2015 Solution to Problem Set 6 December becomes since there are no equality constraints At x = 0 they are 2(x 1 2) 2x 1µ 1 µ 2 + µ 3 = 0 2(x 2 1) + µ 1 µ 2 = 0. 4 µ 2 + µ 3 = µ 1 µ 2 = 0. Thus with µ 2 = 0 we have µ 1 = 2 and µ 3 = 4. (b) Does x = 0 satisfy the SOSC? Solution: We need f g h C 2 (true of f and g and there is no h) µ 0 (true) µ g(x ) = 0 (true because we chose the µ to satisfy it) Df(x )+λ Dh(x )+µ Dg(x ) = 0 (true because we chose the µ ) to satisfy it) and positive definiteness on the tangent space to the surface defined by the active constraints having positive µ i. The index set J(x µ ) is given by Then subspace T (x µ ) is T (x µ ) = {y : Dh(x )y = 0} J(x µ ) := {i : g i (x ) = 0 µ i > 0} = {1 3}. i:g i (x )=0µ i >0 {y : Dg i (x )y = 0} = {y : g 1 (x ) = g 3 (x ) = 0 µ 1 µ 3 > 0 Dg 1 (x )y = Dg 3 (x )y = 0} = {y : y 1 = y 2 2} {y : y 1 = 0} = 0 Thus for all non-zero y in T (x µ ) y T L(x λ µ )y > 0. So the origin is a minimizer of the cost function f(x) subject to the given constraints Consider the problem min x x 2 2 subject to 4 x 1 x x 2 x 1 0 3x 2 x 1 0 Deduce from [Figure 22.3 of the text that the problem has two strict local maximizers and use the [SOSCs to verify the graphical solution. Solution: I will assume from the problem statement that we should use the information we obtain from the figure to reduce the amount of calculation

6 ECE580 Fall 2015 Solution to Problem Set 6 December required to solve the problem. I will also assume that maximizers should be minimizers since that is what they are. As usual I will start with the requirement µ T g(x ) = 0 to identify candidate cases then apply the conditions derived from the derivative constraint to identify the candidate points for each case. Considering that each of the three constraints could be active or not would result in a set of 8 possible cases to consider. However the only constraint that could lead to a symmetric pair of solutions is the first so let s assume that In standard form we have µ 1 0. f(x) = x x 2 2 g 1 (x) = 4 x 1 x g 2 (x) = 3x 2 x 1 0 g 3 (x) = 3x 2 x 1 0 The gradients and Hessians are [ 2x1 f(x) = 2x 2 [ 1 g 1 (x) = 2x 2 [ 1 g 2 (x) = 3 [ 1 g 3 (x) = 3 [ 2 0 F (x) = 0 2 G 1 (x) = [ G 2 (x) = 0 G 3 (x) = 0. The derivative constraint is [ 2x 1 2x 2 Df(x ) + λ Dh(x ) + µ Dg(x ) = 0 [ [ [ + µ 1 1 2x + µ µ = 0 2x 1 µ 1 µ 2 µ 3 = 0 (1) 2x 2 2x 2µ 1 + 3µ 2 3µ 3 = 0. (2) Case: µ = (µ 1 0 0) If we assume that only µ 1 is nonzero we solve the simultaneous equations 2x 1 = µ 1 2x 2 = 2x 2µ 1

7 ECE580 Fall 2015 Solution to Problem Set 6 December to obtain µ 1 = 1 x 1 = 1/2 and x 2 = 7/2. This does not satisfy the constraints ±3x 2 x 1 0. Thus this is not the case does not provide a minimizer. Case: µ = (µ 1 0 µ 3) The conditions x 2 2 = 4 x 1 x 2 = x 1 /3 combine to yield x 1 {3 12} and x 2 { 1 4}. x = ( 12 4) does not satisfy constraint g 3 (x ) 0. We solve the simultaneous equations 2x 1 µ 1 µ 3 = 0 2x 2 2x 2µ 1 3µ 3 = 0. to obtain µ 1 = 4 and µ 3 = 2 when x = (3 1). Case: µ = (µ 1 µ 2 µ 3) The two requirements x 2 = x 1 /3 = x 1 /3 are satisfied only by the origin. Thus this is not the case does not provide a minimizer. Case: µ = (µ 1 µ 2 0) In this case we find that x 1 {3 12} so x 2 {1 4}. x = ( 12 4) does not satisfy constraint g 3 (x ) 0. For x = (3 1) we solve the simultaneous equations to obtain µ 1 = 8 and µ 2 = 2. 2x 1 µ 1 µ 2 = 0 2x 2 2x 2µ 1 + 3µ 2 = 0. In both cases that produced minimizer candidates x = (3 1) and x = ( 3 1) the requirement µ 0 is satisfied. f g C 2. All that remains is to show positive definiteness on the tangent space to the surface defined by the active constraints having positive µ i. The index sets are J 2 (x µ ) := {i : g i (x ) = 0 µ i > 0} = {1 2} J 3 (x µ ) := {i : g i (x ) = 0 µ i > 0} = {1 3} Then subspaces are T 2 (x µ ) = {y : Dh(x )y = 0} i {12} {y : Dg i (x )y = 0} = {y : g 1 (x ) = g 2 (x ) = 0 µ 1 µ 2 > 0 Dg 1 (x )y = Dg 2 (x )y = 0} = {y : y 1 = 2y 2 } {y : y 1 = 3y 2 } = 0 T 3 (x µ ) = {y : Dh(x )y = 0} {y : Dg i (x )y = 0} i {13} = {y : g 1 (x ) = g 3 (x ) = 0 µ 1 µ 3 > 0 Dg 1 (x )y = Dg 3 (x )y = 0} = {y : y 1 = 2y 2 } {y : y 1 = 3y 2 } = 0

8 ECE580 Fall 2015 Solution to Problem Set 6 December Thus for all non-zero y in T (x µ ) y T L(x λ µ )y > 0. So the the two minimizer candidates are both minimizers of the cost function f(x) subject to the given constraints. c 2015 S. Koskie

ECE580 Solution to Problem Set 3: Applications of the FONC, SONC, and SOSC

ECE580 Solution to Problem Set 3: Applications of the FONC, SONC, and SOSC ECE580 Spring 2016 Solution to Problem Set 3 February 8, 2016 1 ECE580 Solution to Problem Set 3: Applications of the FONC, SONC, and SOSC These problems are from the textbook by Chong and Zak, 4th edition,

More information

ECE580 Partial Solution to Problem Set 3

ECE580 Partial Solution to Problem Set 3 ECE580 Fall 2015 Solution to Problem Set 3 October 23, 2015 1 ECE580 Partial Solution to Problem Set 3 These problems are from the textbook by Chong and Zak, 4th edition, which is the textbook for the

More information

ECE580 Solution to Problem Set 4

ECE580 Solution to Problem Set 4 ECE580 Fall 05 Solution to Problem Set 4 December 8, 05 ECE580 Solution to Problem Set 4 These problems are from the textbook by Chong and Zak, 4th edition, which is the textbook for the ECE580 Fall 05

More information

MATH 4211/6211 Optimization Constrained Optimization

MATH 4211/6211 Optimization Constrained Optimization MATH 4211/6211 Optimization Constrained Optimization Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 Constrained optimization

More information

MATH 4211/6211 Optimization Basics of Optimization Problems

MATH 4211/6211 Optimization Basics of Optimization Problems MATH 4211/6211 Optimization Basics of Optimization Problems Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 A standard minimization

More information

Math 273a: Optimization Basic concepts

Math 273a: Optimization Basic concepts Math 273a: Optimization Basic concepts Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 slides based on Chong-Zak, 4th Ed. Goals of this lecture The general form of optimization: minimize

More information

MATH2070 Optimisation

MATH2070 Optimisation MATH2070 Optimisation Nonlinear optimisation with constraints Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Review The full nonlinear optimisation problem with equality constraints

More information

Constrained optimization

Constrained optimization Constrained optimization In general, the formulation of constrained optimization is as follows minj(w), subject to H i (w) = 0, i = 1,..., k. where J is the cost function and H i are the constraints. Lagrange

More information

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review

CE 191: Civil & Environmental Engineering Systems Analysis. LEC 17 : Final Review CE 191: Civil & Environmental Engineering Systems Analysis LEC 17 : Final Review Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 2014 Prof. Moura UC Berkeley

More information

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Optimization Problems with Constraints - introduction to theory, numerical Methods and applications Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes (SOP)

More information

Lagrange Multipliers

Lagrange Multipliers Lagrange Multipliers (Com S 477/577 Notes) Yan-Bin Jia Nov 9, 2017 1 Introduction We turn now to the study of minimization with constraints. More specifically, we will tackle the following problem: minimize

More information

An Introduction to Model-based Predictive Control (MPC) by

An Introduction to Model-based Predictive Control (MPC) by ECE 680 Fall 2017 An Introduction to Model-based Predictive Control (MPC) by Stanislaw H Żak 1 Introduction The model-based predictive control (MPC) methodology is also referred to as the moving horizon

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Mechanical Systems II. Method of Lagrange Multipliers

Mechanical Systems II. Method of Lagrange Multipliers Mechanical Systems II. Method of Lagrange Multipliers Rafael Wisniewski Aalborg University Abstract. So far our approach to classical mechanics was limited to finding a critical point of a certain functional.

More information

Paul Schrimpf. October 17, UBC Economics 526. Constrained optimization. Paul Schrimpf. First order conditions. Second order conditions

Paul Schrimpf. October 17, UBC Economics 526. Constrained optimization. Paul Schrimpf. First order conditions. Second order conditions UBC Economics 526 October 17, 2012 .1.2.3.4 Section 1 . max f (x) s.t. h(x) = c f : R n R, h : R n R m Draw picture of n = 2 and m = 1 At optimum, constraint tangent to level curve of function Rewrite

More information

7. Let X be a (general, abstract) metric space which is sequentially compact. Prove X must be complete.

7. Let X be a (general, abstract) metric space which is sequentially compact. Prove X must be complete. Math 411 problems The following are some practice problems for Math 411. Many are meant to challenge rather that be solved right away. Some could be discussed in class, and some are similar to hard exam

More information

Math 164-1: Optimization Instructor: Alpár R. Mészáros

Math 164-1: Optimization Instructor: Alpár R. Mészáros Math 164-1: Optimization Instructor: Alpár R. Mészáros First Midterm, April 20, 2016 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By writing

More information

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor.

ECE580 Exam 1 October 4, Please do not write on the back of the exam pages. Extra paper is available from the instructor. ECE580 Exam 1 October 4, 2012 1 Name: Solution Score: /100 You must show ALL of your work for full credit. This exam is closed-book. Calculators may NOT be used. Please leave fractions as fractions, etc.

More information

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents

MATHEMATICAL ECONOMICS: OPTIMIZATION. Contents MATHEMATICAL ECONOMICS: OPTIMIZATION JOÃO LOPES DIAS Contents 1. Introduction 2 1.1. Preliminaries 2 1.2. Optimal points and values 2 1.3. The optimization problems 3 1.4. Existence of optimal points 4

More information

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016 Math 29-2: Final Exam Solutions Northwestern University, Winter 206 Determine whether each of the following statements is true or false f it is true, explain why; if it is false, give a counterexample

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

g(t) = f(x 1 (t),..., x n (t)).

g(t) = f(x 1 (t),..., x n (t)). Reading: [Simon] p. 313-333, 833-836. 0.1 The Chain Rule Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives

More information

Math 5311 Constrained Optimization Notes

Math 5311 Constrained Optimization Notes ath 5311 Constrained Optimization otes February 5, 2009 1 Equality-constrained optimization Real-world optimization problems frequently have constraints on their variables. Constraints may be equality

More information

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc.

ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, Please leave fractions as fractions, but simplify them, etc. ECE580 Fall 2015 Solution to Midterm Exam 1 October 23, 2015 1 Name: Solution Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully.

More information

Final Exam - Answer key

Final Exam - Answer key Fall4 Final Exam - Answer key ARE Problem (Analysis) [7 points]: A) [ points] Let A = (,) R be endowed with the Euclidean metric. Consider the set O = {( n,) : n N}. Does the open cover O of A have a finite

More information

2-4 Zeros of Polynomial Functions

2-4 Zeros of Polynomial Functions Write a polynomial function of least degree with real coefficients in standard form that has the given zeros. 33. 2, 4, 3, 5 Using the Linear Factorization Theorem and the zeros 2, 4, 3, and 5, write f

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Lecture 3: Basics of set-constrained and unconstrained optimization

Lecture 3: Basics of set-constrained and unconstrained optimization Lecture 3: Basics of set-constrained and unconstrained optimization (Chap 6 from textbook) Xiaoqun Zhang Shanghai Jiao Tong University Last updated: October 9, 2018 Optimization basics Outline Optimization

More information

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints

ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints ISM206 Lecture Optimization of Nonlinear Objective with Linear Constraints Instructor: Prof. Kevin Ross Scribe: Nitish John October 18, 2011 1 The Basic Goal The main idea is to transform a given constrained

More information

LB 220 Homework 4 Solutions

LB 220 Homework 4 Solutions LB 220 Homework 4 Solutions Section 11.4, # 40: This problem was solved in class on Feb. 03. Section 11.4, # 42: This problem was also solved in class on Feb. 03. Section 11.4, # 43: Also solved in class

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Algorithms for nonlinear programming problems II

Algorithms for nonlinear programming problems II Algorithms for nonlinear programming problems II Martin Branda Charles University Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects of Optimization

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. xx xxxx 2017 xx:xx xx.

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. xx xxxx 2017 xx:xx xx. Two hours To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER CONVEX OPTIMIZATION - SOLUTIONS xx xxxx 27 xx:xx xx.xx Answer THREE of the FOUR questions. If

More information

SECTION C: CONTINUOUS OPTIMISATION LECTURE 11: THE METHOD OF LAGRANGE MULTIPLIERS

SECTION C: CONTINUOUS OPTIMISATION LECTURE 11: THE METHOD OF LAGRANGE MULTIPLIERS SECTION C: CONTINUOUS OPTIMISATION LECTURE : THE METHOD OF LAGRANGE MULTIPLIERS HONOUR SCHOOL OF MATHEMATICS OXFORD UNIVERSITY HILARY TERM 005 DR RAPHAEL HAUSER. Examples. In this lecture we will take

More information

Generalization to inequality constrained problem. Maximize

Generalization to inequality constrained problem. Maximize Lecture 11. 26 September 2006 Review of Lecture #10: Second order optimality conditions necessary condition, sufficient condition. If the necessary condition is violated the point cannot be a local minimum

More information

Note: Every graph is a level set (why?). But not every level set is a graph. Graphs must pass the vertical line test. (Level sets may or may not.

Note: Every graph is a level set (why?). But not every level set is a graph. Graphs must pass the vertical line test. (Level sets may or may not. Curves in R : Graphs vs Level Sets Graphs (y = f(x)): The graph of f : R R is {(x, y) R y = f(x)} Example: When we say the curve y = x, we really mean: The graph of the function f(x) = x That is, we mean

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Computational Optimization. Augmented Lagrangian NW 17.3

Computational Optimization. Augmented Lagrangian NW 17.3 Computational Optimization Augmented Lagrangian NW 17.3 Upcoming Schedule No class April 18 Friday, April 25, in class presentations. Projects due unless you present April 25 (free extension until Monday

More information

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Let s review the definition of a polynomial. A polynomial function of degree n is a function of the form P(x) = a n x n + a

More information

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 20010/11 Math for Microeconomics September Course, Part II Lecture Notes Course Outline Lecture 1: Tools for

More information

Algorithms for nonlinear programming problems II

Algorithms for nonlinear programming problems II Algorithms for nonlinear programming problems II Martin Branda Charles University in Prague Faculty of Mathematics and Physics Department of Probability and Mathematical Statistics Computational Aspects

More information

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization

Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Extreme Abridgment of Boyd and Vandenberghe s Convex Optimization Compiled by David Rosenberg Abstract Boyd and Vandenberghe s Convex Optimization book is very well-written and a pleasure to read. The

More information

EC400 Math for Microeconomics Syllabus The course is based on 6 sixty minutes lectures and on 6 ninety minutes classes.

EC400 Math for Microeconomics Syllabus The course is based on 6 sixty minutes lectures and on 6 ninety minutes classes. London School of Economics Department of Economics Dr Francesco Nava Offi ce: 32L.3.20 EC400 Math for Microeconomics Syllabus 2016 The course is based on 6 sixty minutes lectures and on 6 ninety minutes

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

Convex Optimization and Modeling

Convex Optimization and Modeling Convex Optimization and Modeling Duality Theory and Optimality Conditions 5th lecture, 12.05.2010 Jun.-Prof. Matthias Hein Program of today/next lecture Lagrangian and duality: the Lagrangian the dual

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Chapter 7. Extremal Problems. 7.1 Extrema and Local Extrema

Chapter 7. Extremal Problems. 7.1 Extrema and Local Extrema Chapter 7 Extremal Problems No matter in theoretical context or in applications many problems can be formulated as problems of finding the maximum or minimum of a function. Whenever this is the case, advanced

More information

ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review

ECE 680 Modern Automatic Control. Gradient and Newton s Methods A Review ECE 680Modern Automatic Control p. 1/1 ECE 680 Modern Automatic Control Gradient and Newton s Methods A Review Stan Żak October 25, 2011 ECE 680Modern Automatic Control p. 2/1 Review of the Gradient Properties

More information

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study

Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms: A Comparative Study International Journal of Mathematics And Its Applications Vol.2 No.4 (2014), pp.47-56. ISSN: 2347-1557(online) Determination of Feasible Directions by Successive Quadratic Programming and Zoutendijk Algorithms:

More information

Computational Optimization. Constrained Optimization Part 2

Computational Optimization. Constrained Optimization Part 2 Computational Optimization Constrained Optimization Part Optimality Conditions Unconstrained Case X* is global min Conve f X* is local min SOSC f ( *) = SONC Easiest Problem Linear equality constraints

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

2.3 Linear Programming

2.3 Linear Programming 2.3 Linear Programming Linear Programming (LP) is the term used to define a wide range of optimization problems in which the objective function is linear in the unknown variables and the constraints are

More information

10-725/ Optimization Midterm Exam

10-725/ Optimization Midterm Exam 10-725/36-725 Optimization Midterm Exam November 6, 2012 NAME: ANDREW ID: Instructions: This exam is 1hr 20mins long Except for a single two-sided sheet of notes, no other material or discussion is permitted

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

CHAPTER 2: QUADRATIC PROGRAMMING

CHAPTER 2: QUADRATIC PROGRAMMING CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,

More information

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2 LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 2010/11 Math for Microeconomics September Course, Part II Problem Set 1 with Solutions 1. Show that the general

More information

minimize x subject to (x 2)(x 4) u,

minimize x subject to (x 2)(x 4) u, Math 6366/6367: Optimization and Variational Methods Sample Preliminary Exam Questions 1. Suppose that f : [, L] R is a C 2 -function with f () on (, L) and that you have explicit formulae for

More information

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems

UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems UNDERGROUND LECTURE NOTES 1: Optimality Conditions for Constrained Optimization Problems Robert M. Freund February 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. 1 1 Introduction

More information

Finite Dimensional Optimization Part III: Convex Optimization 1

Finite Dimensional Optimization Part III: Convex Optimization 1 John Nachbar Washington University March 21, 2017 Finite Dimensional Optimization Part III: Convex Optimization 1 1 Saddle points and KKT. These notes cover another important approach to optimization,

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

Optimization Part 1 P. Agius L2.1, Spring 2008

Optimization Part 1 P. Agius L2.1, Spring 2008 Optimization Part 1 Contents Terms and definitions, formulating the problem Unconstrained optimization conditions FONC, SONC, SOSC Searching for the solution Which direction? What step size? Constrained

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

The Implicit Function Theorem 1

The Implicit Function Theorem 1 John Nachbar Washington University September 6, 2016 1 Introduction The Implicit Function Theorem 1 The Implicit Function Theorem is a non-linear version of the following observation from linear algebra.

More information

page 1 of 14 1 for all x because f 1 = f and1 f = f. The identity for = x for all x because f

page 1 of 14 1 for all x because f 1 = f and1 f = f. The identity for = x for all x because f page of 4 Entry # Inverses in General The term inverse is used in very different contexts in mathematics. For example, the multiplicative inverse of a number, the inverse of a function, and the inverse

More information

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised)

Computational Optimization. Convexity and Unconstrained Optimization 1/29/08 and 2/1(revised) Computational Optimization Convexity and Unconstrained Optimization 1/9/08 and /1(revised) Convex Sets A set S is convex if the line segment joining any two points in the set is also in the set, i.e.,

More information

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION, AY 2010/2011. Linear Algebra II. May 2011 Time allowed :

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION, AY 2010/2011. Linear Algebra II. May 2011 Time allowed : NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION, AY 2010/2011 Linear Algebra II May 2011 Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES 1. This examination paper contains

More information

1.5 F15 O Brien. 1.5: Linear Equations and Inequalities

1.5 F15 O Brien. 1.5: Linear Equations and Inequalities 1.5: Linear Equations and Inequalities I. Basic Terminology A. An equation is a statement that two expressions are equal. B. To solve an equation means to find all of the values of the variable that make

More information

Optimization. Yuh-Jye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29

Optimization. Yuh-Jye Lee. March 21, Data Science and Machine Intelligence Lab National Chiao Tung University 1 / 29 Optimization Yuh-Jye Lee Data Science and Machine Intelligence Lab National Chiao Tung University March 21, 2017 1 / 29 You Have Learned (Unconstrained) Optimization in Your High School Let f (x) = ax

More information

Math 164 (Lec 1): Optimization Instructor: Alpár R. Mészáros

Math 164 (Lec 1): Optimization Instructor: Alpár R. Mészáros Math 164 (Lec 1): Optimization Instructor: Alpár R. Mészáros Midterm, October 6, 016 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By writing

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Nonlinear equations. Norms for R n. Convergence orders for iterative methods

Nonlinear equations. Norms for R n. Convergence orders for iterative methods Nonlinear equations Norms for R n Assume that X is a vector space. A norm is a mapping X R with x such that for all x, y X, α R x = = x = αx = α x x + y x + y We define the following norms on the vector

More information

Chapter 3: Constrained Extrema

Chapter 3: Constrained Extrema Chapter 3: Constrained Extrema Math 368 c Copyright 2012, 2013 R Clark Robinson May 22, 2013 Chapter 3: Constrained Extrema 1 Implicit Function Theorem For scalar fn g : R n R with g(x ) 0 and g(x ) =

More information

Lagrange Multipliers

Lagrange Multipliers Optimization with Constraints As long as algebra and geometry have been separated, their progress have been slow and their uses limited; but when these two sciences have been united, they have lent each

More information

Numerical Optimization

Numerical Optimization Constrained Optimization Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Constrained Optimization Constrained Optimization Problem: min h j (x) 0,

More information

Solving Systems of Polynomial Equations

Solving Systems of Polynomial Equations Solving Systems of Polynomial Equations David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License.

More information

Mathematical Programs with Complementarity Constraints in the Context of Inverse Optimal Control for Locomotion

Mathematical Programs with Complementarity Constraints in the Context of Inverse Optimal Control for Locomotion Mathematical Programs with Complementarity Constraints in the Context of Inverse Optimal Control for Locomotion Sebastian Albrecht a and Michael Ulbrich a a Chair of Mathematical Optimization, Department

More information

Constrained Optimization

Constrained Optimization Constrained Optimization Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 1 General Problem Consider the following general constrained optimization problem:

More information

SF2822 Applied nonlinear optimization, final exam Saturday December

SF2822 Applied nonlinear optimization, final exam Saturday December SF2822 Applied nonlinear optimization, final exam Saturday December 5 27 8. 3. Examiner: Anders Forsgren, tel. 79 7 27. Allowed tools: Pen/pencil, ruler and rubber; plus a calculator provided by the department.

More information

18.06 Spring 2012 Problem Set 3

18.06 Spring 2012 Problem Set 3 8.6 Spring 22 Problem Set 3 This problem set is due Thursday, March, 22 at 4pm (hand in to Room 2-6). The textbook problems are out of the 4th edition. For computational problems, please include a printout

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions CE 191: Civil and Environmental Engineering Systems Analysis LEC : Optimality Conditions Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 214 Prof. Moura

More information

Optimality Conditions

Optimality Conditions Chapter 2 Optimality Conditions 2.1 Global and Local Minima for Unconstrained Problems When a minimization problem does not have any constraints, the problem is to find the minimum of the objective function.

More information

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2 HW3 - Due 02/06 Each answer must be mathematically justified Don t forget your name Problem 1 Find a 2 2 matrix B such that B 3 = A, where A = 2 2 If A was diagonal, it would be easy: we would just take

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

2. If the discriminant of a quadratic equation is zero, then there (A) are 2 imaginary roots (B) is 1 rational root

2. If the discriminant of a quadratic equation is zero, then there (A) are 2 imaginary roots (B) is 1 rational root Academic Algebra II 1 st Semester Exam Mr. Pleacher Name I. Multiple Choice 1. Which is the solution of x 1 3x + 7? (A) x -4 (B) x 4 (C) x -4 (D) x 4. If the discriminant of a quadratic equation is zero,

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Mini-Lesson 9. Section 9.1: Relations and Functions. Definitions

Mini-Lesson 9. Section 9.1: Relations and Functions. Definitions 9 Section 9.1: Relations and Functions A RELATION is any set of ordered pairs. Definitions A FUNCTION is a relation in which every input value is paired with exactly one output value. Table of Values One

More information

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a UCM Final Exam, 05/8/014 Solutions 1 Given the parameter a R, consider the following linear system x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 points Discuss the system depending on the

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

Math 51 Second Exam May 18, 2017

Math 51 Second Exam May 18, 2017 Math 51 Second Exam May 18, 2017 Name: SUNet ID: ID #: Complete the following problems. In order to receive full credit, please show all of your work and justify your answers. You do not need to simplify

More information

Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive:

Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive: Fall 09/MAT 140/Worksheet 1 Name: Show all your work. 1. (6pts) Simplify and write the answer so all exponents are positive: a) (x 3 y 6 ) 3 x 4 y 5 = b) 4x 2 (3y) 2 (6x 3 y 4 ) 2 = 2. (2pts) Convert to

More information

Production Possibility Frontier

Production Possibility Frontier Division of the Humanities and Social Sciences Production Possibility Frontier KC Border v 20151111::1410 This is a very simple model of the production possibilities of an economy, which was formulated

More information

Derivatives of Functions from R n to R m

Derivatives of Functions from R n to R m Derivatives of Functions from R n to R m Marc H Mehlman Department of Mathematics University of New Haven 20 October 2014 1 Matrices Definition 11 A m n matrix, A, is an array of numbers having m rows

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

SF2822 Applied nonlinear optimization, final exam Wednesday June

SF2822 Applied nonlinear optimization, final exam Wednesday June SF2822 Applied nonlinear optimization, final exam Wednesday June 3 205 4.00 9.00 Examiner: Anders Forsgren, tel. 08-790 7 27. Allowed tools: Pen/pencil, ruler and eraser. Note! Calculator is not allowed.

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information