NANO AND MICROSCALE PARTICLE REMOVAL

Size: px
Start display at page:

Download "NANO AND MICROSCALE PARTICLE REMOVAL"

Transcription

1 NANO AND MICROSCALE PARTICLE REMOVAL Ahmed A. Busnaina William Lincoln Smith Professor and Director of the oratory Northeastern University, Boston, MA

2 OUTLINE Goals and Objectives Approach Preliminary Results Acoustic Streaming and Boundary Layer Particle Removal Mechanism Double layer Effect of Particle Size and Flow Frequency Key Preliminary Research Results

3 Surface Preparation Technology Requirements -- Long Term ** YEAR TECHNOLOGY NODE 18nm 13nm 1nm 7nm 5nm 35nm FEOL Particle Size(nm FEOL Particles (#/cm BEOL Particle Size(nm BEOL Particles (#/cm Surface Roughness (nm Critical surface metals(* Organics ( *1 13 atoms/cm ** ---- The International Technology Roadmap for Semiconductors, 2

4 Goals and Objectives Develop an effective nanoscale particle removal technique using acoustic streaming. Provide a fundamental understanding of the removal mechanism that will be experimentally verified. Experimentally measure particle removal of particles in the size range of 1-1 nm from semiconductor wafers. Evaluate effect of streaming flow frequency, velocity amplitude and particle size and particle/substrate composition on the removal efficiency experimentally and numerically.

5 Approach Fundamental Approach Experimental and modeling approach to determine, understand and predict: Particle Removal Mechanism Cleaning Efficiency, F{R, V, F ad, etc. Cleaning tank Geometry (single, batch, etc. Optimum cleaning conditions Cleaning technology limits with shrinking particle and defect size

6 Approach Fundamental Approach Key Particle Removal Parameters flow frequency velocity (pressure amplitude Particle size Particle composition Particle shape Particle deformation and contact area Double layer effect on removal Cleaning liquid surface tension Surface and particle surface energy (hydrophilic or hydrophobic

7 MEGASONIC CLEANING MEGASONIC CLEANING sin(, ( sin(, ( F w F w + - = + - = = t kx u t x u t kx p t x p t p c 1 p c 2 p I 2 r = Megasonic Cleaning Mechanism Megasonic sound wave: Megasonic power intensity:

8 ACOUSTIC STREAMING v(cm/s f = 76 khz I =.77W/cm 2 I = 1.55W/cm 2 I = 2.33W/cm 2 I = 3.1W/cm 2 I = 3.88W/cm 2 I = 4.65W/cm 2 I = 5.43W/cm 2 I = 6.2W/cm 2 I = 6.97W/cm 2 I = 7.75W/cm 2 v(cm/s Streaming Velocity vs. Acoustic Power 1 M Hz 85k Hz 76k Hz 36k Hz Distance From Tank Wall (cm Intensity (W/cm 2

9 PARTICLE REMOVAL Nano-scale particles will be a challenge to current cleaning techniques. The most widely used cleaning techniques: non-contact method (megasonic cleaning contact cleaning method (brush scrubbers The two basic elements that need to be understood are : Particle Adhesion Particle Removal

10 Boundary Layer Thickness u u Free stream d(x y d τ τ Velocity boundary layer Acoustic boundary layer thickness: x Velocity boundary layer on a flat plate 1 2ν 2 in water, f=85khz, δ ac =.61µm δ ac = ω f=76khz, δ ac =.65µm f=36khz, δ ac =.94µm The hydrodynamic boundary layer thickness: ν δ H =. 16 Ux 1 7 x in water, u=4m/s, at center of the wafer, δ H =257 µm

11 Velocity Profile in a Boundary Layer y = ~25 micron y = ~1 micron Velocity Profile x = 4 inch, U = 4m/s Velocity Profile x = 4 inch, U = 4m/s 25 Laminar flow Turbulent flow Acoustic Flow ( f = 8kHz 1 9 Laminar flow Turbulent flow Acoustic Flow ( f = 8kHz y (micron 15 1 y (micron Velocity (m/s Velocity (m/s

12 Drag Force Distribution on a Particle F D = C D ρ 2 i u 2 A i f = 8 khz, I = 7.75W/cm 2, U ac = 4.8 m/s Acoutic boundary layer thickness =.63 micron u(y 1 micron u(y (m/s Drag Force (.5 micron particle Drag Force ( 1 micron particle A i.5 micron

13 Effects of Frequency Acoustic Flow Properties I = 7.75 W/cm 2 Boundary layer thickness (micron Acoustic, f=36khz Acoustic, f=76khz Acoustic, f=85khz Boundary layer thickness (micron Streaming Velocity (m/s Drag Force ( 1um particle Drag Force (.1um particle Frequency (k Hz Streaming Velocity (m/s Drag Force (N

14 Ratio of Removal/Adhesion Moment (RM RM: U RM RM = = Removal moment Adhesion resisting moment F d ( R δ F a a + F a When RM >1, most particles are removed. dl 1.399R δ M R F elec. double layer a O M A F Adhesion F drag Rolling removal mechanism

15 Removal Percentage vs. Moment Ratio (Silica Removal Experiment Removal Percentage Moment Ratio Removal Percentage Moment Ratio

16 Effect of Particle Size on Adhesion and Removal Forces Forces vs. Particle Diameter U = 4 m/s U F electrical double layer Drag Force (Acoustic Flow, 8kHz, 7.75W/cm 2, U ac =4m/s, d ac =.63 um Drag Force ( Hydrodynamic Flow, U = 4 m/s, d h = 275 um Double layer force Van der Waals Force, PSL/SiO 2 Van der Waals Force, SiO 2 /SiO 2 F drag Force (N Particle Diameter (micron F Adhesion Drag force, electrical double layer force, and adhesion force all increase with particle size. Acting as removal forces, d>1nm, acoustic flow drag force is dominated; 3nm<d<1nm, drag force and electrical double layer force are on same level; d<3nm, electrical double layer force is dominated;

17 Electrical Double Layer Force Zeta Potential (mv ph Tantalum pentoxide Si3N4 Silica Alumina PVA PSL (99nm Tungsten At the ph of water, silica, PSL, PVA, and W particles are all negatively charged. The high negative zeta potentials are measured at high ph solution for SiO 2, Si 3 N 4, Al 2 O 3, tantalum pentoxide, tungsten, polyvinyl alcohol (PVA, and also for Si and PSL. Using a high ph cleaning solution, electrical double layer force occurs as a strong repulsion between the particle and the substrate.

18 Removal/Adhesion Moment Ratio (RM Removal Moment Ratio (RM vs. Particle Diameter DI water, electrical double layer force is negligible U = 1.8 m/s (Acoustic Flow, 13kHz, 7.75W/cm Removal Moment RM = Adhesion Resisting Moment Removal Moment Ratio (RM vs. Particle Diameter SC-1, electrical double layer force is repulse U = 1.8 m/s (Acoustic Flow, 1.3 MHz, 7.75W/cm Removal Moment RM = Adhesion Resisting Moment RM > 1 Removal > Adhesion Particle will be removed RM > 1 Removal > Adhesion Particle will be removed RM SiO 2 particle on SiO 2, Acoustic ( 1.3 MHz PSL particle on SiO 2, Acoustic ( 1.3 MHz SiO 2 particle on SiO 2, Hydrodynnamic PSL particle on SiO 2, Hydrodynnamic Particle Diameter (micron RM = 1 RM < 1 Removal < Adhesion Particle can not be removed RM SiO 2 particle on SiO 2, Acoustic(1.3MHz+SC1 PSL particle on SiO 2, Acoustic (1.3MHz+SC1 SiO 2 particle on SiO 2, Hydrodynnamic+SC1 PSL particle on SiO 2, Hydrodynnamic+SC Particle Diameter (micron RM = 1 RM < 1 Removal < Adhesion Particle can not be removed Using DI water only, the removal of nano-size particles (1-1 nm can be best accomplished using acoustic streaming at frequencies larger than 1.3 MHz.

19 Effects of Frequency on RM DI water, Electrical double layer force is negligible SC-1, Electrical double layer force is repulsive force Effect of Frequency on RM I = 7.75 W/cm 2 Effect of Frequency on RM I = 7.75 W/cm 2 DI water, Electrical double layerforce isnegligible SC-1, Electrical double layer force is repulse RM no F el (1um SiO 2 /SiO 2 RM no F el (.1um SiO 2 /SiO 2 RM no F el (1um PSL/SiO 2 RM no F el (.1um PSL/SiO 2 RM > 1 Removal > Adhesion Particle will be removed RM (1um SiO 2 /SiO 2 RM (.1um SiO 2 /SiO 2 RM (1um PSL/SiO 2 RM (.1um PSL/SiO 2 RM > 1 Removal > Adhesion Particle will be removed RM 1 RM = 1 RM 1 RM = RM < 1 Removal < Adhesion 1-2 RM < 1 Removal < Adhesion 1-4 Particle can not be removed 1-4 Particle can not be removed Frequency (k Hz Frequency (k Hz The smaller the particles, the higher frequency acoustic flow is needed. Soft particles (PSL are more difficult to remove than hard particle (silica, needing almost an order of magnitude higher frequency.

20 Fast Single Wafer Post-CMP Cleaning Single versus Batch The Removal Efficiency of AL2O3 particles 12 1 Particles >.2 micron Before Dep After Dep After Cleaning 1 min Batch 1 min Batch 2 min Batch 2 min Batch 1 min Single 1 min Single

21 Complete removal of silica particles down to 1nm is achievable by using a single wafer megasonic cleaning with DI water only S in g le M e ga so n ic C lea n in g P rocess, T em p = 3 5 o C R em oval E fficien cy o f S ilica P articles.1 µ m Time (sec P o w e r (W a tts.9 8

22 Megasonic Cleaning of Polished TOX Wafers Using SC Defects # W 54 W min 1 min 5 min 1 min 3 o C 6 o C

23 Key Results from Preliminary Research Megasonics induced acoustic streaming is essential to the removal of submicron and nano-size particles. As the frequency increases, the acoustic boundary layer thickness decreases and streaming velocity increases thereby increasing the removal (drag force. Using DI water, the removal of nano-size particles (1-1 nm can be best accomplished using acoustic streaming at frequencies larger than 1.3 MHz. Utilizing the electrical double layer force as a repulse force, by using basic chemistry, removal of 1nm silica particle can be accomplished using megasonic cleaning above 8 khz. Acting as removal forces, d>1nm, acoustic flow drag force is dominated; 3nm<d<1nm, drag force and electrical double layer force are on same level; d<3nm, electrical double layer force is dominated; Soft particles (such as Polystyrene Latex PSL are more difficult to remove than hard particle (silica, because of adhesion induced deformation, needing almost an order of magnitude higher frequency.

PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS

PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS George Adams, Ahmed A. Busnaina and Sinan Muftu the oratory Mechanical, Industrial, and Manufacturing Eng. Department Northeastern University, Boston,

More information

The Removal of Nanoparticles from Nanotrenches Using Megasonics

The Removal of Nanoparticles from Nanotrenches Using Megasonics NSF Center for Micro and Nanoscale Contamination Control The Removal of Nanoparticles from Nanotrenches Using Megasonics Pegah Karimi 1, Tae Hoon Kim 1, Ahmed A. Busnaina 1 and Jin Goo Park 2 1 NSF Center

More information

NSF Center for Micro and Nanoscale Contamination Control

NSF Center for Micro and Nanoscale Contamination Control NSF Center for Micro and Nanoscale Contamination Control Research Focus at the NSF Center for Nano and Microcontamination Control Ahmed Busnaina W. L. Smith Professor and Director NSF Center for Microcontamination

More information

MEGASONIC CLEANING OF WAFERS IN ELECTROLYTE SOLUTIONS: POSSIBLE ROLE OF ELECTRO-ACOUSTIC AND CAVITATION EFFECTS. The University of Arizona, Tucson

MEGASONIC CLEANING OF WAFERS IN ELECTROLYTE SOLUTIONS: POSSIBLE ROLE OF ELECTRO-ACOUSTIC AND CAVITATION EFFECTS. The University of Arizona, Tucson MEGASONIC CLEANING OF WAFERS IN ELECTROLYTE SOLUTIONS: POSSIBLE ROLE OF ELECTRO-ACOUSTIC AND CAVITATION EFFECTS Manish Keswani 1, Srini Raghavan 1, Pierre Deymier 1 and Steven Verhaverbeke 2 1 The University

More information

Post Tungsten CMP Cleaner Development with Improved Organic and Particle Residue Removal on Silicon Nitride and Excellent Tungsten Compatibility

Post Tungsten CMP Cleaner Development with Improved Organic and Particle Residue Removal on Silicon Nitride and Excellent Tungsten Compatibility Post Tungsten CMP Cleaner Development with Improved Organic and Particle Residue Removal on Silicon Nitride and Excellent Tungsten Compatibility Ching-Hsun Chao, Chi Yen, Ping Hsu, Eugene Lee, Paul Bernatis

More information

Experimental and Analytical Study of Submicrometer Particle Removal from Deep Trenches

Experimental and Analytical Study of Submicrometer Particle Removal from Deep Trenches 0013-4651/2006/153 9 /C603/5/$20.00 The Electrochemical Society Experimental and Analytical Study of Submicrometer Particle Removal from Deep Trenches Kaveh Bakhtari, a Rasim O. Guldiken, a Ahmed A. Busnaina,

More information

SPCC Department of Bio-Nano Technology and 2 Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.

SPCC Department of Bio-Nano Technology and 2 Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea. SPCC 2018 Hanyang University NEMPL Jin-Goo Park 1,2 *, Jung-Hwan Lee a, In-chan Choi 1, Hyun-Tae Kim 1, Lieve Teugels 3, and Tae-Gon Kim 3 1 Department of Bio-Nano Technology and 2 Materials Science and

More information

The Mechanics of CMP and Post-CMP Cleaning

The Mechanics of CMP and Post-CMP Cleaning The Mechanics of CMP and Post-CMP Cleaning Sinan Müftü Ahmed Busnaina George Adams Department of Mechanical, Industrial and Manuf. Engineering Northeastern University Boston, MA 02115 Introduction Objective

More information

Spring Lecture 4 Contamination Control and Substrate Cleaning. Nanometer Scale Patterning and Processing

Spring Lecture 4 Contamination Control and Substrate Cleaning. Nanometer Scale Patterning and Processing Nanometer Scale Patterning and Processing Spring 2016 Lecture 4 Contamination Control and Substrate Cleaning Contaminants A substance causes uncontrolled variations in the (electrical) performance of the

More information

Kurita Water Industries Ltd. Takeo Fukui, Koji Nakata

Kurita Water Industries Ltd. Takeo Fukui, Koji Nakata Study of particle attachment on silicon wafers during rinsing Kurita Water Industries Ltd. Takeo Fukui, Koji Nakata Outline 1. Introduction 2. Experimental Method 1 3. Result & Discussion 1 4. Experimental

More information

Acoustic Streaming Effects in Megasonic Cleaning of EUV Photomasks: A continuum model.

Acoustic Streaming Effects in Megasonic Cleaning of EUV Photomasks: A continuum model. Acoustic Streaming Effects in Megasonic Cleaning of EUV Photomasks: A continuum model. Vivek Kapila a, Pierre A. Deymier a, Hrishikesh Shende a, Viraj Pandit b, Srini Raghavan a and Florence O. Eschbach

More information

Effects of Size, Humidity, and Aging on Particle Removal

Effects of Size, Humidity, and Aging on Particle Removal LEVITRONIX Ultrapure Fluid Handling and Wafer Cleaning Conference 2009 February 10, 2009 Effects of Size, Humidity, and Aging on Particle Removal Jin-Goo Park Feb. 10, 2009 Department t of Materials Engineering,

More information

SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS

SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS Gautam Kumar, Shanna Smith, Florence Eschbach, Arun Ramamoorthy, Michael

More information

Particle removal in linear shear flow: model prediction and experimental validation

Particle removal in linear shear flow: model prediction and experimental validation Particle removal in linear shear flow: model prediction and experimental validation M.L. Zoeteweij, J.C.J. van der Donck and R. Versluis TNO Science and Industry, P.O. Box 155, 600 AD Delft, The Netherlands

More information

Particle removal in linear shear flow

Particle removal in linear shear flow Model prediction and experimental validation Marco Zoeteweij Jacques van der Donck Richard Versluis Structure of presentation Scope of the project Model on particle flow interaction Experiments Validation

More information

Cleaning Surfaces from Nanoparticles with Polymer Film: Impact of the Polymer Stripping

Cleaning Surfaces from Nanoparticles with Polymer Film: Impact of the Polymer Stripping Cleaning Surfaces from Nanoparticles with Polymer Film: Impact of the Polymer Stripping A. LALLART 1,2,3,4, P. GARNIER 1, E. LORENCEAU 2, A. CARTELLIER 3, E. CHARLAIX 2 1 STMICROELECTRONICS, CROLLES, FRANCE

More information

Carbon Nanotubes in Interconnect Applications

Carbon Nanotubes in Interconnect Applications Carbon Nanotubes in Interconnect Applications Page 1 What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? Comparison of electrical properties

More information

Analytical Prediction of Particle Detachment from a Flat Surface by Turbulent Air Flows

Analytical Prediction of Particle Detachment from a Flat Surface by Turbulent Air Flows Chiang Mai J. Sci. 2011; 38(3) 503 Chiang Mai J. Sci. 2011; 38(3) : 503-507 http://it.science.cmu.ac.th/ejournal/ Short Communication Analytical Prediction of Particle Detachment from a Flat Surface by

More information

The CMP Slurry Monitor - Background

The CMP Slurry Monitor - Background The CMP Slurry Monitor - Background Abstract The CMP slurry monitor uses electroacoustic and ultrasonic attenuation measurements to determine the size and zeta potential of slurry particles. The article

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Turbulent Boundary Layers: Roughness Effects

Turbulent Boundary Layers: Roughness Effects 2.20 - Marine Hydrodynamics, Spring 2005 Lecture 19 2.20 - Marine Hydrodynamics Lecture 19 Turbulent Boundary Layers: Roughness Effects So far, we have assumed a hydraulically smooth surface. In practice,

More information

Second-order sound field during megasonic cleaning of patterned silicon wafers: Application to ridges and trenches

Second-order sound field during megasonic cleaning of patterned silicon wafers: Application to ridges and trenches JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 8 15 OCTOBER 2001 Second-order sound field during megasonic cleaning of patterned silicon wafers: Application to ridges and trenches P. A. Deymier a) Department

More information

Non-contact removal of 60-nm latex particles from silicon wafers with laser-induced plasma

Non-contact removal of 60-nm latex particles from silicon wafers with laser-induced plasma J. Adhesion Sci. Technol., Vol. 18, No. 7, pp. 795 806 (2004) VSP 2004. Also available online - www.vsppub.com Non-contact removal of 60-nm latex particles from silicon wafers with laser-induced plasma

More information

Effects of PVA Brush Shape and Wafer Pattern on the Frictional Attributes of Post-CMP PVA Brush Scrubbing

Effects of PVA Brush Shape and Wafer Pattern on the Frictional Attributes of Post-CMP PVA Brush Scrubbing Effects of PVA Brush Shape and Wafer Pattern on the Frictional Attributes of Post-CMP PVA Brush Scrubbing J. Weaver and A. Philipossian Department of Chemical Engineering University of Arizona, Tucson

More information

Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling

Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling Victor Moroz *, Munkang Choi *, Geert Van der Plas, Paul Marchal, Kristof Croes, and Eric Beyne * Motivation: Build Reliable 3D IC

More information

A novel cleaner for colloidal silica abrasive removal in post-cu CMP cleaning

A novel cleaner for colloidal silica abrasive removal in post-cu CMP cleaning Vol. 36, No. 10 Journal of Semiconductors October 2015 A novel cleaner for colloidal silica abrasive removal in post-cu CMP cleaning Deng Haiwen( 邓海文 ), Tan Baimei( 檀柏梅 ), Gao Baohong( 高宝红 ), Wang Chenwei(

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

Outline Scanning Probe Microscope (SPM)

Outline Scanning Probe Microscope (SPM) AFM Outline Scanning Probe Microscope (SPM) A family of microscopy forms where a sharp probe is scanned across a surface and some tip/sample interactions are monitored Scanning Tunneling Microscopy (STM)

More information

Establishing an IUCRC Center for Microcontamination Control at Northeastern University: a Planning Meeting Proposal

Establishing an IUCRC Center for Microcontamination Control at Northeastern University: a Planning Meeting Proposal Establishing an IUCRC Center for Microcontamination Control at Northeastern University: a Planning Meeting Proposal EXECUTIVE SUMMARY This proposal is for holding a planning meeting for the establishment

More information

Defects Panel Discussion

Defects Panel Discussion Defects Panel Discussion David Y. H. Pui Distinguished McKnight University Professor LM Fingerson/TSI Inc Chair in Mechanical Engineering Director of the Particle Technology Laboratory University of Minnesota

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Hybrid Wafer Level Bonding for 3D IC

Hybrid Wafer Level Bonding for 3D IC Hybrid Wafer Level Bonding for 3D IC An Equipment Perspective Markus Wimplinger, Corporate Technology Development & IP Director History & Roadmap - BSI CIS Devices???? 2013 2 nd Generation 3D BSI CIS with

More information

TCAD Modeling of Stress Impact on Performance and Reliability

TCAD Modeling of Stress Impact on Performance and Reliability TCAD Modeling of Stress Impact on Performance and Reliability Xiaopeng Xu TCAD R&D, Synopsys March 16, 2010 SEMATECH Workshop on Stress Management for 3D ICs using Through Silicon Vias 1 Outline Introduction

More information

QUANTIFICATION OF PARTICLE AGGLOMERATION DURING CHEMICAL MECHANICAL POLISHING OF METALS AND DIELECTRICS

QUANTIFICATION OF PARTICLE AGGLOMERATION DURING CHEMICAL MECHANICAL POLISHING OF METALS AND DIELECTRICS QUANTIFICATION OF PARTICLE AGGLOMERATION DURING CHEMICAL MECHANICAL POLISHING OF METALS AND DIELECTRICS Slurry Loop Shear Flow Agglomeration Inter-particle Force Aniruddh J. Khanna, Rajiv K. Singh Materials

More information

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot α(t) = ω 2 θ (t) ω = κ I ω = g L T = 2π L g ω = mgh rot com I rot T = 2π I rot mgh rot com Chapter 16: Waves Mechanical Waves Waves and particles Vibration = waves - Sound - medium vibrates - Surface ocean

More information

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen

Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Experimental and Theoretical Study of Motion of Drops on Horizontal Solid Surfaces with a Wettability Gradient Nadjoua Moumen Department of Chemical and Biomolecular Engineering Clarkson University Outline

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Module 3: "Thin Film Hydrodynamics" Lecture 11: "" The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces

Module 3: Thin Film Hydrodynamics Lecture 11:  The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces The Lecture Contains: Micro and Nano Scale Hydrodynamics with and without Free Surfaces Order of Magnitude Analysis file:///e /courses/colloid_interface_science/lecture11/11_1.htm[6/16/2012 1:39:56 PM]

More information

NANOPARTICLES REMOVAL IN POST-CMP (CHEMICAL-MECHANICAL POLISHING) CLEANING. A Thesis DEDY NG

NANOPARTICLES REMOVAL IN POST-CMP (CHEMICAL-MECHANICAL POLISHING) CLEANING. A Thesis DEDY NG NANOPARTICLES REMOVAL IN POST-CMP (CHEMICAL-MECHANICAL POLISHING) CLEANING A Thesis by DEDY NG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL

DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL Minami Yoda G. W. Woodruff School of Mechanical Engineering minami@gatech.edu OUTLINE The problem and its motivation The (evanescent-wave PTV) technique

More information

Effect of Pump Induced Particle Agglomeration On CMP of Ultra Low k Dielectrics

Effect of Pump Induced Particle Agglomeration On CMP of Ultra Low k Dielectrics Effect of Pump Induced Particle Agglomeration On CMP of Ultra Low k Dielectrics Rajiv K. Singh, F.C. Chang and S. Tanawade, Gary Scheiffele Materials Science and Engineering Particle Science Engineering

More information

In Situ and Real-Time Metrology during Cleaning, Rinsing, and Drying of Microand Nano-Structures

In Situ and Real-Time Metrology during Cleaning, Rinsing, and Drying of Microand Nano-Structures In Situ and Real-Time Metrology during Cleaning, Rinsing, and Drying of Microand Nano-Structures Jun Yan *, Davoud Zamani *, Bert Vermeire +, Farhang Shadman * * Chemical Engineering, University of Arizona

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information

Fabrication of ordered array at a nanoscopic level: context

Fabrication of ordered array at a nanoscopic level: context Fabrication of ordered array at a nanoscopic level: context Top-down method Bottom-up method Classical lithography techniques Fast processes Size limitations it ti E-beam techniques Small sizes Slow processes

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Surface Properties of EUVL. Laser Shock Cleaning (LSC)

Surface Properties of EUVL. Laser Shock Cleaning (LSC) 2007 International EUVL Symposium, Japan Surface Properties of EUVL Mask Layers after High Energy Laser Shock Cleaning (LSC) Tae-Gon Kim, Young-Sam Yoo, Il-Ryong Son, Tae-Geun Kim *, Jinho Ahn *, Jong-Myoung

More information

DMA Size-Selection and Electrostatic Deposition of Particle Size Standards Down to 10nm

DMA Size-Selection and Electrostatic Deposition of Particle Size Standards Down to 10nm DMA Size-Selection and Electrostatic Deposition of Particle Size Standards Down to 10nm Ben Hunt, William Dick, Zeeshan Syedain MSP Corporation 1 AAAR 2013 3IM.4 Presentation Outline Particle Deposition

More information

! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation

! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation ! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation! JKR and non-jkr Theory! Role of Electrostatic Forces! Conclusions Books:

More information

Interaction of Multiwalled Carbon Nanotubes with Model Cell Membranes: A QCM-D Study

Interaction of Multiwalled Carbon Nanotubes with Model Cell Membranes: A QCM-D Study Interaction of Multiwalled Carbon Nanotubes with Model Cell Membranes: A QCM-D Study PENG YI and Kai Loon Chen (PI) Department of Geography and Environmental Engineering Johns Hopkins University 1 Overview

More information

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow

Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow OCEN 678-600 Fluid Dynamics for Ocean and Environmental Engineering Homework #2 Viscous Flow Date distributed : 9.18.2005 Date due : 9.29.2005 at 5:00 pm Return your solution either in class or in my mail

More information

Simulation and verification of forces on particles in ultrasound agitated gases

Simulation and verification of forces on particles in ultrasound agitated gases Simulation and verification of forces on particles in ultrasound agitated gases Claas Knoop, Udo Fritsching PiKo Workshop Dialogue: Experiment -Model Siegen 2012 Partikeln im Kontakt DFG SPP 1486 01.10.2012

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supplementary Information Visualization of equilibrium position of colloidal particles at fluid-water

More information

Nano Particle Image Velocimetry (npiv); Data Reduction Challenges

Nano Particle Image Velocimetry (npiv); Data Reduction Challenges Nano Particle Image Velocimetry (npiv); Data Reduction Challenges Dr. Reza Sadr Micro Scale Thermo Fluids (MSTF) Laboratory Department of Mechanical Engineering Reza.sadr@qatar.tamu.edu P. O. Box 23874,

More information

Effect of Incoming Quality of Sulfuric Acid on Inline Defects

Effect of Incoming Quality of Sulfuric Acid on Inline Defects Effect of Incoming Quality of Sulfuric Acid on Inline Defects Dhiman Bhattacharyya*, Sushil Patil, Mark Conrad, Hayley Manning, Fauzia Khatkhatay, Alexander Mena and Norberto DeOliveira March 28, 2017

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D. Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

More information

Measuring sub-50nm particle retention of UPW filters

Measuring sub-50nm particle retention of UPW filters Measuring sub-50nm particle retention of UPW filters Don Grant and Gary Van Schooneveld 7121 Shady Oak Road, Eden Prairie, MN 55344 May 2, 2011 CTA 1286 2519 1 Introduction The critical feature size of

More information

Determination of zeta potential by means of a rotating disk: planar, particulate, and porous samples!

Determination of zeta potential by means of a rotating disk: planar, particulate, and porous samples! Determination of zeta potential by means of a rotating disk: planar, particulate, and porous samples! Paul J Sides! Zetametrix Inc! 5821 Kentucky Avenue! Pittsburgh, PA 15232! 1! ZetaSpin: universal tool

More information

Cavitation for Megasonic Cleaning Applications

Cavitation for Megasonic Cleaning Applications Use of Sonoluminescence and Sono-Electrochemistry Based Techniques for Fundamental Investigations of Acoustic Cavitation for Megasonic Cleaning Applications Presenter: M. Keswani Students involved: Z.

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

M E 320 Professor John M. Cimbala Lecture 38

M E 320 Professor John M. Cimbala Lecture 38 M E 320 Professor John M. Cimbala Lecture 38 Today, we will: Discuss displacement thickness in a laminar boundary layer Discuss the turbulent boundary layer on a flat plate, and compare with laminar flow

More information

Introduction CR-288 APPLICATION NOTE FOR BEOL SEMICONDUCTOR PROCESSING. Authors: Christopher Wacinski and Wiley Wilkinson

Introduction CR-288 APPLICATION NOTE FOR BEOL SEMICONDUCTOR PROCESSING. Authors: Christopher Wacinski and Wiley Wilkinson APPLICATION NOTE CR-288 APPLICATION NOTE FOR BEOL SEMICONDUCTOR PROCESSING Authors: Christopher Wacinski and Wiley Wilkinson Introduction CR-288 improves process efficiency for BEOL because tighter process

More information

UNIVERSITY OF CALIFORNIA. College of Engineering. Department of Electrical Engineering and Computer Sciences. Professor Ali Javey.

UNIVERSITY OF CALIFORNIA. College of Engineering. Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE 143 Professor Ali Javey Spring 2009 Exam 2 Name: SID: Closed book. One sheet of notes is allowed.

More information

GENERAL ENGINEERING AND RESEARCH. Nano Capsule CMP Slurries: Enabling Localized Control of Chemical Exposure

GENERAL ENGINEERING AND RESEARCH. Nano Capsule CMP Slurries: Enabling Localized Control of Chemical Exposure GENERAL ENGINEERING AND RESEARCH National Science Foundation SBIR Phase II Nano Capsule CMP Slurries: Enabling Localized Control of Chemical Exposure Robin V. Ihnfeldt, Ph.D. July 11, 2016 Outline Introduction

More information

What are Carbon Nanotubes? What are they good for? Why are we interested in them?

What are Carbon Nanotubes? What are they good for? Why are we interested in them? Growth and Properties of Multiwalled Carbon Nanotubes What are Carbon Nanotubes? What are they good for? Why are we interested in them? - Interconnects of the future? - our vision Where do we stand - our

More information

Low operating temperature integral systems

Low operating temperature integral systems Acoustics-8 Paris Low operating temperature integral systems A novel hybrid configuration TA engine Kees de Blok Aster Thermoakoestische Systemen General system aspects Reduction of average regenerator

More information

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

More information

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity

Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Boundary layer flows The logarithmic law of the wall Mixing length model for turbulent viscosity Tobias Knopp D 23. November 28 Reynolds averaged Navier-Stokes equations Consider the RANS equations with

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

Lecture 7 Contact angle phenomena and wetting

Lecture 7 Contact angle phenomena and wetting Lecture 7 Contact angle phenomena and Contact angle phenomena and wetting Young s equation Drop on the surface complete spreading Establishing finite contact angle γ cosθ = γ γ L S SL γ S γ > 0 partial

More information

Only if handing in. Name: Student No.: Page 2 of 7

Only if handing in. Name: Student No.: Page 2 of 7 UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 10, 2014 2:00 PM 2.5 HOURS CHE 211F FLUID MECHANICS EXAMINER: PROFESSOR D.G. ALLEN ANSWER ALL SEVEN (7) QUESTIONS

More information

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method Pradipto and Hisao Hayakawa Yukawa Insitute for Theoretical Physics Kyoto University Rheology of disordered

More information

Laminar Flow. Chapter ZERO PRESSURE GRADIENT

Laminar Flow. Chapter ZERO PRESSURE GRADIENT Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible

More information

A short pulsed laser cleaning system for EUVL tool

A short pulsed laser cleaning system for EUVL tool A short pulsed laser cleaning system for EUVL tool Masami Yonekawa, Hisashi Namba and Tatsuya Hayashi Nanotechnology & Advanced System Research Laboratories, Canon inc. 23-10, Kiyohara-Kogyodanchi, Utsunomiya-shi,

More information

Fiducial Marks for EUV mask blanks. Jan-Peter Urbach, James Folta, Cindy Larson, P.A. Kearney, and Thomas White

Fiducial Marks for EUV mask blanks. Jan-Peter Urbach, James Folta, Cindy Larson, P.A. Kearney, and Thomas White Fiducial Marks for EUV mask blanks Jan-Peter Urbach, James Folta, Cindy Larson, P.A. Kearney, and Thomas White Fiducial marks are laser scribed on 200 mm wafers to enable defect registration on metrology

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

Quiz #1 Practice Problem Set

Quiz #1 Practice Problem Set Name: Student Number: ELEC 3908 Physical Electronics Quiz #1 Practice Problem Set? Minutes January 22, 2016 - No aids except a non-programmable calculator - All questions must be answered - All questions

More information

Particle Characterization Laboratories, Inc.

Particle Characterization Laboratories, Inc. Analytical services Particle size analysis Dynamic Light Scattering Static Light Scattering Sedimentation Diffraction Zeta Potential Analysis Single Point Titration Isoelectric point determination Aqueous

More information

PLUS. Zeta/Nano Particle Analyzer

PLUS. Zeta/Nano Particle Analyzer PLUS Zeta/Nano Particle Analyzer -100 m The NanoPlus Zeta-Potential & Particle Size Analyzer Features ELSZ-1000 series ZETA-POTENTIAL & PARTICLE SIZE ANALYZER of ink for inkjet printer (Yellow) Concentration

More information

Forced Convection Around Obstacles

Forced Convection Around Obstacles Chapter 4 Forced Convection Around Obstacles 4.1. Description of the flow This chapter is devoted to heat transfer on bodies immersed in a stream. We consider a solid characterized by the length scale

More information

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FOUR-WAY COUPLED SIMULATIONS OF TURBULENT FLOWS WITH NON-SPHERICAL PARTICLES Berend van Wachem Thermofluids Division, Department of Mechanical Engineering Imperial College London Exhibition Road, London,

More information

PHY 481/581. Some classical/quantum physics for the nanometer length scale.

PHY 481/581. Some classical/quantum physics for the nanometer length scale. PHY 481/581 Some classical/quantum physics for the nanometer length scale http://creativecommons.org/licenses/by-nc-sa/3.0/ 1 What is nano-science? the science of materials whose properties scale with

More information

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2

Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 2 Pleeeeeeeeeeeeeease mark your UFID, exam number, and name correctly. 20 problems 3 problems from exam 1 3 problems from exam 2 6 problems 13.1 14.6 (including 14.5) 8 problems 1.1---9.6 Go through the

More information

External Flow and Boundary Layer Concepts

External Flow and Boundary Layer Concepts 1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

More information

Biosensors and Instrumentation: Tutorial 2

Biosensors and Instrumentation: Tutorial 2 Biosensors and Instrumentation: Tutorial 2. One of the most straightforward methods of monitoring temperature is to use the thermal variation of a resistor... Suggest a possible problem with the use of

More information

Shock Pressure Measurements for the Removal of Particles of Sub-micron Dimensions from Silicon Wafers

Shock Pressure Measurements for the Removal of Particles of Sub-micron Dimensions from Silicon Wafers Shock Pressure Measurements for the Removal of Particles of Sub-micron Dimensions from Silicon Wafers C.Curran, K.G.Watkins, J.M.Lee Laser Group Department of Engineering The University of Liverpool United

More information

Carrier transport: Drift and Diffusion

Carrier transport: Drift and Diffusion . Carrier transport: Drift and INEL 5209 - Solid State Devices - Spring 2012 Manuel Toledo April 10, 2012 Manuel Toledo Transport 1/ 32 Outline...1 Drift Drift current Mobility Resistivity Resistance Hall

More information

Homework of chapter (1) (Solution)

Homework of chapter (1) (Solution) بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

More information

RADIO AMATEUR EXAM GENERAL CLASS

RADIO AMATEUR EXAM GENERAL CLASS RAE-Lessons by 4S7VJ 1 CHAPTER- 2 RADIO AMATEUR EXAM GENERAL CLASS By 4S7VJ 2.1 Sine-wave If a magnet rotates near a coil, an alternating e.m.f. (a.c.) generates in the coil. This e.m.f. gradually increase

More information

RHEOLOGY AG.02/2005 AG0905

RHEOLOGY AG.02/2005 AG0905 RHEOLOGY Rheology Basics TYPES OF RHEOLOGICAL BEHAVIOUR NEWTONIAN FLOW PSEUDOPLASTICITY SHEAR THINNING FLOW (case with Yield Value) THIXOTROPY Yield Value Viscosity Viscosity Viscosity Shear Rate. Shear

More information

Mechanical Energy and Simple Harmonic Oscillator

Mechanical Energy and Simple Harmonic Oscillator Mechanical Energy and Simple Harmonic Oscillator Simple Harmonic Motion Hooke s Law Define system, choose coordinate system. Draw free-body diagram. Hooke s Law! F spring =!kx ˆi! kx = d x m dt Checkpoint

More information

L8: The Mechanics of Adhesion used by the Gecko

L8: The Mechanics of Adhesion used by the Gecko L8: The Mechanics of Adhesion used by the Gecko With help from Bo He Overview Gecko s foot structure Intermolecular force Measurement: 2-D MEMS sensor Gecko s adhesive mechanism Measurement results discussion

More information

3B: Review. Nina Hong. U Penn, February J.A. Woollam Co., Inc. 1

3B: Review. Nina Hong. U Penn, February J.A. Woollam Co., Inc.   1 2014 J.A. Woollam Co., Inc. www.jawoollam.com 1 3B: Review Nina Hong U Penn, February 2014 2014 J.A. Woollam Co., Inc. www.jawoollam.com 2 Review 1A: Introduction to WVASE: Fun Quiz! 1B: Cauchy 2A: Pt-by-Pt

More information

Slide 1 Raymond Jin, Adcon Lab, Inc.

Slide 1 Raymond Jin, Adcon Lab, Inc. Volume Production Proven Advanced Nanometer Slurries for CMP Applications, Capable of Recycling and Extendable to Larger Si Wafer Sizes and Future IC Technology Nodes Raymond R. Jin, X. L. Song, S. M.

More information

Fundamentals of Atomic Force Microscopy Part 2: Dynamic AFM Methods

Fundamentals of Atomic Force Microscopy Part 2: Dynamic AFM Methods Fundamentals of tomic Force Microscopy Part 2: Dynamic FM Methods Week 2, Lecture 5 ttractive and repulsive regimes and phase contrast in amplitude modulation FM rvind Raman Mechanical Engineering Birck

More information

Nano-sized ceria abrasive for advanced polishing applications in IC manufacturing

Nano-sized ceria abrasive for advanced polishing applications in IC manufacturing Nano-sized ceria abrasive for advanced polishing applications in IC manufacturing Joke De Messemaeker, Stijn Put, Daniël Nelis, Dirk Van Genechten, Paul Lippens, Yves Van Rompaey and Yvan Strauven Umicore

More information

Nanometer Ceria Slurries for Front-End CMP Applications, Extendable to 65nm Technology Node and Beyond

Nanometer Ceria Slurries for Front-End CMP Applications, Extendable to 65nm Technology Node and Beyond Nanometer Ceria Slurries for Front-End CMP Applications, Extendable to 65nm Technology Node and Beyond Cass Shang, Robert Small and Raymond Jin* DuPont Electronic Technologies, 2520 Barrington Ct., Hayward,

More information

Numerical Simulation of Dynamic Wetting Behavior in the Wetting Balance Method

Numerical Simulation of Dynamic Wetting Behavior in the Wetting Balance Method Materials Transactions, Vol. 43, No. 8 (2002) pp. 1816 to 1820 Special Issue on Lead-Free Electronics Packaging c 2002 The Japan Institute of Metals Numerical Simulation of Dynamic Wetting Behavior in

More information