Problem 3.73 Known: Composite wall with outer surfaces exposed to convection process while the inner wall experiences uniform heat generation

Size: px
Start display at page:

Download "Problem 3.73 Known: Composite wall with outer surfaces exposed to convection process while the inner wall experiences uniform heat generation"

Transcription

1 Problem 3.73 Known: omposite wall with outer surfaces eposed to ection process while the inner wall eperiences uniform heat generation Unnown: Volumetric heat generation and thermal conductivity for material reuired for special conditions Schematic: ssumptions:. Steady-state, one-dimensional heat transfer. Negligible contact resistance at interfaces 3. Uniform generation in, zero in and 4. onstant properties nalysis: From an energy balance on wall, E E E E in out g st " " " " ( / ( 0 T T - 0 To determine the heat flues, construct thermal circuits for and : T T " ( / h / (6 5 / / 5 07,73W / m " ( T T / / h ( / 50 /000 3,857W / m

2 Using the values for and in euation (, we find: 3 6 /.00*0 4 m W To determine, use the general form of the temperature and heat flu distributions in wall, ( T " ( d There are 3 unnowns,, and, which can be evaluated using three conditions ( ( T T Where T 6 ( ( T T Where T " " ( ( Where " 0773W/m Solving for these euations simultaneously with 3 6 /.00*0 4 m W 5.3W/m.K

3 Problem 3.9 Known: ong rod eperiencing uniform volumetric generation encapsulated by a circular sleeve eposed to ection Unnown:. Temperature at the interface between rod and sleeve and on the outer surface. Temperature at center of rod Schematic: ssumptions:. One-dimensional radial conduction in rod and sleeve. Steady state conditions 3. Uniform volumetric generation in rod 4. Negligible contact resistance between rod and sleeve 5. onstant properties nalysis: a onstruct a thermal circuit for the sleeve: Where ' E ' gen π r 4,000 π W / m ln( r / r ln(0.4 / 0. RS m. K / W π S π 4 R m. K W hπd 5π 0.4 / The rate euation can be written as: T T T T ' R R R S

4 T T '( R S R ( T ' R T b The temperature at the center of the rod is For -D conduction in cylinder with uniform heat generation, temperature distribution is given by: r r T ( r T 4 r r at r0, we have r 4, T (0 T0 T r c To minimize the temperature in the center, since we have: r T ( 0 T0 T 4 r Where, r and r are unchanged, so T must be minimized. Since, T T '( R S R and is unchanged. In order to minimize T, R S R must be minimized. ssuming that h is independent of r, then R S R is minimized when r r cr s /h 4/5 0.6m To minimize T 0, the thicness of the sleeve should be decreased from m to m 0.5 d If h 5.8D, then the epression for r will change ln( r / r R tot 0.5 π 5.8(r π r dr tot dr πr.79r π 0.5 r rcr 0. 03m.79 Since r <r, the sleeve should be removed. 0.5 For r r 0., h 5.8( W/m.K T 7754/(35.35*π* T 0 9-(

5 Problem 3 Known: Dimensions and properties of pin fin, dimensions (ecept length of pin fin and properties of pin fin. Same heat flow rate through the both pin fins, i.e Unnown: ength of pin fin if a 0 d Schematic: ( or b h( T T and h( T T d d c T T 80 T b 00 D 0.005m 0.05m 35W/m.K T T 80 D 0.004m, 80W/m.K T,0 h30w/m.k ssumptions:. Steady state -D conduction along. h independent of D; h from the side surface is the same as h from the tip 3. onstant properties 4. Negligible radiation effects nalysis a Negligible rate of heat transfer from the tip Heat flow from the fin with "insulated tip" is given by E. (3.76: M tanh m f Where m For pin fin P ( hp c πd and c πd 4,

6 4h Therefore m, M hp c θ b Where θ b T b T D For pin fin : 0.05 m D m 35 W/m K For pin fin :? D m 80 W/m K For same heat transfer rate from both fins: f M tanh( m f, M Solving for, We have m, tanh( m Table shows solving results (This is optional m m M f, m [m - ] [-] [W] [W] [m] [m - ] m M f, / [-] [W] [W] [m ] [m ] Temperature of fin tip can be written as following: Tb T T T cosh( m T, 60.7 o T, 68.3 o b onvective heat transfer from both tips Heat flow from the fin with "ective tip" is given by E. (3.7 sinh( m ( h m cosh( m f M cosh( m ( h m sinh( m ll parameters are as defined before Solving for m Table shows solving results (This is optional m m (h/m M f, m [m - ] [-] [-] [W] [W] [m] [m - ] m (h/m M f, / [-] [-] [W] [W] [m ] [m ] Temperature of fin tip,

7 T T T cosh T, o b T ( m ( h m sinh( m T, o Notes: the results for a and b are almost identical, because the area of the tip is very small compared to the total surface area. c Prescribed temperature of the tip; T, T, 80 o ; 80 o Heat flow from the fin of prescribed temperature is given by E. (3.78 cosh( m θ θ b f M sinh( m Solving for m Table shows solving results (This is optional m m (θ /θ b M f, m [m - ] [-] [-] [W] [W] [m] [m - ] m (θ /θ b M f, / [-] [-] [W] [W] [m ] [m ]

PROBLEM 3.8 ( ) 20 C 10 C m m m W m K W m K 1.4 W m K. 10 W m K 80 W m K

PROBLEM 3.8 ( ) 20 C 10 C m m m W m K W m K 1.4 W m K. 10 W m K 80 W m K PROBLEM 3.8 KNOWN: Dimensions of a thermopane window. Room and ambient air conditions. FIND: (a) Heat loss through window, (b) Effect of variation in outside convection coefficient for double and triple

More information

PROBLEM 3.10 KNOWN: Dimensions and surface conditions of a plate thermally joined at its ends to heat sinks at different temperatures. FIND: (a) Differential equation which determines temperature distribution

More information

Study of Temperature Distribution Along the Fin Length

Study of Temperature Distribution Along the Fin Length Heat Transfer Experiment No. 2 Study of Temperature Distribution Along the Fin Length Name of the Student: Roll No: Department of Mechanical Engineering for Women, Pune. Aim: ˆ Measuring the temperature

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 3: Steady Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand the concept

More information

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K PROBLEM 3. KNOWN: Temperatures and convection coefficients associated with air at the inner and outer surfaces of a rear window. FIND: (a) Inner and outer window surface temperatures, T s,i and T s,o,

More information

1 Conduction Heat Transfer

1 Conduction Heat Transfer Eng690 - Formula Sheet 2 Conduction Heat Transfer. Cartesian Co-ordinates q x xa x A x dt dx R th A 2 T x 2 + 2 T y 2 + 2 T z 2 + q T T x) plane wall of thicness 2, x 0 at centerline, T s, at x, T s,2

More information

Heat Transfer. Solutions for Vol I _ Classroom Practice Questions. Chapter 1 Conduction

Heat Transfer. Solutions for Vol I _ Classroom Practice Questions. Chapter 1 Conduction Heat ransfer Solutions for Vol I _ lassroom Practice Questions hapter onduction r r r K K. ns: () ase (): Higher thermal conductive material is inside and lo thermal conductive material is outside K K

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

Chapter 10: Steady Heat Conduction

Chapter 10: Steady Heat Conduction Chapter 0: Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another hermodynamics gives no indication of

More information

STEADY HEAT CONDUCTION IN PLANE WALLS

STEADY HEAT CONDUCTION IN PLANE WALLS FIGUE 3 STEADY HEAT CONDUCTION IN PLANE WALLS The energy balance for the wall can be expressed as ate of ate of heat trans fer heat trans fer into the wall out of the wall ate of change of the energy of

More information

Chapter 3: Steady Heat Conduction

Chapter 3: Steady Heat Conduction 3-1 Steady Heat Conduction in Plane Walls 3-2 Thermal Resistance 3-3 Steady Heat Conduction in Cylinders 3-4 Steady Heat Conduction in Spherical Shell 3-5 Steady Heat Conduction with Energy Generation

More information

Pin Fin Lab Report Example. Names. ME331 Lab

Pin Fin Lab Report Example. Names. ME331 Lab Pin Fin Lab Report Example Names ME331 Lab 04/12/2017 1. Abstract The purposes of this experiment are to determine pin fin effectiveness and convective heat transfer coefficients for free and forced convection

More information

Chapter 2: Steady Heat Conduction

Chapter 2: Steady Heat Conduction 2-1 General Relation for Fourier s Law of Heat Conduction 2-2 Heat Conduction Equation 2-3 Boundary Conditions and Initial Conditions 2-4 Variable Thermal Conductivity 2-5 Steady Heat Conduction in Plane

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx.

Conduction Heat Transfer. Fourier Law of Heat Conduction. Thermal Resistance Networks. Resistances in Series. x=l Q x+ Dx. insulated x+ Dx. Conduction Heat Transfer Reading Problems 17-1 17-6 17-35, 17-57, 17-68, 17-81, 17-88, 17-110 18-1 18-2 18-14, 18-20, 18-34, 18-52, 18-80, 18-104 Fourier Law of Heat Conduction insulated x+ Dx x=l Q x+

More information

Review: Conduction. Breaking News

Review: Conduction. Breaking News CH EN 3453 Heat Transfer Review: Conduction Breaking News No more homework (yay!) Final project reports due today by 8:00 PM Email PDF version to report@chen3453.com Review grading rubric on Project page

More information

1 Conduction Heat Transfer

1 Conduction Heat Transfer Eng6901 - Formula Sheet 3 (December 1, 2015) 1 1 Conduction Heat Transfer 1.1 Cartesian Co-ordinates q x = q xa x = ka x dt dx R th = L ka 2 T x 2 + 2 T y 2 + 2 T z 2 + q k = 1 T α t T (x) plane wall of

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #1. February 20, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #1. February 20, 2014 Circle one: Div. 1 (Prof. Choi) Div. 2 (Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #1 February 20, 2014 Instructions: Write your name on each page Write

More information

Conduction: Theory of Extended Surfaces

Conduction: Theory of Extended Surfaces Conduction: Theory of Etended Surfaces Why etended surface? h, T ha( T T ) s Increasing h Increasing A 2 Fins as etended surfaces A fin is a thin component or appendage attached to a larger body or structure

More information

Unit II Thermal Physics Introduction- Modes of Heat Transfer Normally there are three modes of transfer of heat from one place to another viz., conduction, convection and radiation. Conduction : Conduction

More information

Chapter 3 STEADY HEAT CONDUCTION

Chapter 3 STEADY HEAT CONDUCTION Heat Transfer Chapter 3 STEADY HEAT CONDUCTION Universitry of Technology Materials Engineering Department MaE216: Heat Transfer and Fluid bjectives Understand the concept of thermal resistance and its

More information

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A

Conduction Heat Transfer. Fourier Law of Heat Conduction. x=l Q x+ Dx. insulated x+ Dx. x x. x=0 Q x A Conduction Heat Transfer Reading Problems 10-1 10-6 10-20, 10-48, 10-59, 10-70, 10-75, 10-92 10-117, 10-123, 10-151, 10-156, 10-162 11-1 11-2 11-14, 11-20, 11-36, 11-41, 11-46, 11-53, 11-104 Fourier Law

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep Copyright

More information

PROBLEM and from Eq. 3.28, The convection coefficients can be estimated from appropriate correlations. Continued...

PROBLEM and from Eq. 3.28, The convection coefficients can be estimated from appropriate correlations. Continued... PROBLEM 11. KNOWN: Type-30 stainless tube with prescribed inner and outer diameters used in a cross-flow heat exchanger. Prescribed fouling factors and internal water flow conditions. FIND: (a) Overall

More information

HEAT TRANSFER FROM FINNED SURFACES

HEAT TRANSFER FROM FINNED SURFACES Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 HEAT TRANSFER FROM FINNED SURFACES Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh CICLE YOU DIVISION: Div. (9:30 am) Div. (:30 am) Div. 3 (:30 pm) Prof. uan Prof. Naik Mr. Singh School of Mechanical Engineering Purdue University ME35 Heat and Mass ransfer Exam # ednesday, September,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 03 Finned Surfaces Fausto Arpino f.arpino@unicas.it Outline Introduction Straight fin with constant circular cross section Long

More information

Chapter 3 Steady-State, ne- mens onal C on uction

Chapter 3 Steady-State, ne- mens onal C on uction Chapter 3 Steady-State, One-Dimensional i Conduction 3.1 The Plane Wall 3.1.1 Temperature Distribution For one-dimensional, steady-state conduction in a plane wall with no heat generation, the differential

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 3- Examples on problems having different heat transfer modes Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Examples Multimode heat transfer Heat exchanger

More information

One-Dimensional, Steady-State. State Conduction without Thermal Energy Generation

One-Dimensional, Steady-State. State Conduction without Thermal Energy Generation One-Dimensional, Steady-State State Conduction without Thermal Energy Generation Methodology of a Conduction Analysis Specify appropriate form of the heat equation. Solve for the temperature distribution.

More information

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high Prblem Knwn: Dimensins and materials f the cmpsitin wall, 0 studs each with.5m high Unknwn:. Thermal resistance assciate with wall when surfaces nrmal t the directin f heat flw are isthermal. Thermal resistance

More information

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan

Write Down Your NAME. Circle Your DIVISION. Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan Write Down Your NAME, Last First Circle Your DIVISION Div. 1 Div. 2 Div. 3 Div.4 8:30 am 9:30 pm 12:30 pm 3:30 pm Han Xu Ruan Pan ME315 Heat and Mass Transfer School of Mechanical Engineering Purdue University

More information

4. Analysis of heat conduction

4. Analysis of heat conduction 4. Analysis of heat conduction John Richard Thome 11 mars 2008 John Richard Thome (LTCM - SGM - EPFL) Heat transfer - Conduction 11 mars 2008 1 / 47 4.1 The well-posed problem Before we go further with

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 524 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

Fin Convection Experiment

Fin Convection Experiment Fin Convection Experiment Thermal Network Solution with TNSolver Bob Cochran Applied Computational Heat Transfer Seattle, WA TNSolver@heattransfer.org ME 331 Introduction to Heat Transfer University of

More information

Fin Convection Experiment

Fin Convection Experiment Fin Convection Experiment Thermal Network Solution with TNSolver Bob Cochran Applied Computational Heat Transfer Seattle, WA TNSolver@heattransfer.org ME 331 Introduction to Heat Transfer University of

More information

11. Advanced Radiation

11. Advanced Radiation . Advanced adiation. Gray Surfaces The gray surface is a medium whose monochromatic emissivity ( λ does not vary with wavelength. The monochromatic emissivity is defined as the ratio of the monochromatic

More information

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time.

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time. PROBLEM 5.1 NOWN: Electrical heater attached to backside of plate while front surface is exposed to convection process (T,h); initially plate is at a uniform temperature of the ambient air and suddenly

More information

Convection Heat Transfer Experiment

Convection Heat Transfer Experiment Convection Heat Transfer Experiment Thermal Network Solution with TNSolver Bob Cochran Applied Computational Heat Transfer Seattle, WA rjc@heattransfer.org ME 331 Introduction to Heat Transfer University

More information

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CANKAYA UNIVERSITY FACUTY OF ENGINEERING MECHANICA ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CHAPTER-3 EXAMPES 1) Cnsider a slab f thicness as illustrated in figure belw. A fluid at temperature T 1 with

More information

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1

Chapter 2 ONE DIMENSIONAL STEADY STATE CONDUCTION. Chapter 2 Chee 318 1 hapte ONE DIMENSIONAL SEADY SAE ONDUION hapte hee 38 HEA ONDUION HOUGH OMPOSIE EANGULA WALLS empeatue pofile A B X X 3 X 3 4 X 4 Χ A Χ B Χ hapte hee 38 hemal conductivity Fouie s law ( is constant) A A

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

Consider the element shown in Figure 2.1. The statement of energy conservation applied to this element in a time period t is that:

Consider the element shown in Figure 2.1. The statement of energy conservation applied to this element in a time period t is that: . Conduction. e General Conduction Equation Conduction occurs in a stationary medium wic is most liely to be a solid, but conduction can also occur in s. Heat is transferred by conduction due to motion

More information

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets.

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets. QUESTION An understanding of the basic laws governing heat transfer is imperative to everything you will learn this semester. Write the equation for and explain the following laws governing the three basic

More information

CHAPTER 8: Thermal Analysis

CHAPTER 8: Thermal Analysis CHAPER 8: hermal Analysis hermal Analysis: calculation of temperatures in a solid body. Magnitude and direction of heat flow can also be calculated from temperature gradients in the body. Modes of heat

More information

One dimensional steady state diffusion, with and without source. Effective transfer coefficients

One dimensional steady state diffusion, with and without source. Effective transfer coefficients One dimensional steady state diffusion, with and without source. Effective transfer coefficients 2 mars 207 For steady state situations t = 0) and if convection is not present or negligible the transport

More information

The temperature of a body, in general, varies with time as well

The temperature of a body, in general, varies with time as well cen58933_ch04.qd 9/10/2002 9:12 AM Page 209 TRANSIENT HEAT CONDUCTION CHAPTER 4 The temperature of a body, in general, varies with time as well as position. In rectangular coordinates, this variation is

More information

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Dr.Kailash Mohapatra 1, Deepiarani Swain 2 1 Department of Mechanical Engineering, Raajdhani Engineering College, Bhubaneswar, 751017,

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

HEAT TRANSFER AND TEMPERATURE DISTRIBUTION OF DIFFERENT FIN GEOMETRY USING NUMERICAL METHOD

HEAT TRANSFER AND TEMPERATURE DISTRIBUTION OF DIFFERENT FIN GEOMETRY USING NUMERICAL METHOD JP Journal of Heat and Mass Transfer Volume 6, Number 3, 01, Pages 3-34 Available online at http://pphmj.com/journals/jphmt.htm Published by Pushpa Publishing House, Allahabad, INDIA HEAT TRANSFER AND

More information

qxbxg. That is, the heat rate within the object is everywhere constant. From Fourier s

qxbxg. That is, the heat rate within the object is everywhere constant. From Fourier s PROBLEM.1 KNOWN: Steady-state, one-dimensional heat conduction through an axisymmetric shape. FIND: Sketch temperature distribution and explain shape of curve. ASSUMPTIONS: (1) Steady-state, one-dimensional

More information

THERMO-MECHANICAL ANALYSIS IN PERFORATED ANNULAR FIN USING ANSYS

THERMO-MECHANICAL ANALYSIS IN PERFORATED ANNULAR FIN USING ANSYS THERMO-MECHANICAL ANALYSIS IN PERFORATED ANNULAR FIN USING ANSYS Kunal Adhikary 1, Dr. Ashis Mallick 2 1,2 Department of Mechanical Engineering, IIT(ISM), Dhanbad-826004, Jharkhand, India Abstract Thermal

More information

PROBLEM 1.3. dt T1 T dx L 0.30 m

PROBLEM 1.3. dt T1 T dx L 0.30 m PROBLEM 1.3 KNOWN: Inner surface temperature and thermal conductivity of a concrete wall. FIND: Heat loss by conduction through the wall as a function of outer surface temperatures ranging from -15 to

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

Physics 2135 Exam 3 November 18, 2014

Physics 2135 Exam 3 November 18, 2014 Exam Total / 200 hysics 2135 Exam 3 November 18, 2014 rinted Name: ec. Sec. Letter: Five multiple choice questions, 8 points each. Choose the best or most nearly correct answer. 1. Two long straight wires

More information

Interconnection Relationships. Derive Input/Output Models. School of Mechanical Engineering Purdue University

Interconnection Relationships. Derive Input/Output Models. School of Mechanical Engineering Purdue University hermal Systems Basic Modeling Elements esistance esistance Conduction Convection adiation Capacitance Interconnection elationships Energy Balance - st Law of hermodynamics Derive Input/Output Models ME375

More information

Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March :00 to 8:00 PM

Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March :00 to 8:00 PM Name: ME 315: Heat and Mass Transfer Spring 2008 EXAM 2 Tuesday, 18 March 2008 7:00 to 8:00 PM Instructions: This is an open-book eam. You may refer to your course tetbook, your class notes and your graded

More information

University of Rome Tor Vergata

University of Rome Tor Vergata University of Rome Tor Vergata Faculty of Engineering Department of Industrial Engineering THERMODYNAMIC AND HEAT TRANSFER HEAT TRANSFER dr. G. Bovesecchi gianluigi.bovesecchi@gmail.com 06-7259-727 (7249)

More information

SOFTbank E-Book Center Tehran, Phone: , For Educational Use. PROBLEM 1.45

SOFTbank E-Book Center Tehran, Phone: , For Educational Use. PROBLEM 1.45 PROBLEM 1.45 KNOWN: Rod of prescribed diameter experiencing electrical dissipation from passage of electrical current and convection under different air velocity conditions. See Example 1.3. FIND: Rod

More information

Phys2120 Spring 2017 Practice Exam 1. Chapters Name

Phys2120 Spring 2017 Practice Exam 1. Chapters Name Name 1. Two point charges are 4 cm apart. They are moved to a new separation of 2 cm. By what factor does the resulting mutual force between them change? 2. An uncharged conductor is supported by an insulating

More information

ENGI 1313 Mechanics I

ENGI 1313 Mechanics I ENGI 1313 Mechanics I Lecture 43: Course Material Review Shawn Kenny, Ph.D., P.Eng. ssistant Professor aculty of Engineering and pplied Science Memorial University of Newfoundland spkenny@engr.mun.ca inal

More information

Heat Transfer Analysis of Centric Borehole Heat Exchanger with Different Backfill Materials

Heat Transfer Analysis of Centric Borehole Heat Exchanger with Different Backfill Materials Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Heat Transfer Analysis of Centric Borehole Heat Exchanger with Different Backfill Materials Lei H.Y. and Dai C.S. Geothermal

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

MECH 375, Heat Transfer Handout #5: Unsteady Conduction 1 MECH 375, Heat Transfer Handout #5: Unsteady Conduction Amir Maleki, Fall 2018 2 T H I S PA P E R P R O P O S E D A C A N C E R T R E AT M E N T T H AT U S E S N A N O PA R T I - C L E S W I T H T U

More information

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010.

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010. hermodynamics Lecture 7: Heat transfer Open systems Bendiks Jan Boersma hijs Vlugt heo Woudstra March, 00 Energy echnology Summary lecture 6 Poisson relation efficiency of a two-stroke IC engine (Otto

More information

ﺶﻧﺎﺳر ﺮﺑ يا ﻪﻣﺪﻘﻣ تراﺮﺣ لﺎﻘﺘﻧا رادﺮﺑ يﺎﺘﺳار

ﺶﻧﺎﺳر ﺮﺑ يا ﻪﻣﺪﻘﻣ تراﺮﺣ لﺎﻘﺘﻧا رادﺮﺑ يﺎﺘﺳار * ﻣﻘﺪﻣﻪ اي ﺑﺮ رﺳﺎﻧﺶ Conduction: transfer of thermal energy from the more energetic particles of a medium to the adjacent less energetic ones Unlike temperature, heat transfer has direction as well as magnitude,

More information

ASSUMPTIONS: (1) Homogeneous medium with constant properties, (2) Negligible radiation effects.

ASSUMPTIONS: (1) Homogeneous medium with constant properties, (2) Negligible radiation effects. PROBEM 5.88 KNOWN: Initial temperature of fire clay bric which is cooled by convection. FIND: Center and corner temperatures after 50 minutes of cooling. ASSUMPTIONS: () Homogeneous medium with constant

More information

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104.

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104. Chapter 1: 0, 3, 35, 1, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 10. 1-0 The filament of a 150 W incandescent lamp is 5 cm long and has a diameter of 0.5 mm. The heat flux on the surface of the filament,

More information

A Study on Critical Radius and Crossover Radius of Insulation for Various Heat Transfer Problems

A Study on Critical Radius and Crossover Radius of Insulation for Various Heat Transfer Problems Columbia International Publishing American Journal of Heat and Mass Transfer doi:10.7726/ajhmt.2014.1012 Research Article A Study on Critical Radius and Crossover Radius of Insulation for Various Heat

More information

PROBLEM 14.6 ( )( ) (b) Applying a species balance to a control volume about the hydrogen, dt 6 dt 6RAT dt 6RT dt

PROBLEM 14.6 ( )( ) (b) Applying a species balance to a control volume about the hydrogen, dt 6 dt 6RAT dt 6RT dt PROBLEM 14.6 KNOWN: Pressure and temperature of hydrogen stored in a spherical steel tank of prescribed diameter and thickness. FIND: (a) Initial rate of hydrogen mass loss from the tank, (b) Initial rate

More information

Solving Direct and Inverse Heat Conduction Problems

Solving Direct and Inverse Heat Conduction Problems Solving Direct and Inverse Heat Conduction Problems Jan Taler Piotr Duda Solving Direct and Inverse Heat Conduction Problems ~ Springer Preface This book is devoted to the concept of simple and inverse

More information

UNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997

UNIVERSITY OF WATERLOO. ECE 309 Thermodynamics and Heat Transfer. Final Examination Spring 1997 UNIVERSITY OF WATERLOO DEPARTMENT OF ELECTRICAL ENGINEERING ECE 309 Thermodynamics and Heat Transfer Final Examination Spring 1997 M.M. Yovanovich August 5, 1997 9:00 A.M.-12:00 Noon NOTE: 1. Open book

More information

ENSC 388. Assignment #8

ENSC 388. Assignment #8 ENSC 388 Assignment #8 Assignment date: Wednesday Nov. 11, 2009 Due date: Wednesday Nov. 18, 2009 Problem 1 A 3-mm-thick panel of aluminum alloy (k = 177 W/m K, c = 875 J/kg K, and ρ = 2770 kg/m³) is finished

More information

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 7: External Forced Convection Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Distinguish between

More information

Shell/Integral Balances (SIB)

Shell/Integral Balances (SIB) Shell/Integral Balances (SIB) Shell/Integral Balances Shell or integral (macroscopic) balances are often relatively simple to solve, both conceptually and mechanically, as only limited data is necessary.

More information

Relationship to Thermodynamics. Chapter One Section 1.3

Relationship to Thermodynamics. Chapter One Section 1.3 Relationship to Thermodynamics Chapter One Section 1.3 Alternative Formulations Alternative Formulations Time Basis: CONSERVATION OF ENERGY (FIRST LAW OF THERMODYNAMICS) An important tool in heat transfer

More information

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS

NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS Proceedings of 4 th ICCHMT May 7 0, 005, Paris-Cachan, FRANCE ICCHMT 05-53 NATURAL CONVECTION IN INCLINED RECTANGULAR POROUS CAVITY SUBJECT TO HEAT FLUXES ON THE LONG SIDE WALLS L. Storesletten*, D.A.S.

More information

THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT PROFILE

THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT PROFILE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta THERMO-FLOW CHARACTERISTICS OF A PIN-FIN RADIAL HEAT SINKS ACCORDING TO THEIR FIN HEIGHT

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FINAL EXAMINATION. (CE130-2 Mechanics of Materials) UNIVERSITY OF CLIFORNI, ERKELEY FLL SEMESTER 001 FINL EXMINTION (CE130- Mechanics of Materials) Problem 1: (15 points) pinned -bar structure is shown in Figure 1. There is an external force, W = 5000N,

More information

Conduction Heat Transfer HANNA ILYANI ZULHAIMI

Conduction Heat Transfer HANNA ILYANI ZULHAIMI + Conduction Heat Transfer HNN ILYNI ZULHIMI + OUTLINE u CONDUCTION: PLNE WLL u CONDUCTION: MULTI LYER PLNE WLL (SERIES) u CONDUCTION: MULTI LYER PLNE WLL (SERIES ND PRLLEL) u MULTIPLE LYERS WITH CONDUCTION

More information

The Planck Distribution. The Planck law describes theoretical spectral distribution for the emissive power of a black body. It can be written as

The Planck Distribution. The Planck law describes theoretical spectral distribution for the emissive power of a black body. It can be written as Thermal energy emitted y matter as a result of virational and rotational movements of molecules, atoms and electrons. The energy is transported y electromagnetic waves (or photons). adiation reuires no

More information

How to define the direction of A??

How to define the direction of A?? Chapter Gauss Law.1 Electric Flu. Gauss Law. A charged Isolated Conductor.4 Applying Gauss Law: Cylindrical Symmetry.5 Applying Gauss Law: Planar Symmetry.6 Applying Gauss Law: Spherical Symmetry You will

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 0 August 2005 Final Examination R. Culham & M. Bahrami This is a 2 - /2 hour, closed-book examination. You are permitted to use one 8.5 in. in. crib

More information

Chapter 2 STEADY STATE CONDUCTION

Chapter 2 STEADY STATE CONDUCTION Principles of Heat Transfer 8th Edition Kreith SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-heat-transfer-8th-edition-kreithsolutions-manual/

More information

Massachusetts Institute of Technology Department of Materials Science and Engineering

Massachusetts Institute of Technology Department of Materials Science and Engineering Massachusetts Institute of Technology Department of Materials Science and Engineering 3.05 Thermodynamics and Kinetics of Materials Fall 003 November 7, 003 We are looking at the incorporation of Al 3

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: June 13, 2008 time: 14.00-17.00 Note: There are 4 questions in total. The first one consists of independent subquestions. If possible and necessary, guide numbers

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

HIMARC Simulations Divergent Thinking, Convergent Engineering

HIMARC Simulations Divergent Thinking, Convergent Engineering HIMARC Simulations Divergent Thinking, Convergent Engineering 8117 W. Manchester Avenue, Suite 504 Los Angeles, CA 90293 Ph: (310) 657-7992 Horizontal Superconducting Magnet, ID 1.6m 1 1 Design definition

More information

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University

Chapter 2: Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Chapter : Heat Conduction Equation Dr Ali Jawarneh Department of Mechanical Engineering, Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand multidimensionality

More information

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A

PROBLEM (a) Long duct (L): By inspection, F12. By reciprocity, (b) Small sphere, A 1, under concentric hemisphere, A 2, where A 2 = 2A PROBLEM 3. KNON: Various geometric shapes involving two areas and. FIND: Shape factors, F and F, for each configuration. SSUMPTIONS: Surfaces are diffuse. NLYSIS: The analysis is not to make use of tables

More information

EXTENDED SURFACES / FINS

EXTENDED SURFACES / FINS EXTENDED SURFACES / FINS Convection: Heat transer etween a solid surace and a moving luid is governed y the Newton s cooling law: q = ha(t s -T ). Thereore, to increase the convective heat transer, one

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Exercise: concepts from chapter 10

Exercise: concepts from chapter 10 Reading:, Ch 10 1) The flow of magma with a viscosity as great as 10 10 Pa s, let alone that of rock with a viscosity of 10 20 Pa s, is difficult to comprehend because our common eperience is with s like

More information