Inference in Bayesian networks

Size: px
Start display at page:

Download "Inference in Bayesian networks"

Transcription

1 Inference in Bayesian networks AIMA2e hapter Outline Exact inference by enumeration Exact inference by variable elimination Approximate inference by stochastic simulation Approximate inference by Markov chain Monte arlo 2

2 Inference tasks imple queries: compute posterior marginal P(X i E = e) e.g., P (NoGas Gauge = empty, Lights = on, tarts = false) onjunctive queries: P(X i, X j E = e) =P(X i E = e)p(x j X i, E = e) Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome action, evidence) Value of information: which evidence to seek next? ensitivity analysis: which probability values are most critical? Explanation: why do I need a new starter motor? 3 Inference by enumeration lightly intelligent way to sum out variables from the joint without actually constructing its explicit representation imple query on the burglary network: B P(B j, m) = P(B, j, m)/p(j, m) A = αp(b, j, m) = α e ap(b, e, a, j, m) J E M Rewrite full joint entries using product of P entries: P(B j, m) = α e ap(b)p(e)p(a B, e)p(j a)p(m a) = αp(b) e P(e) ap(a B, e)p(j a)p(m a) Recursive depth-first enumeration: O(n) space, O(d n ) time 4

3 Enumeration algorithm function ENUMERAION-AK(X, e, bn) returns a distribution over X inputs: X, the query variable e, observed values for variables E bn, a Bayesian network with variables {X} E Y Q(X ) a distribution over X, initially empty for each value x i of X do extend e with value x i for X Q(x i ) ENUMERAE-ALL(VAR[bn], e) return NORMALIZE(Q(X)) function ENUMERAE-ALL(vars, e) returns a real number if EMPY?(vars) then return 1.0 Y IR(vars) if Y has value y in e then return P (y Pa(Y )) ENUMERAE-ALL(RE(vars), e) else return P (y Pa(Y )) ENUMERAE-ALL(RE(vars), e y) y where e y is e extended with Y = y 5 Evaluation tree Enumeration is inefficient: repeated computation e.g., computes P (j a)p (m a) for each value of e P(b).001 P(e).002 P( e).998 P(a b,e) P( a b,e) P(a b, e) P( a b, e) P(j a) P(j a) P(j a).05 P(j a).05 P(m a) P(m a) P(m a) P(m a).70.01

4 Inference by variable elimination Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation P(B j, m) = α P(B) }{{} B e P (e) }{{} E a P(a B, e) P (j a) P (m a) }{{}}{{}}{{} A J M = αp(b) e P(e) a P(a B, e)p(j a)f M(a) = αp(b) e P(e) a P(a B, e)f J(a)f M (a) = αp(b) e P(e) a f A(a, b, e)f J (a)f M (a) = αp(b) ep(e)fājm(b, e) (sum out A) = αp(b)f ĒĀJM (b) (sum out E) = αf B (b) f (b) ĒĀJM 7 Variable elimination: Basic operations umming out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors x f 1 f k = f 1 f i x f i+1 f k = f 1 f i f X assuming f 1,...,f i do not depend on X Pointwise product of factors f 1 and f 2 : f 1 (x 1,...,x j,y 1,...,y k ) f 2 (y 1,...,y k,z 1,...,z l ) = f(x 1,...,x j,y 1,...,y k,z 1,...,z l ) E.g., f 1 (a, b) f 2 (b, c) =f(a, b, c) 8

5 Variable elimination algorithm function ELIMINAION-AK(X, e, bn) returns a distribution over X inputs: X, the query variable e, evidence specified as an event bn, a belief network specifying joint distribution P(X 1,...,X n ) factors []; vars REVERE(VAR[bn]) for each var in vars do factors [MAKE-AOR(var, e) factors] if var is a hidden variable then factors UM-OU(var, factors) return NORMALIZE(POINWIE-PRODU(factors)) 9 Irrelevant variables onsider the query P (Johnalls Burglary = true) P (J b) =αp (b) P (e) P (a b, e)p (J a) P (m a) e a m B A E um over m is identically 1; M is irrelevant to the query J M hm 1: Y is irrelevant unless Y Ancestors({X} E) Here, X = Johnalls, E = {Burglary},and Ancestors({X} E) ={Alarm, Earthquake} so M is irrelevant (ompare this to backward chaining from the query in Horn clause KBs) 10

6 L L L L Irrelevant variables contd. Defn: moral graph of Bayes net: marry all parents and drop arrows Defn: A is m-separated from B by iff separated by in the moral graph hm 2: Y is irrelevant if m-separated from X by E or P (Johnalls Alarm = true), both Burglary and Earthquake are irrelevant B A E J M 11 omplexity of exact inference ingly connected networks (or polytrees): any two nodes are connected by at most one (undirected) path time and space cost of variable elimination are O(d k n) Multiply connected networks: can reduce 3A to exact inference NP-hard equivalent to counting 3A models #P-complete A B D 1. A v B v 2. v D v A B v v D AND 12

7 Inference by stochastic simulation Basic idea: 1) Draw N samples from a sampling distribution 2) ompute an approximate posterior probability ˆP 3) how this converges to the true probability P 0.5 oin Outline: ampling from an empty network Rejection sampling: reject samples disagreeing with evidence Likelihood weighting: use evidence to weight samples Markov chain Monte arlo (MM): sample from a stochastic process whose stationary distribution is the true posterior 13 ampling from an empty network function PRIOR-AMPLE(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution P(X 1,...,X n ) x an event with n elements for i = 1to n do x i a random sample from P(X i Parents(X i )) return x 14

8 Example loudy P(R ) P( ) R.99 P(W,R) P() Example loudy P(R ) P( ) R.99 P(W,R) P().01 16

9 Example loudy P(R ) P( ) R.99 P(W,R) P() Example loudy P(R ) P( ) R.99 P(W,R) P().01 18

10 Example loudy P(R ) P( ) R.99 P(W,R) P() Example loudy P(R ) P( ) R.99 P(W,R) P().01 20

11 Example P() loudy P( ) P(R ) R P(W,R) ampling from an empty network contd. Probability that PRIORAMPLE generates a particular event P (x 1...x n )= n i =1 P (x i Parents(X i )) = P (x 1...x n ) i.e., the true prior probability E.g., P (t, f, t, t) = =0.324 = P (t, f, t, t) Let N P (x 1...x n ) be the number of samples generated for event x 1,...,x n hen we have lim N ˆP (x 1,...,x n ) = lim P(x 1,...,x n )/N N = P (x 1,...,x n ) = P (x 1...x n ) hat is, estimates derived from PRIORAMPLE are consistent horthand: ˆP (x 1,...,x n ) P (x 1...x n ) 22

12 Rejection sampling ˆP(X e) estimated from samples agreeing with e function REJEION-AMPLING(X, e, bn, N) returns an estimate of P (X e) local variables: N, a vector of counts over X, initially zero for j =1toN do x PRIOR-AMPLE(bn) if x is consistent with ethen N[x] N[x]+1 where x is the value of X in x return NORMALIZE(N[X]) E.g., estimate P( = true) using 100 samples 27 samples have = true Of these, 8 have = true and 19 have = false. ˆP( = true) =NORMALIZE(< 8, 19 >) =< 0.296, > imilar to a basic real-world empirical estimation procedure 23 Analysis of rejection sampling ˆP(X e) =αn P (X, e) (algorithm defn.) = N P (X, e)/n P (e) (normalized by N P (e)) P(X, e)/p(e) (property of PRIORAMPLE) = P(X e) (defn. of conditional probability) Hence rejection sampling returns consistent posterior estimates Problem: hopelessly expensive if P (e) is small P (e) drops off exponentially with number of evidence variables! 24

13 Likelihood weighting Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence function LIKELIHOOD-WEIGHING(X, e, bn, N) returns an estimate of P (X e) local variables: W, a vector of weighted counts over X, initially zero for j =1toN do x, w WEIGHED-AMPLE(bn) W[x ] W[x ]+w where x is the value of X in x return NORMALIZE(W[X ]) function WEIGHED-AMPLE(bn, e) returns an event and a weight x an event with n elements; w 1 for i =1to n do if X i has a value x i in e then w w P (X i = x i Parents(X i )) else x i a random sample from P(X i Parents(X i )) return x, w 25 Likelihood weighting example P() loudy P( ) P(R ) R P(W,R) w =1.0 26

14 Likelihood weighting example loudy P(R ) P( ) R.99 P(W,R) P().01 w = Likelihood weighting example loudy P(R ) P( ) R.99 P(W,R) P().01 w =1.0 28

15 Likelihood weighting example P() loudy P( ) P(R ) R P(W,R) w = Likelihood weighting example P() loudy P( ) P(R ) R P(W,R) w =

16 Likelihood weighting example P() loudy P( ) P(R ) R P(W,R) w = Likelihood weighting example P() loudy P( ) P(R ) R P(W,R) w = =

17 Likelihood weighting analysis ampling probability for WEIGHEDAMPLE is W (z, e) = l i =1 P (z i Parents(Z i )) Note: pays attention to evidence in ancestors only somewhere in between prior and posterior distribution Weight for a given sample z, e is w(z, e) = m i =1 P (e i Parents(E i )) Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight loudy Weighted sampling probability is W (z, e)w(z, e) = l i =1 P (z i Parents(Z i )) m i =1 P (e i Parents(E i )) = P (z, e) (by standard global semantics of network) 33 Approximate inference using MM tate of network = current assignment to all variables. Generate next state by sampling one variable given Markov blanket ample each variable in turn, keeping evidence fixed function MM-AK(X, e, bn, N) returns an estimate of P (X e) local variables: N[X ], a vector of counts over X, initially zero Z, the nonevidence variables in bn x, the current state of the network, initially copied from e initialize x with random values for the variables in Y for j =1toN do N[x ] N[x ]+1where x is the value of X in x for each Z i in Zdo sample the value of Z i in x from P(Z i MB(Z i )) given the values of MB(Z i ) in x return NORMALIZE(N[X ]) an also choose a variable to sample at random each time 34

18 he Markov chain With = true, W et = true, there are four states: loudy loudy loudy loudy Wander about for a while, average what you see 35 MM example contd. Estimate P( = true, = true) ample loudy or given its Markov blanket, repeat. ount number of times is true and false in the samples. E.g., visit 100 states 31 have = true, 69have = false ˆP( = true, W et = true) = NORMALIZE(< 31, 69 >) =< 0.31, 0.69 > heorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability 36

19 Markov blanket sampling Markov blanket of loudy is and Markov blanket of is loudy,,and loudy Probability given the Markov blanket is calculated as follows: P (x i MB(X i)) = P (x i Parents(X i)) Z j hildren(x i ) P (z j Parents(Z j )) Easily implemented in message-passing parallel systems, brains Main computational problems: 1) Difficult to tell if convergence has been achieved 2) an be wasteful if Markov blanket is large: P (X i MB(X i )) won t change much (law of large numbers) 37 ummary Exact inference by variable elimination: polytime on polytrees, NP-hard on general graphs space = time, very sensitive to topology Approximate inference by LW, MM: LW does poorly when there is lots of (downstream) evidence LW, MM generally insensitive to topology onvergence can be very slow with probabilities close to 1 or 0 an handle arbitrary combinations of discrete and continuous variables 38

Artificial Intelligence Methods. Inference in Bayesian networks

Artificial Intelligence Methods. Inference in Bayesian networks Artificial Intelligence Methods Inference in Bayesian networks In which we explain how to build network models to reason under uncertainty according to the laws of probability theory. Dr. Igor rajkovski

More information

Inference in Bayesian networks

Inference in Bayesian networks Inference in Bayesian networks hapter 14.4 5 hapter 14.4 5 1 Exact inference by enumeration Outline Approximate inference by stochastic simulation hapter 14.4 5 2 Inference tasks Simple queries: compute

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Lecture 7 Inference in Bayesian Networks Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Slides by Stuart Russell and Peter Norvig Course Overview Introduction

More information

Bayesian networks. Chapter Chapter

Bayesian networks. Chapter Chapter Bayesian networks Chapter 14.1 3 Chapter 14.1 3 1 Outline Syntax Semantics Parameterized distributions Chapter 14.1 3 2 Bayesian networks A simple, graphical notation for conditional independence assertions

More information

Bayesian Networks. Philipp Koehn. 6 April 2017

Bayesian Networks. Philipp Koehn. 6 April 2017 Bayesian Networks Philipp Koehn 6 April 2017 Outline 1 Bayesian Networks Parameterized distributions Exact inference Approximate inference 2 bayesian networks Bayesian Networks 3 A simple, graphical notation

More information

Stochastic inference in Bayesian networks, Markov chain Monte Carlo methods

Stochastic inference in Bayesian networks, Markov chain Monte Carlo methods Stochastic inference in Bayesian networks, Markov chain Monte Carlo methods AI: Stochastic inference in BNs AI: Stochastic inference in BNs 1 Outline ypes of inference in (causal) BNs Hardness of exact

More information

Bayesian Networks. Philipp Koehn. 29 October 2015

Bayesian Networks. Philipp Koehn. 29 October 2015 Bayesian Networks Philipp Koehn 29 October 2015 Outline 1 Bayesian Networks Parameterized distributions Exact inference Approximate inference 2 bayesian networks Bayesian Networks 3 A simple, graphical

More information

Bayesian Network. Outline. Bayesian Network. Syntax Semantics Exact inference by enumeration Exact inference by variable elimination

Bayesian Network. Outline. Bayesian Network. Syntax Semantics Exact inference by enumeration Exact inference by variable elimination Outline Syntax Semantics Exact inference by enumeration Exact inference by variable elimination s A simple, graphical notation for conditional independence assertions and hence for compact specication

More information

Artificial Intelligence

Artificial Intelligence ICS461 Fall 2010 Nancy E. Reed nreed@hawaii.edu 1 Lecture #14B Outline Inference in Bayesian Networks Exact inference by enumeration Exact inference by variable elimination Approximate inference by stochastic

More information

Outline } Exact inference by enumeration } Exact inference by variable elimination } Approximate inference by stochastic simulation } Approximate infe

Outline } Exact inference by enumeration } Exact inference by variable elimination } Approximate inference by stochastic simulation } Approximate infe Inference in belief networks Chapter 15.3{4 + new AIMA Slides cstuart Russell and Peter Norvig, 1998 Chapter 15.3{4 + new 1 Outline } Exact inference by enumeration } Exact inference by variable elimination

More information

Bayesian networks. Chapter 14, Sections 1 4

Bayesian networks. Chapter 14, Sections 1 4 Bayesian networks Chapter 14, Sections 1 4 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1 4 1 Bayesian networks

More information

Lecture 10: Bayesian Networks and Inference

Lecture 10: Bayesian Networks and Inference Lecture 10: Bayesian Networks and Inference CS 580 (001) - Spring 2016 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA Apr 13-20, 2016 Amarda Shehu (580) 1 1 Outline

More information

Objectives. Probabilistic Reasoning Systems. Outline. Independence. Conditional independence. Conditional independence II.

Objectives. Probabilistic Reasoning Systems. Outline. Independence. Conditional independence. Conditional independence II. Copyright Richard J. Povinelli rev 1.0, 10/1//2001 Page 1 Probabilistic Reasoning Systems Dr. Richard J. Povinelli Objectives You should be able to apply belief networks to model a problem with uncertainty.

More information

Probabilistic Reasoning Systems

Probabilistic Reasoning Systems Probabilistic Reasoning Systems Dr. Richard J. Povinelli Copyright Richard J. Povinelli rev 1.0, 10/7/2001 Page 1 Objectives You should be able to apply belief networks to model a problem with uncertainty.

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

BAYESIAN NETWORKS AIMA2E CHAPTER (SOME TOPICS EXCLUDED) AIMA2e Chapter (some topics excluded) 1

BAYESIAN NETWORKS AIMA2E CHAPTER (SOME TOPICS EXCLUDED) AIMA2e Chapter (some topics excluded) 1 BAYESIAN NEWORKS AIMA2E HAPER 14.1 5 (SOME OPIS EXLUDED) AIMA2e hapter 14.1 5 (some topics excluded) 1 } Syntax } Semantics } Parameterized distributions } Inference Outline ffl Exact inference (enumeration,

More information

School of EECS Washington State University. Artificial Intelligence

School of EECS Washington State University. Artificial Intelligence School of EECS Washington State University Artificial Intelligence 1 } Full joint probability distribution Can answer any query But typically too large } Conditional independence Can reduce the number

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 16, 6/1/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Uncertainty & Bayesian Networks

More information

Bayes Net Representation. CS 188: Artificial Intelligence. Approximate Inference: Sampling. Variable Elimination. Sampling.

Bayes Net Representation. CS 188: Artificial Intelligence. Approximate Inference: Sampling. Variable Elimination. Sampling. 188: Artificial Intelligence Bayes Nets: ampling Bayes Net epresentation A directed, acyclic graph, one node per random variable A conditional probability table (PT) for each node A collection of distributions

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

last two digits of your SID

last two digits of your SID Announcements Midterm: Wednesday 7pm-9pm See midterm prep page (posted on Piazza, inst.eecs page) Four rooms; your room determined by last two digits of your SID: 00-32: Dwinelle 155 33-45: Genetics and

More information

Quantifying Uncertainty

Quantifying Uncertainty Quantifying Uncertainty CSL 302 ARTIFICIAL INTELLIGENCE SPRING 2014 Outline Probability theory - basics Probabilistic Inference oinference by enumeration Conditional Independence Bayesian Networks Learning

More information

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic CS 188: Artificial Intelligence Fall 2008 Lecture 16: Bayes Nets III 10/23/2008 Announcements Midterms graded, up on glookup, back Tuesday W4 also graded, back in sections / box Past homeworks in return

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Bayes Networks 6.872/HST.950

Bayes Networks 6.872/HST.950 Bayes Networks 6.872/HST.950 What Probabilistic Models Should We Use? Full joint distribution Completely expressive Hugely data-hungry Exponential computational complexity Naive Bayes (full conditional

More information

Informatics 2D Reasoning and Agents Semester 2,

Informatics 2D Reasoning and Agents Semester 2, Informatics 2D Reasoning and Agents Semester 2, 2018 2019 Alex Lascarides alex@inf.ed.ac.uk Lecture 25 Approximate Inference in Bayesian Networks 19th March 2019 Informatics UoE Informatics 2D 1 Where

More information

Belief Networks for Probabilistic Inference

Belief Networks for Probabilistic Inference 1 Belief Networks for Probabilistic Inference Liliana Mamani Sanchez lmamanis@tcd.ie October 27, 2015 Background Last lecture we saw that using joint distributions for probabilistic inference presented

More information

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car CSE 573: Artificial Intelligence Autumn 2012 Bayesian Networks Dan Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer Outline Probabilistic models (and inference)

More information

PROBABILISTIC REASONING SYSTEMS

PROBABILISTIC REASONING SYSTEMS PROBABILISTIC REASONING SYSTEMS In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory. Outline Knowledge in uncertain

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Introduction to Artificial Intelligence Belief networks

Introduction to Artificial Intelligence Belief networks Introduction to Artificial Intelligence Belief networks Chapter 15.1 2 Dieter Fox Based on AIMA Slides c S. Russell and P. Norvig, 1998 Chapter 15.1 2 0-0 Outline Bayesian networks: syntax and semantics

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

qfundamental Assumption qbeyond the Bayes net Chain rule conditional independence assumptions,

qfundamental Assumption qbeyond the Bayes net Chain rule conditional independence assumptions, Bayes Nets: Conditional Independence qfundamental Assumption qbeyond the Bayes net Chain rule conditional independence assumptions, oadditional conditional independencies, that can be read off the graph.

More information

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22.

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22. Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 15: Bayes Nets 3 Midterms graded Assignment 2 graded Announcements Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Sampling Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

CS 730/730W/830: Intro AI

CS 730/730W/830: Intro AI CS 730/730W/830: Intro AI 1 handout: slides final blog entries were due Wheeler Ruml (UNH) Lecture 27, CS 730 1 / 15 Reminder Wheeler Ruml (UNH) Lecture 27, CS 730 2 / 15 The Alarm Domain Reminder Wheeler

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artificial Intelligence Bayesian Networks Stephan Dreiseitl FH Hagenberg Software Engineering & Interactive Media Stephan Dreiseitl (Hagenberg/SE/IM) Lecture 11: Bayesian Networks Artificial Intelligence

More information

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science Probabilistic Reasoning Kee-Eung Kim KAIST Computer Science Outline #1 Acting under uncertainty Probabilities Inference with Probabilities Independence and Bayes Rule Bayesian networks Inference in Bayesian

More information

Course Overview. Summary. Outline

Course Overview. Summary. Outline Course Overview Lecture 9 Baysian Networks Marco Chiarandini Deptartment of Mathematics & Computer Science University of Southern Denmark Slides by Stuart Russell and Peter Norvig Introduction Artificial

More information

Bayesian networks. AIMA2e Chapter 14

Bayesian networks. AIMA2e Chapter 14 Bayesian networks AIMA2e Chapter 14 Outline Syntax Semantics Parameterized distributions Bayesian networks A simple, graphical notation for conditional independence assertions and hence for compact specification

More information

Bayes Nets III: Inference

Bayes Nets III: Inference 1 Hal Daumé III (me@hal3.name) Bayes Nets III: Inference Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 10 Apr 2012 Many slides courtesy

More information

Artificial Intelligence Bayes Nets: Independence

Artificial Intelligence Bayes Nets: Independence Artificial Intelligence Bayes Nets: Independence Instructors: David Suter and Qince Li Course Delivered @ Harbin Institute of Technology [Many slides adapted from those created by Dan Klein and Pieter

More information

Review: Bayesian learning and inference

Review: Bayesian learning and inference Review: Bayesian learning and inference Suppose the agent has to make decisions about the value of an unobserved query variable X based on the values of an observed evidence variable E Inference problem:

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Informatics 2D Reasoning and Agents Semester 2,

Informatics 2D Reasoning and Agents Semester 2, Informatics 2D Reasoning and Agents Semester 2, 2017 2018 Alex Lascarides alex@inf.ed.ac.uk Lecture 23 Probabilistic Reasoning with Bayesian Networks 15th March 2018 Informatics UoE Informatics 2D 1 Where

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Bayes Networks. CS540 Bryan R Gibson University of Wisconsin-Madison. Slides adapted from those used by Prof. Jerry Zhu, CS540-1

Bayes Networks. CS540 Bryan R Gibson University of Wisconsin-Madison. Slides adapted from those used by Prof. Jerry Zhu, CS540-1 Bayes Networks CS540 Bryan R Gibson University of Wisconsin-Madison Slides adapted from those used by Prof. Jerry Zhu, CS540-1 1 / 59 Outline Joint Probability: great for inference, terrible to obtain

More information

Bayes Nets: Independence

Bayes Nets: Independence Bayes Nets: Independence [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Bayes Nets A Bayes

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

Reasoning Under Uncertainty

Reasoning Under Uncertainty Reasoning Under Uncertainty Introduction Representing uncertain knowledge: logic and probability (a reminder!) Probabilistic inference using the joint probability distribution Bayesian networks The Importance

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets: Independence Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 16: Bayes Nets IV Inference 3/28/2011 Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Announcements

More information

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Machine Learning. Torsten Möller.

Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo. Sampling Methods. Machine Learning. Torsten Möller. Sampling Methods Machine Learning orsten Möller Möller/Mori 1 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs A particular tree structure defined

More information

14 PROBABILISTIC REASONING

14 PROBABILISTIC REASONING 228 14 PROBABILISTIC REASONING A Bayesian network is a directed graph in which each node is annotated with quantitative probability information 1. A set of random variables makes up the nodes of the network.

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Sampling Methods. Bishop PRML Ch. 11. Alireza Ghane. Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo

Sampling Methods. Bishop PRML Ch. 11. Alireza Ghane. Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo Sampling Methods Bishop PRML h. 11 Alireza Ghane Sampling Methods A. Ghane /. Möller / G. Mori 1 Recall Inference or General Graphs Junction tree algorithm is an exact inference method for arbitrary graphs

More information

Reasoning Under Uncertainty

Reasoning Under Uncertainty Reasoning Under Uncertainty Introduction Representing uncertain knowledge: logic and probability (a reminder!) Probabilistic inference using the joint probability distribution Bayesian networks (theory

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Bayesian Networks: Inference Ali Farhadi Many slides over the course adapted from either Luke Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore 1 Outline

More information

Graphical Models - Part I

Graphical Models - Part I Graphical Models - Part I Oliver Schulte - CMPT 726 Bishop PRML Ch. 8, some slides from Russell and Norvig AIMA2e Outline Probabilistic Models Bayesian Networks Markov Random Fields Inference Outline Probabilistic

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

Introduction to Artificial Intelligence. Unit # 11

Introduction to Artificial Intelligence. Unit # 11 Introduction to Artificial Intelligence Unit # 11 1 Course Outline Overview of Artificial Intelligence State Space Representation Search Techniques Machine Learning Logic Probabilistic Reasoning/Bayesian

More information

Uncertainty and knowledge. Uncertainty and knowledge. Reasoning with uncertainty. Notes

Uncertainty and knowledge. Uncertainty and knowledge. Reasoning with uncertainty. Notes Approximate reasoning Uncertainty and knowledge Introduction All knowledge representation formalism and problem solving mechanisms that we have seen until now are based on the following assumptions: All

More information

COMP538: Introduction to Bayesian Networks

COMP538: Introduction to Bayesian Networks COMP538: Introduction to ayesian Networks Lecture 4: Inference in ayesian Networks: The VE lgorithm Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering Hong Kong University

More information

PROBABILISTIC REASONING Outline

PROBABILISTIC REASONING Outline PROBABILISTIC REASONING Outline Danica Kragic Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule September 23, 2005 Uncertainty - Let action A t = leave for airport t minutes

More information

Bayesian networks: approximate inference

Bayesian networks: approximate inference Bayesian networks: approximate inference Machine Intelligence Thomas D. Nielsen September 2008 Approximative inference September 2008 1 / 25 Motivation Because of the (worst-case) intractability of exact

More information

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine

CS 484 Data Mining. Classification 7. Some slides are from Professor Padhraic Smyth at UC Irvine CS 484 Data Mining Classification 7 Some slides are from Professor Padhraic Smyth at UC Irvine Bayesian Belief networks Conditional independence assumption of Naïve Bayes classifier is too strong. Allows

More information

Announcements. CS 188: Artificial Intelligence Spring Probability recap. Outline. Bayes Nets: Big Picture. Graphical Model Notation

Announcements. CS 188: Artificial Intelligence Spring Probability recap. Outline. Bayes Nets: Big Picture. Graphical Model Notation CS 188: Artificial Intelligence Spring 2010 Lecture 15: Bayes Nets II Independence 3/9/2010 Pieter Abbeel UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore Current

More information

CSE 473: Artificial Intelligence Autumn 2011

CSE 473: Artificial Intelligence Autumn 2011 CSE 473: Artificial Intelligence Autumn 2011 Bayesian Networks Luke Zettlemoyer Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore 1 Outline Probabilistic models

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Introduction to Probabilistic Reasoning. Image credit: NASA. Assignment

Introduction to Probabilistic Reasoning. Image credit: NASA. Assignment Introduction to Probabilistic Reasoning Brian C. Williams 16.410/16.413 November 17 th, 2010 11/17/10 copyright Brian Williams, 2005-10 1 Brian C. Williams, copyright 2000-09 Image credit: NASA. Assignment

More information

Lecture 8: Bayesian Networks

Lecture 8: Bayesian Networks Lecture 8: Bayesian Networks Bayesian Networks Inference in Bayesian Networks COMP-652 and ECSE 608, Lecture 8 - January 31, 2017 1 Bayes nets P(E) E=1 E=0 0.005 0.995 E B P(B) B=1 B=0 0.01 0.99 E=0 E=1

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 11 Oct, 3, 2016 CPSC 422, Lecture 11 Slide 1 422 big picture: Where are we? Query Planning Deterministic Logics First Order Logics Ontologies

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 12. Making Simple Decisions under Uncertainty Probability Theory, Bayesian Networks, Other Approaches Wolfram Burgard, Maren Bennewitz, and Marco Ragni Albert-Ludwigs-Universität

More information

Bayesian networks. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018

Bayesian networks. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley. Outline Probability

More information

Bayesian Networks Introduction to Machine Learning. Matt Gormley Lecture 24 April 9, 2018

Bayesian Networks Introduction to Machine Learning. Matt Gormley Lecture 24 April 9, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks Matt Gormley Lecture 24 April 9, 2018 1 Homework 7: HMMs Reminders

More information

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial C:145 Artificial Intelligence@ Uncertainty Readings: Chapter 13 Russell & Norvig. Artificial Intelligence p.1/43 Logic and Uncertainty One problem with logical-agent approaches: Agents almost never have

More information

Bayesian Networks. Characteristics of Learning BN Models. Bayesian Learning. An Example

Bayesian Networks. Characteristics of Learning BN Models. Bayesian Learning. An Example Bayesian Networks Characteristics of Learning BN Models (All hail Judea Pearl) (some hail Greg Cooper) Benefits Handle incomplete data Can model causal chains of relationships Combine domain knowledge

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

PROBABILISTIC REASONING OVER TIME

PROBABILISTIC REASONING OVER TIME PROBABILISTIC REASONING OVER TIME In which we try to interpret the present, understand the past, and perhaps predict the future, even when very little is crystal clear. Outline Time and uncertainty Inference:

More information

CS 380: ARTIFICIAL INTELLIGENCE UNCERTAINTY. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE UNCERTAINTY. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE UNCERTAINTY Santiago Ontañón so367@drexel.edu Summary Probability is a rigorous formalism for uncertain knowledge Joint probability distribution specifies probability of

More information

COMP5211 Lecture Note on Reasoning under Uncertainty

COMP5211 Lecture Note on Reasoning under Uncertainty COMP5211 Lecture Note on Reasoning under Uncertainty Fangzhen Lin Department of Computer Science and Engineering Hong Kong University of Science and Technology Fangzhen Lin (HKUST) Uncertainty 1 / 33 Uncertainty

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Introduction to Bayes Nets CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Introduction Review probabilistic inference, independence and conditional independence Bayesian Networks - - What

More information

Inference in Bayesian networks

Inference in Bayesian networks Inference in ayesian networks Devika uramanian omp 440 Lecture 7 xact inference in ayesian networks Inference y enumeration The variale elimination algorithm c Devika uramanian 2006 2 1 roailistic inference

More information

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III

Bayesian Networks. Semantics of Bayes Nets. Example (Binary valued Variables) CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III CSC384: Intro to Artificial Intelligence Reasoning under Uncertainty-III Bayesian Networks Announcements: Drop deadline is this Sunday Nov 5 th. All lecture notes needed for T3 posted (L13,,L17). T3 sample

More information

15-780: Graduate Artificial Intelligence. Bayesian networks: Construction and inference

15-780: Graduate Artificial Intelligence. Bayesian networks: Construction and inference 15-780: Graduate Artificial Intelligence ayesian networks: Construction and inference ayesian networks: Notations ayesian networks are directed acyclic graphs. Conditional probability tables (CPTs) P(Lo)

More information

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas Bayesian Networks Vibhav Gogate The University of Texas at Dallas Intro to AI (CS 6364) Many slides over the course adapted from either Dan Klein, Luke Zettlemoyer, Stuart Russell or Andrew Moore 1 Outline

More information

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas Bayesian Networks Vibhav Gogate The University of Texas at Dallas Intro to AI (CS 4365) Many slides over the course adapted from either Dan Klein, Luke Zettlemoyer, Stuart Russell or Andrew Moore 1 Outline

More information

Data Mining 2018 Bayesian Networks (1)

Data Mining 2018 Bayesian Networks (1) Data Mining 2018 Bayesian Networks (1) Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Data Mining 1 / 49 Do you like noodles? Do you like noodles? Race Gender Yes No Black Male 10

More information

Inference in Bayesian Networks

Inference in Bayesian Networks Andrea Passerini passerini@disi.unitn.it Machine Learning Inference in graphical models Description Assume we have evidence e on the state of a subset of variables E in the model (i.e. Bayesian Network)

More information

Learning Bayesian Networks (part 1) Goals for the lecture

Learning Bayesian Networks (part 1) Goals for the lecture Learning Bayesian Networks (part 1) Mark Craven and David Page Computer Scices 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some ohe slides in these lectures have been adapted/borrowed from materials

More information

Likelihood Weighting and Importance Sampling

Likelihood Weighting and Importance Sampling Likelihood Weighting and Importance Sampling Sargur Srihari srihari@cedar.buffalo.edu 1 Topics Likelihood Weighting Intuition Importance Sampling Unnormalized Importance Sampling Normalized Importance

More information

Implementing Machine Reasoning using Bayesian Network in Big Data Analytics

Implementing Machine Reasoning using Bayesian Network in Big Data Analytics Implementing Machine Reasoning using Bayesian Network in Big Data Analytics Steve Cheng, Ph.D. Guest Speaker for EECS 6893 Big Data Analytics Columbia University October 26, 2017 Outline Introduction Probability

More information

Probabilistic Representation and Reasoning

Probabilistic Representation and Reasoning Probabilistic Representation and Reasoning Alessandro Panella Department of Computer Science University of Illinois at Chicago May 4, 2010 Alessandro Panella (CS Dept. - UIC) Probabilistic Representation

More information

Axioms of Probability? Notation. Bayesian Networks. Bayesian Networks. Today we ll introduce Bayesian Networks.

Axioms of Probability? Notation. Bayesian Networks. Bayesian Networks. Today we ll introduce Bayesian Networks. Bayesian Networks Today we ll introduce Bayesian Networks. This material is covered in chapters 13 and 14. Chapter 13 gives basic background on probability and Chapter 14 talks about Bayesian Networks.

More information