X-ray scattering methods for the analysis of advanced materials

Size: px
Start display at page:

Download "X-ray scattering methods for the analysis of advanced materials"

Transcription

1 X-R A Y S C A T T E R I N G S O L U T I O N S X-ray scattering methods for the analysis of advanced materials Joachim F. Woitok Almelo, The Netherlands

2 Contents M a t e r i a l s a n d t h e i r a n a l y t i c a l d e m a n d s X-r a y d i f f r a c t i o n, X-r a y r e f l e c t i v i t y a n d X-r a y d i f f u s e s c a t t e r i n g how it works? X-r a y s o l u t i o n s ( a l l in -on e ) sy ste m

3 X-ray diffraction for today Stress Texture Bulk samples Phase identification/ identification/ quantification quantification Reflectivity/ Diffuse Scattering Loose powders Thin film samples Diffractometer Small amounts Epitaxial layers High-resolution Flat samples Crystallography

4 Analysis of Advanced Materials - Layers P e r f e c t c r y s t a l s n o d e f e c t s, b u t s t r a i n M i s m a t c h e d l a y e r s - r e l a x a t i o n L a r g e m i s m a t c h - h i g h d e n s i t y o f i m p e r f e c t i o n s H i g h l y t e x t u r e d p e r f e c t i o n n o t n e c e s s a r y P o l y c r y s t a l l i n e b u t i t w o r k s P o l y m e r l a y e r s t h e f u t u r e? M e s o s c o p i c m a t e r i a l s c o m i n g u p

5 Thin Film Characterization by X-rays Pseudomorphic epitaxial layers. No defects. Strain may be present Example : AlGaAs/GaAs, SiGe/Si Applications: Lasers, High-frequency IC s Lattice mismatched epitaxial layers. Layers are partly (or fully) relaxed Example: Strained Si, ZnSe/GaAs, InAsSb/GaSb Applications: Blue LED s, IR optopelectronic Layers with large lattice mismatch and/or dissimilar crystal structures Example: GaN/Sapphire, YBaCuO/SrTiO3, BST, PZT Applications: Blue Lasers and LED s, High Tc Superconductors, Ferroelectrics Layers where the epitaxial relationship is weak. Highly textured. Example: AuCo multilayers on Si Applications: Thin film media, heads

6 Structural Characteristics l a t t i c e m i s m a t c h l a y e r t h i c k n e s s s u p e r l a t t i c e s t r u c t u r e Pseudomorphic growth Imperfect epitaxy - - all above, plus - r elax at i on - m osai c spr ead - m i sf i t d i sloc at i on d en si t y - lay er / subst r at e t i lt s Incoherent growth

7 The Crystalline State Atoms, ions, molecules Matter G aseous S t at e Amorphous (disordered) Solid State L i q ui d S t at e Crystalline (ordered)

8 The Crystalline State A c r y st al i s c on st r uc t ed by t h e i n f i n i t e r epet i t i on i n spac e of i d en t i c al bui ld i n g bloc k s. a b Crystal system + Building block Crystal

9 Crystal Lattice and Bragg s Law Crystal X-ray Diffraction θ θ d C B D x x 2 d sinθ =λ Bragg s Law

10 Bragg s Law N N bisects incident and reflected beams Θ Θ θ = angle of incidence = angle of reflection (symmetrical) Bragg Reflection λ is known θ is measured d is calculated λ= 2d sinθ (the wavelength of the x-ray beam) (the reflection angle) (the spacing between the lattice planes)

11 The Ideal Diffraction System Fast exchange of tubes and tube focus positions incident beam optics sam pl e pl atfor m s diffr acted beam optics detector s w ith out r e-al ig nm ent!

12 Bragg-Brentano Powder Diffractometer Detector Receiving slit Soller slits monochromator Curved crystal (Graphite) X-ray tube (line focus) Soller slits Anti scatter slit Beam mask Divergence slit Polycrystalline sample

13 Powder Diffraction Pattern Intensity (counts) Angular Position: d-values Relative intensities: I Theta ( )

14 Powder Diffraction Pattern T h e diffr action patter n is l ik e a fing er pr int of th e cr y stal str uctur e: d v al ues r efl ect th e unit cel l par am eter s ( g r id ) intensities r efl ect th e atom s/ m ol ecul es ( buil ding bl ock s )

15 Lab to Fab Instrument Materials Research Diffractometer (MRD) Sample 4 - Crystal Monochromator X-ray mirror Triple Axis Detector 1 Optic X-ray tube Line focus interchangeable optics PREFIX all kinds of applications High-resolution Reflectivity Thin Film analysis Stress Texture In-plane

16 200 and 300 mm Wafers X P er t P R O E xtend ed M R D X L h h r w h h l l m P r I X m F or ig - esol ution diffr action studies ith ig intensities A ow s ounting of tw o incident beam ef odul es in-l ine

17 X-ray Techniques Experimental techniques scans in reciprocal space rock ing cu rv es ω -2θ scans q scans reciprocal space m apping

18 HR X-Ray Diffraction monochromator (collimator) XRD rocking curve : an unambiguous, standardless measure of the layer composition and thickness counts/s 10M 1M X-ray source SiGe layer Si substrate 100K The accuracy is within a few %. 0.1% Ge 10 ω 10K 1K Omega/2Theta (s)

19 X-ray Reflectivity/ Diffuse Scattering counts/s 100M Plateau: sample size, flatness, instrument 10M Critical edge: density ω 2θ ρ 1M 100K 10K Angular separation: thickness z 1K Shape: roughness, density Omega/2Theta ( )

20 X-ray Reflectivity/ Diffuse Scattering counts/s 100M 10M 2σ ω Fractal model 2θ h=0.9 ρ 1M 100K h=0.5 z 10K 1K roughness vertical correlation 100 z h=0.3 L Sinha et al. (1988) 10 Diffuse scattering Omega/2Theta ( )

21 PreFIX Optical Modules Line focus Line focus 12 mm 0.04 mm 4-crystal Mirror/ Hybrid Point focus 0.4 mm 1.2 mm Lens Mono-cap

22 The PreFIX Concept 14 incident beam P r ef I X mo du l es 8 dif f r acted beam P r ef I X mo du l es H o w can I mak e th e r ig h t co mbinatio ns?

23 Applications Line focus 12 mm 0.04 mm Phase analysis Rocking curve Reflectivity Omega-Stress Point focus 0.4 mm 1.2 mm Psi-Stress Texture Micro-diffraction In-plane diffraction

24 PreFIX X-ray mirror X-ray Mirror

25 X-ray mirror Mirror M l l w p l s u r f etal ic mu til ay er ith ar abo ic ace G r aded d-s p acing al o ng th e mir r o r U s ed w ith l ine f o cu s C o nv er ts div er g ent beam to p ar al l el beam D o es no t co ntr o l ax ial div er g ence

26 X-ray Mirror X-ray mirror parabolic shape mirror quasi-parallel diffracted out-coming beam focus of x-ray tube divergent incident beam beam

27 X-ray Mirror Detector Divergence slits Soller slits X-ray tube (line focus) Parallel Plate Collimator X-ray mirror Samples with uneven surfaces

28 PreFIX Hybrid monochromator What is a Hybrid Monochromator?

29 What is a Hybrid Monochromator? A co mbinatio n o f an X -r ay mir r o r and a ch annel -cu t G er maniu m cr y s tal O nl y C u K α is tr ans mitted P ar al l el, mo no ch r o matic X -r ay beam o f h ig h -intens ity, T w o ty p es : two bounces in the monochromator f our bounces in the monochromator

30 Hybrid monochromator Hybrid Monochromator

31 Performance Comparison Resolution 0.018º 0.015º 0.012º 0.009º 0.006º Si (333) Si (111) Hybrid 0.003º 4x(220 )asym 4x(220 )asym + mirror 4x(220) 4x(220)+ mirror 2* Intensity (log scale) (c/s) Powder diffraction

32 Potential Analyzers for Parallel Beam Set-up Analyzer Resolution Perfect crystal < 0.02 Too narrow Multilayers ? Optimal? Parallel plate collimators > 0.06 Too broad

33 Effect of Diffracted Beam Optics AlGaN/GaN MQW Omega Theta Phi 0.00 Psi 0.00 X Y 0.00 counts/s 10M 1M Hybrid AlGaN/GaN MQW 100K 10K 1K 1mm TA Omega/2Theta (s)

34 High-resolution Diffraction Triple Axis Ge[220] 4 Crystal monochromator X-ray mirror Detector 1 counts/s 10M Beam size: 1.4 x 2.5mm 2 X-ray tube (line focus) Optional slit Detector 2 1M 100K SiGe HBT Si cap SiGe SiGe K Si substrate Ge % 1K Omega/2Theta (s)

35 Analysis of Boron Doping 1M Si x Ge 1-x Si x Ge 1-x Si x Ge 1-x :B Si(004) 100K Si x Ge 1-x 10K Si (001) Si (001) Intensity (a.u.) 1K Omega/2Theta(seconds)

36 Reciprocal Space Mapping (TA) Qy*10000(rlu) SiGe Strained Si Si0.8Ge0.2 Graded SiGe to 20%(relaxed) Si substrate 5x Si(004) SL Ge gradient SiGe Qx*10000(rlu) #1_M1.A

37 2Theta/omega projections: comparison of polycrystalline and single crystal Si Poly silicon 001 silicon wafer !!

38 Set-up Fast Reciprocal Space Mapping X Pert PRO MRD Layer structure Hybrid monochromator X Celerator X-ray tube (line focus)

39 AlGaN/GaN MQW Qy*10000(rlu) X Celerator (total time: 40 min) F2113_7_M1.xrdml GaN (0002) Qx*10000(rlu)

40 Reflectivity Parallel plate collimator Flat crystal monochromator Detector Slit 0.1 mm counts/s 100M 10M 1M 100K 10K Beam size: 0.13 x 5 mm 2 beam knife X-ray mirror Si cap 39.0 nm 38.1 nm 29.4 nm 28.9 nm SiGe SiGe Si substrate X-ray tube (line focus) XRR XRD 54.9 nm 55.1 nm 1K Omega/2Theta ( )

41 Model Based on XRD counts/s 100M 10M 1M 100K Si cap SiGe SiGe Si substrate 10K 1K Omega/2Theta ( )

42 Best Fit Simulation counts/s 100M 10M 1M 100K Si cap SiGe SiGe Si substrate 10K 1K Omega/2Theta ( )

43 Roughness Parameters counts/s 100M 10M 1M 100K 10K 1K L: 45±10nm, h: Omega ( )

44 Thin film phase analysis Thin layers Parallel plate collimator Sample Soller slits X-ray mirror X-ray tube (line focus) Incident angles Detector Depth resolved phase analysis Zn Zn CuGaInSe Zn CuGaInSe CdSe/Mo

45 Ferroelectric Films SBT (SrBi 2 Ta 2 O 9 ) and PZT (Pb(Zr x,ti 1-x )O 3 ) are key materials for: FeRAM (ferroelectric random access memories) MEMS (mircro-electromechanical systems) Goal X-ray characterization: Distinguish cubic non-ferroelectric phase from Pervoskite ferroelectric phase

46 The Material Problem SBT possible phases: Pervoskite Fluorite (low T SBT) Pyrochlore (Bi-deficient composition)

47 X-ray Lens (Point Focus) Detector X-ray tube (point focus) X-ray lens θ = 0.3 Flat graphite crystal monochromator (optional) Stressed and textured samples, highly textured layers

48 Psi- 2Theta/Omega map for phase determination Pt/SBT/Pt/TiO2/SiO2/(100)Si Pyrochlore SBT hkl 65.0 Pt(111) Psi [deg] Pyrochlore (222) Pt(111) Theta/Omega [deg]

49 Texture Stressed and textured samples, Highly textured layers X-ray lens X-ray tube (point focus) Detector Parallel plate collimator θ= = 0.3 Flat graphite crystal monochromator (optinal) Rolled Cu

50 Micro-Diffraction Sample with small area of interest Mono-cap X Celerator θ= 0.3 X-ray tube (point focus) Cu(111) Cu plating 0.4 mm x x

51 In-plane - Low Resolution Setup ω, φ X-ray lens 2θ Crossed-slits slits 0.1 x 5 mm 2 Parallel plate collimator

52 Textured polycrystalline Co(CrPtTa) alloy layers in hard discs Co Cr NiP Al Co-based magnetic thin film typically 25nm thick hexagonal phase highly textured Polycrystalline Cr Co signals lost amongst others Amorphous NiP Polycrystalline textured Al

53 Conventional diffraction geometry vs In-plane The Co reflections, if present, are buried under the NiP amorphous hump. Conventional diffraction Al (200) Amorphous NiP counts/s 800 In-plane diffraction geometry Co(002) Co(002) 600 Co (002) Co (100) Co (101) Co(100) 0 ) C o(1 1 ) 0 C o(1 Co(101) Optics: X-Ray lens, Soller slits, Parallel plate collimator 0 2Theta

54 High temperature studies DHS 900

55 TA Scans as Function of T counts/s 1M 100K Si(004) 700 C 100 C Si_100TA.xrdml Si_150TA.xrdml Si_180TA.xrdml Si_500TA.xrdml Si_700TA.xrdml 10K 1K d 004 [Ang] T [K] Omega/2Theta ( )

Good Diffraction Practice Webinar Series

Good Diffraction Practice Webinar Series Good Diffraction Practice Webinar Series High Resolution X-ray Diffractometry (1) Mar 24, 2011 www.bruker-webinars.com Welcome Heiko Ress Global Marketing Manager Bruker AXS Inc. Madison, Wisconsin, USA

More information

Scattering Techniques and Geometries How to choose a beamline. Christopher J. Tassone

Scattering Techniques and Geometries How to choose a beamline. Christopher J. Tassone Scattering Techniques and Geometries How to choose a beamline Christopher J. Tassone Why Care About Geometries? How do you decide which beamline you want to use? Questions you should be asking Do I want

More information

Diffractometer. Geometry Optics Detectors

Diffractometer. Geometry Optics Detectors Diffractometer Geometry Optics Detectors Diffractometers Debye Scherrer Camera V.K. Pecharsky and P.Y. Zavalij Fundamentals of Powder Diffraction and Structural Characterization of Materials. Diffractometers

More information

Swanning about in Reciprocal Space. Kenneth, what is the wavevector?

Swanning about in Reciprocal Space. Kenneth, what is the wavevector? Swanning about in Reciprocal Space or, Kenneth, what is the wavevector? Stanford Synchrotron Radiation Laboratory Principles The relationship between the reciprocal lattice vector and the wave vector is

More information

Lesson 2 Diffractometers & Phase Identification

Lesson 2 Diffractometers & Phase Identification Lesson 2 Diffractometers & Phase Identification Nicola Döbelin RMS Foundation, Bettlach, Switzerland February 11 14, 2013, Riga, Latvia Repetition: Generation of X-rays Kα 1 Target (Cu, Mo, Fe, Co,...)

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1])

Röntgenpraktikum. M. Oehzelt. (based on the diploma thesis of T. Haber [1]) Röntgenpraktikum M. Oehzelt (based on the diploma thesis of T. Haber [1]) October 21, 2004 Contents 1 Fundamentals 2 1.1 X-Ray Radiation......................... 2 1.1.1 Bremsstrahlung......................

More information

Data collection Strategy. Apurva Mehta

Data collection Strategy. Apurva Mehta Data collection Strategy Apurva Mehta Outline Before.. Resolution, Aberrations and detectors During.. What is the scientific question? How will probing the structure help? Is there an alternative method?

More information

X-ray diffraction geometry

X-ray diffraction geometry X-ray diffraction geometry Setting controls sample orientation in the diffraction plane. most important for single-crystal diffraction For any poly- (or nano-) crystalline specimen, we usually set: 1 X-ray

More information

X-ray, Neutron and e-beam scattering

X-ray, Neutron and e-beam scattering X-ray, Neutron and e-beam scattering Introduction Why scattering? Diffraction basics Neutrons and x-rays Techniques Direct and reciprocal space Single crystals Powders CaFe 2 As 2 an example What is the

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry Pavol Mikula, Nuclear Physics Institute ASCR 25 68 Řež near Prague, Czech Republic NMI3-Meeting, Barcelona, 21 Motivation Backscattering

More information

Road map (Where are we headed?)

Road map (Where are we headed?) Road map (Where are we headed?) oal: Fairly high level understanding of carrier transport and optical transitions in semiconductors Necessary Ingredients Crystal Structure Lattice Vibrations Free Electron

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

Sample Alignment (2D detector) Part

Sample Alignment (2D detector) Part Sample Alignment (2D detector) Part Contents Contents 1 How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Customizing scan conditions and slit conditions... 6 2 Sample alignment sequence...13

More information

Lecture 23 X-Ray & UV Techniques

Lecture 23 X-Ray & UV Techniques Lecture 23 X-Ray & UV Techniques Schroder: Chapter 11.3 1/50 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

SAMANTHA GORHAM FRANK H. MORRELL CAMPUS ADVISOR: Prof. TREVOR A. TYSON (NJIT)

SAMANTHA GORHAM FRANK H. MORRELL CAMPUS ADVISOR: Prof. TREVOR A. TYSON (NJIT) SAMANTHA GORHAM FRANK H. MORRELL CAMPUS ADVISOR: Prof. TREVOR A. TYSON (NJIT) I WANT TO THANK PROFESSOR TREVOR A. TYSON FOR HIS HELP IN ASSISTING ME THROUGHOUT THE COURSE OF THIS PRJECT AND RESEARCH. I

More information

Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015

Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015 Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015 1 BROOKHAVEN SCIENCE ASSOCIATES Overview Material s response to applied forces or what to measure Definitions

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

Introduction to Triple Axis Neutron Spectroscopy

Introduction to Triple Axis Neutron Spectroscopy Introduction to Triple Axis Neutron Spectroscopy Bruce D Gaulin McMaster University The triple axis spectrometer Constant-Q and constant E Practical concerns Resolution and Spurions Neutron interactions

More information

Basics of XRD part III

Basics of XRD part III Basics of XRD part III Dr. Peter G. Weidler Institute of Functional Interfaces IFG 1 10/31/17 KIT The Research University of the Helmholtz Association Name of Institute, Faculty, Department www.kit.edu

More information

Measurement of EUV scattering from Mo/Si multilayer mirrors

Measurement of EUV scattering from Mo/Si multilayer mirrors Measurement of EUV scattering from Mo/Si multilayer mirrors N. Kandaka, T. Kobayashi, T. Komiya, M. Shiraishi, T. Oshino and K. Murakami Nikon Corp. 3 rd EUVL Symposium Nov. 2-4 2004 (Miyazaki, JAPAN)

More information

Silver Thin Film Characterization

Silver Thin Film Characterization Silver Thin Film Characterization.1 Introduction Thin films of Ag layered structures, typically less than a micron in thickness, are tailored to achieve desired functional properties. Typical characterization

More information

Multilayer Interference Coating, Scattering, Diffraction, Reflectivity

Multilayer Interference Coating, Scattering, Diffraction, Reflectivity Multilayer Interference Coating, Scattering, Diffraction, Reflectivity mλ = 2d sin θ (W/C, T. Nguyen) Normal incidence reflectivity 1..5 1 nm MgF 2 /Al Si C Pt, Au 1 ev 1 ev Wavelength 1 nm 1 nm.1 nm Multilayer

More information

SSRL XAS Beam Lines Soft X-ray

SSRL XAS Beam Lines Soft X-ray SSRL SMB Summer School July 20, 2010 SSRL XAS Beam Lines Soft X-ray Thomas Rabedeau SSRL Beam Line Development Objective/Scope Objective - develop a better understanding of the capabilities and limitations

More information

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source Eric Gullikson Lawrence Berkeley National Laboratory 1 Reflectometry and Scattering Beamline (ALS 6.3.2) Commissioned Fall 1994

More information

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

2D XRD Imaging by Projection-Type X-Ray Microscope

2D XRD Imaging by Projection-Type X-Ray Microscope 0/25 National Institute for Materials Science,Tsukuba, Japan 2D XRD Imaging by Projection-Type X-Ray Microscope 1. Introduction - What s projection-type X-ray microscope? 2. Examples for inhomogeneous/patterned

More information

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

On the use of Kumakhov Polycapillaries to improve laboratory

On the use of Kumakhov Polycapillaries to improve laboratory ICXOM Frascati (INFN - LNF) 25-30 September 2005 On the use of Kumakhov Polycapillaries to improve laboratory Energy Dispersive X-ray X Diffractometry and Reflectometry B. Paci 1, V. Rossi Albertini 1,

More information

Laser Annealing of MOCVD Deposited Ferroelectric SrBi 2 Ta 2 O 9, Pb(Zr X Ti 1-X )O 3 and CeMnO 3 Thin Films

Laser Annealing of MOCVD Deposited Ferroelectric SrBi 2 Ta 2 O 9, Pb(Zr X Ti 1-X )O 3 and CeMnO 3 Thin Films 1 Laser Annealing of MOCVD Deposited Ferroelectric SrBi 2 Ta 2 O 9, Pb(Zr X Ti 1-X )O 3 and CeMnO 3 Thin Films N.M. Sbrockey 1, J.D. Cuchiaro 1, L.G. Provost 1, C.E. Rice 1, S. Sun 1, G.S. Tompa 1, R.L.

More information

Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups.

Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups. ICQNM 2014 Currently, worldwide major semiconductor alloy epitaxial growth is divided into two material groups. Cubic: Diamond structures: group IV semiconductors (Si, Ge, C), Cubic zinc-blende structures:

More information

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION 173 ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION N. A. Raftery, L. K. Bekessy, and J. Bowpitt Faculty of Science, Queensland University of Technology, GPO Box 2434,

More information

Wafer holders. Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer

Wafer holders. Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer Wafer holders Mo- or Ta- made holders Bonding: In (Ga), or In-free (clamped) Quick and easy transfer Image: In-free, 3-inch sample holder fitting a quarter of a 2- inch wafer Reflection High Energy Electron

More information

Data Acquisition. What choices need to be made?

Data Acquisition. What choices need to be made? 1 Specimen type and preparation Radiation source Wavelength Instrument geometry Detector type Instrument setup Scan parameters 2 Specimen type and preparation Slide mount Front loading cavity Back loading

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: He atoms: [E (ev)] 1/2 = 0.14 / (Å) E 1Å = 0.0196 ev Neutrons: [E (ev)] 1/2 = 0.28 / (Å) E 1Å = 0.0784 ev Electrons:

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure S1. The effect of window size. The phonon MFP spectrum of intrinsic c-si (T=300 K) is shown for 7-point, 13-point, and 19-point windows. Increasing the window

More information

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study Arturas Vailionis 1, Wolter Siemons 1,2, Gertjan Koster 1 1 Geballe Laboratory for

More information

4. Other diffraction techniques

4. Other diffraction techniques 4. Other diffraction techniques 4.1 Reflection High Energy Electron Diffraction (RHEED) Setup: - Grazing-incidence high energy electron beam (3-5 kev: MEED,

More information

A neutron polariser based on magnetically remanent Fe/Si supermirrors

A neutron polariser based on magnetically remanent Fe/Si supermirrors Jochen Stahn Laboratorium für Neutronenstreuung ETH Zürich & Paul Scherrer Institut A neutron polariser based on magnetically remanent Fe/Si supermirrors ILL, Grenoble 8. 0. 2006 neutron optics group PSI:

More information

XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY

XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 1 XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY Bob B. He, John Anzelmo, Peter LaPuma, Uwe Preckwinkel,

More information

Characterization of semiconductor hetero- and nanostructures scattering

Characterization of semiconductor hetero- and nanostructures scattering Characterization of semiconductor hetero- and nanostructures by x-ray x scattering Václav Holý, Department of Physics of Electronic Structures, Charles University, 121 16 Prague, Czech Republic holy@mff.cuni.cz

More information

1.4 Crystal structure

1.4 Crystal structure 1.4 Crystal structure (a) crystalline vs. (b) amorphous configurations short and long range order only short range order Abbildungen: S. Hunklinger, Festkörperphysik, Oldenbourg Verlag represenatives of

More information

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University

DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY. Regents' Professor enzeritus Arizona State University DIFFRACTION PHYSICS THIRD REVISED EDITION JOHN M. COWLEY Regents' Professor enzeritus Arizona State University 1995 ELSEVIER Amsterdam Lausanne New York Oxford Shannon Tokyo CONTENTS Preface to the first

More information

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space Tobias U. Schülli, X-ray nanoprobe group ESRF OUTLINE 1 Internal structure of

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure Page 1 of 22 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: 2 p h E = where p = 2m λ h 1 E = ( ) 2m λ hc E = hυ = ( photons) λ ( matter wave) He atoms: [E (ev)]

More information

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination

Basic Crystallography Part 1. Theory and Practice of X-ray Crystal Structure Determination Basic Crystallography Part 1 Theory and Practice of X-ray Crystal Structure Determination We have a crystal How do we get there? we want a structure! The Unit Cell Concept Ralph Krätzner Unit Cell Description

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES 122 INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES I. Busch 1, M. Krumrey 2 and J. Stümpel 1 1 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

More information

Crystals Statics. Structural Properties. Geometry of lattices. Aug 23, 2018

Crystals Statics. Structural Properties. Geometry of lattices. Aug 23, 2018 Crystals Statics. Structural Properties. Geometry of lattices Aug 23, 2018 Crystals Why (among all condensed phases - liquids, gases) look at crystals? We can take advantage of the translational symmetry,

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Neutron Powder Diffraction Theory and Instrumentation

Neutron Powder Diffraction Theory and Instrumentation NTC, Taiwen Aug. 31, 212 Neutron Powder Diffraction Theory and Instrumentation Qingzhen Huang (qing.huang@nist.gov) NIST Center for Neutron Research (www.ncnr.nist.gov) Definitions E: energy; k: wave vector;

More information

Crystal Structure and Electron Diffraction

Crystal Structure and Electron Diffraction Crystal Structure and Electron Diffraction References: Kittel C.: Introduction to Solid State Physics, 8 th ed. Wiley 005 University of Michigan, PHY441-44 (Advanced Physics Laboratory Experiments, Electron

More information

Design of multilayer X-ray mirrors and systems

Design of multilayer X-ray mirrors and systems Design of multilayer X-ray mirrors and systems T. Holz*, R. Dietsch*, S. Braun**, A. Leson** * AXO DRESDEN GmbH, Germany ** Fraunhofer IWS Dresden, Germany Introduction CHARACTERISTICS 1D periodicity of

More information

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 158 IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE B. H.

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

Gen ova/ Pavi a/ Ro ma Ti m i ng Count er st at Sep t. 2004

Gen ova/ Pavi a/ Ro ma Ti m i ng Count er st at Sep t. 2004 Ti m i ng Count er st at us @ Sep t. 2004 1 Ti m i n g Cou n t er act i vi t i es Ti m i n g r esol u t i on : 100 p s FWHM h ave b een ach i eved. PM s ch ar act er ised i n t h e COBRA m ag n et f or

More information

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry X-rays Wilhelm K. Roentgen (1845-1923) NP in Physics 1901 X-ray Radiography - absorption is a function of Z and density X-ray crystallography X-ray spectrometry X-rays Cu K α E = 8.05 kev λ = 1.541 Å Interaction

More information

Neutron Op+cs. P. Courtois. Service for Neutron Op4cs. Cremlin May 2018 INSTITUT LAUE LANGEVIN

Neutron Op+cs. P. Courtois. Service for Neutron Op4cs. Cremlin May 2018 INSTITUT LAUE LANGEVIN Neutron Op+cs INSTITUT LAUE LANGEVIN P. Courtois Service for Neutron Op4cs Cremlin 14-15 May 2018 INSTITUT MAX VON LAUE - PAUL LANGEVIN 1 THE EUROPEAN NEUTRON SOURCE Neutron Optics Neutrons have wave-like

More information

Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films

Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films Ferroelectric oxides with perovskite structure has gained lot of interest from research as well

More information

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages:

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: Ion Implantation alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: mass separation allows wide varies of dopants dose control: diffusion

More information

Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials Brent Fultz James Howe Transmission Electron Microscopy and Diffractometry of Materials Fourth Edition ~Springer 1 1 Diffraction and the X-Ray Powder Diffractometer 1 1.1 Diffraction... 1 1.1.1 Introduction

More information

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2)

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2) 1866-6 School on Pulsed Neutrons: Characterization of Materials 15-26 October 2007 Neurton Sources & Scattering Techniques (1-2) Guenter Bauer Forschungzentrum Julich GmbH Julich Germany The Abdus Salam

More information

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea G Blended L ea r ni ng P r o g r a m R eg i o na l C a p a c i t y D ev elo p m ent i n E -L ea r ni ng H R K C r o s s o r d e r u c a t i o n a n d v e l o p m e n t C o p e r a t i o n 3 0 6 0 7 0 5

More information

Introduction to X-ray and neutron scattering

Introduction to X-ray and neutron scattering UNESCO/IUPAC Postgraduate Course in Polymer Science Lecture: Introduction to X-ray and neutron scattering Zhigunov Alexander Institute of Macromolecular Chemistry ASCR, Heyrovsky sq., Prague -16 06 http://www.imc.cas.cz/unesco/index.html

More information

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis Tim Nunney The world leader in serving science 2 XPS Surface Analysis XPS +... UV Photoelectron Spectroscopy UPS He(I)

More information

Microporous Organic Polymers for Carbon Dioxide Capture

Microporous Organic Polymers for Carbon Dioxide Capture Microporous Organic Polymers for Carbon Dioxide Capture R. Dawson, E. Stöckel, J.R. Holst, D.J. Adams and A.I. Cooper Contents Synthetic Procedures Nitrogen isotherms CO 2 isotherms PXRD BET plots Pore

More information

Physical Chemistry I. Crystal Structure

Physical Chemistry I. Crystal Structure Physical Chemistry I Crystal Structure Crystal Structure Introduction Crystal Lattice Bravis Lattices Crytal Planes, Miller indices Distances between planes Diffraction patters Bragg s law X-ray radiation

More information

Energy-Filtering. Transmission. Electron Microscopy

Energy-Filtering. Transmission. Electron Microscopy Part 3 Energy-Filtering Transmission Electron Microscopy 92 Energy-Filtering TEM Principle of EFTEM expose specimen to mono-energetic electron radiation inelastic scattering in the specimen poly-energetic

More information

X-RAY OPTICAL CONSIDERATIONS ON PARABOLIC GRADED MULTILAYERS ON THE DIFFRACTED BEAM SIDE IN X-RAY DIFFRACTION

X-RAY OPTICAL CONSIDERATIONS ON PARABOLIC GRADED MULTILAYERS ON THE DIFFRACTED BEAM SIDE IN X-RAY DIFFRACTION 336 X-RAY OPTICAL CONSIDERATIONS ON PARABOLIC GRADED MULTILAYERS ON THE DIFFRACTED BEAM SIDE IN X-RAY DIFFRACTION R. Stammer*, R. Hopler **, M. Schuster* and H. Gobel* * Siemens AG, Corporate Technology,

More information

Supplementary Information for Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of nm

Supplementary Information for Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of nm Supplementary Information for Optical and magneto-optical behavior of Cerium Yttrium Iron Garnet thin films at wavelengths of 200-1770 nm Mehmet C. Onbasli 1,a), Lukáš Beran 2,a), Martin Zahradník 2, Miroslav

More information

Sample Alignment Part

Sample Alignment Part Sample Alignment Part Contents Contents 1. How to set Part conditions...1 1.1 Setting conditions... 1 1.2 Customizing scan conditions and slit conditions... 6 2. Sample alignment sequence...13 2.1 Direct

More information

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications

Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications ..SKELETON.. Thin Film Bi-based Perovskites for High Energy Density Capacitor Applications Colin Shear Advisor: Dr. Brady Gibbons 2010 Table of Contents Chapter 1 Introduction... 1 1.1 Motivation and Objective...

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices Chapter. X-ray X Diffraction and Reciprocal Lattice Diffraction of waves by crystals Reciprocal Lattice Diffraction of X-rays Powder diffraction Single crystal X-ray diffraction Scattering from Lattices

More information

X-ray Diffraction from Materials

X-ray Diffraction from Materials X-ray Diffraction from Materials 008 Spring Semester Lecturer; Yang Mo Koo Monday and Wednesday 4:45~6:00 8. X-ray Diffractometers Diffractometer: a measuring instrument for analyzing the structure of

More information

print first name print last name print student id grade

print first name print last name print student id grade print first name print last name print student id grade Experiment 2 X-ray fluorescence X-ray fluorescence (XRF) and X-ray diffraction (XRD) may be used to determine the constituent elements and the crystalline

More information

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d

Signal Loss. A1 A L[Neper] = ln or L[dB] = 20log 1. Proportional loss of signal amplitude with increasing propagation distance: = α d Part 6 ATTENUATION Signal Loss Loss of signal amplitude: A1 A L[Neper] = ln or L[dB] = 0log 1 A A A 1 is the amplitude without loss A is the amplitude with loss Proportional loss of signal amplitude with

More information

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 96 THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Excitations. 15 th Oxford School of Neutron Scattering. Elizabeth Blackburn University of Birmingham. Blackburn et al., Pramana 71, 673 (2008)

Excitations. 15 th Oxford School of Neutron Scattering. Elizabeth Blackburn University of Birmingham. Blackburn et al., Pramana 71, 673 (2008) Excitations Elizabeth Blackburn University of Birmingham Cowley and Woods., Can. J. Phys. 49, 177 (1971) Blackburn et al., Pramana 71, 673 (2008) 15 th Oxford School of Neutron Scattering Excitations Elizabeth

More information

2) Measure sample and empties. 3) Measure transmissions of sample and empties. 4) Normalize to exposure time and transmission. 5) Subtract the empties

2) Measure sample and empties. 3) Measure transmissions of sample and empties. 4) Normalize to exposure time and transmission. 5) Subtract the empties 1) Measure calibrants and direct beam to do Angular Integrations (transforms 2D into 1D) Need the distance SD Need center of beam Need to calculate q-vector 2) Measure sample and empties 3) Measure transmissions

More information

Rajesh Prasad Department of Applied Mechanics Indian Institute of Technology New Delhi

Rajesh Prasad Department of Applied Mechanics Indian Institute of Technology New Delhi TEQIP WORKSHOP ON HIGH RESOLUTION X-RAY AND ELECTRON DIFFRACTION, FEB 01, 2016, IIT-K. Introduction to x-ray diffraction Peak Positions and Intensities Rajesh Prasad Department of Applied Mechanics Indian

More information

Supporting Information

Supporting Information Supporting Information Three-dimensional frameworks of cubic (NH 4 ) 5 Ga 4 SbS 10, (NH 4 ) 4 Ga 4 SbS 9 (OH) H 2 O, and (NH 4 ) 3 Ga 4 SbS 9 (OH 2 ) 2H 2 O. Joshua L. Mertz, Nan Ding, and Mercouri G.

More information

ZZZZZZZZZZYZZZZZZZZZZZZZz6

ZZZZZZZZZZYZZZZZZZZZZZZZz6 USOO5898752A United States Patent (19) 11 Patent Number: Van Der Wal (45) Date of Patent: Apr. 27, 1999 54) X-RAY ANALYSIS APPARATUS PROVIDED Primary Examiner-Craig E. Church WITH A DOUBLE COLLIMATOR MASK

More information

Pyrolytic Graphite Experimental Results

Pyrolytic Graphite Experimental Results McStas n CAMEA Pyrolytic Graphite Experimental Results Author: J. Larsen Content 1 Introduction 2 2 PG Alignments 2 2.1 Tails 2 2.2 Lorentzian Tails and Mosaicity 3 2.3 Further Investigations on RITA II

More information

Depth profile study of ferroelectric PbZr 0.2 Ti 0.8 O 3 films

Depth profile study of ferroelectric PbZr 0.2 Ti 0.8 O 3 films JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 11 1 DECEMBER 2002 Depth profile study of ferroelectric PbZr 0.2 Ti 0.8 O 3 films Y. Li, V. Nagarajan, S. Aggarwal, R. Ramesh, L. G. Salamanca-Riba, and L.

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

V 11: Electron Diffraction

V 11: Electron Diffraction Martin-Luther-University Halle-Wittenberg Institute of Physics Advanced Practical Lab Course V 11: Electron Diffraction An electron beam conditioned by an electron optical system is diffracted by a polycrystalline,

More information

Band Alignment and Graded Heterostructures. Guofu Niu Auburn University

Band Alignment and Graded Heterostructures. Guofu Niu Auburn University Band Alignment and Graded Heterostructures Guofu Niu Auburn University Outline Concept of electron affinity Types of heterojunction band alignment Band alignment in strained SiGe/Si Cusps and Notches at

More information